Limited Animation Budget Cutting and Time Saving Technique by Prof
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
UPA : Redesigning Animation
This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg) Nanyang Technological University, Singapore. UPA : redesigning animation Bottini, Cinzia 2016 Bottini, C. (2016). UPA : redesigning animation. Doctoral thesis, Nanyang Technological University, Singapore. https://hdl.handle.net/10356/69065 https://doi.org/10.32657/10356/69065 Downloaded on 05 Oct 2021 20:18:45 SGT UPA: REDESIGNING ANIMATION CINZIA BOTTINI SCHOOL OF ART, DESIGN AND MEDIA 2016 UPA: REDESIGNING ANIMATION CINZIA BOTTINI School of Art, Design and Media A thesis submitted to the Nanyang Technological University in partial fulfillment of the requirement for the degree of Doctor of Philosophy 2016 “Art does not reproduce the visible; rather, it makes visible.” Paul Klee, “Creative Credo” Acknowledgments When I started my doctoral studies, I could never have imagined what a formative learning experience it would be, both professionally and personally. I owe many people a debt of gratitude for all their help throughout this long journey. I deeply thank my supervisor, Professor Heitor Capuzzo; my cosupervisor, Giannalberto Bendazzi; and Professor Vibeke Sorensen, chair of the School of Art, Design and Media at Nanyang Technological University, Singapore for showing sincere compassion and offering unwavering moral support during a personally difficult stage of this Ph.D. I am also grateful for all their suggestions, critiques and observations that guided me in this research project, as well as their dedication and patience. My gratitude goes to Tee Bosustow, who graciously -
Motion Enriching Using Humanoide Captured Motions
MASTER THESIS: MOTION ENRICHING USING HUMANOIDE CAPTURED MOTIONS STUDENT: SINAN MUTLU ADVISOR : A NTONIO SUSÌN SÀNCHEZ SEPTEMBER, 8TH 2010 COURSE: MASTER IN COMPUTING LSI DEPERTMANT POLYTECNIC UNIVERSITY OF CATALUNYA 1 Abstract Animated humanoid characters are a delight to watch. Nowadays they are extensively used in simulators. In military applications animated characters are used for training soldiers, in medical they are used for studying to detect the problems in the joints of a patient, moreover they can be used for instructing people for an event(such as weather forecasts or giving a lecture in virtual environment). In addition to these environments computer games and 3D animation movies are taking the benefit of animated characters to be more realistic. For all of these mediums motion capture data has a great impact because of its speed and robustness and the ability to capture various motions. Motion capture method can be reused to blend various motion styles. Furthermore we can generate more motions from a single motion data by processing each joint data individually if a motion is cyclic. If the motion is cyclic it is highly probable that each joint is defined by combinations of different signals. On the other hand, irrespective of method selected, creating animation by hand is a time consuming and costly process for people who are working in the art side. For these reasons we can use the databases which are open to everyone such as Computer Graphics Laboratory of Carnegie Mellon University. Creating a new motion from scratch by hand by using some spatial tools (such as 3DS Max, Maya, Natural Motion Endorphin or Blender) or by reusing motion captured data has some difficulties. -
Animation: Types
Animation: Animation is a dynamic medium in which images or objects are manipulated to appear as moving images. In traditional animation, images are drawn or painted by hand on transparent celluloid sheets to be photographed and exhibited on film. Today most animations are made with computer generated (CGI). Commonly the effect of animation is achieved by a rapid succession of sequential images that minimally differ from each other. Apart from short films, feature films, animated gifs and other media dedicated to the display moving images, animation is also heavily used for video games, motion graphics and special effects. The history of animation started long before the development of cinematography. Humans have probably attempted to depict motion as far back as the Paleolithic period. Shadow play and the magic lantern offered popular shows with moving images as the result of manipulation by hand and/or some minor mechanics Computer animation has become popular since toy story (1995), the first feature-length animated film completely made using this technique. Types: Traditional animation (also called cel animation or hand-drawn animation) was the process used for most animated films of the 20th century. The individual frames of a traditionally animated film are photographs of drawings, first drawn on paper. To create the illusion of movement, each drawing differs slightly from the one before it. The animators' drawings are traced or photocopied onto transparent acetate sheets called cels which are filled in with paints in assigned colors or tones on the side opposite the line drawings. The completed character cels are photographed one-by-one against a painted background by rostrum camera onto motion picture film. -
Computerising 2D Animation and the Cleanup Power of Snakes
Computerising 2D Animation and the Cleanup Power of Snakes. Fionnuala Johnson Submitted for the degree of Master of Science University of Glasgow, The Department of Computing Science. January 1998 ProQuest Number: 13818622 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 13818622 Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 GLASGOW UNIVERSITY LIBRARY U3 ^coji^ \ Abstract Traditional 2D animation remains largely a hand drawn process. Computer-assisted animation systems do exists. Unfortunately the overheads these systems incur have prevented them from being introduced into the traditional studio. One such prob lem area involves the transferral of the animator’s line drawings into the computer system. The systems, which are presently available, require the images to be over- cleaned prior to scanning. The resulting raster images are of unacceptable quality. Therefore the question this thesis examines is; given a sketchy raster image is it possible to extract a cleaned-up vector image? Current solutions fail to extract the true line from the sketch because they possess no knowledge of the problem area. -
Photo Journalism, Film and Animation
Syllabus – Photo Journalism, Films and Animation Photo Journalism: Photojournalism is a particular form of journalism (the collecting, editing, and presenting of news material for publication or broadcast) that employs images in order to tell a news story. It is now usually understood to refer only to still images, but in some cases the term also refers to video used in broadcast journalism. Photojournalism is distinguished from other close branches of photography (e.g., documentary photography, social documentary photography, street photography or celebrity photography) by complying with a rigid ethical framework which demands that the work be both honest and impartial whilst telling the story in strictly journalistic terms. Photojournalists create pictures that contribute to the news media, and help communities connect with one other. Photojournalists must be well informed and knowledgeable about events happening right outside their door. They deliver news in a creative format that is not only informative, but also entertaining. Need and importance, Timeliness The images have meaning in the context of a recently published record of events. Objectivity The situation implied by the images is a fair and accurate representation of the events they depict in both content and tone. Narrative The images combine with other news elements to make facts relatable to audiences. Like a writer, a photojournalist is a reporter, but he or she must often make decisions instantly and carry photographic equipment, often while exposed to significant obstacles (e.g., physical danger, weather, crowds, physical access). subject of photo picture sources, Photojournalists are able to enjoy a working environment that gets them out from behind a desk and into the world. -
The University of Chicago Looking at Cartoons
THE UNIVERSITY OF CHICAGO LOOKING AT CARTOONS: THE ART, LABOR, AND TECHNOLOGY OF AMERICAN CEL ANIMATION A DISSERTATION SUBMITTED TO THE FACULTY OF THE DIVISION OF THE HUMANITIES IN CANDIDACY FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF CINEMA AND MEDIA STUDIES BY HANNAH MAITLAND FRANK CHICAGO, ILLINOIS AUGUST 2016 FOR MY FAMILY IN MEMORY OF MY FATHER Apparently he had examined them patiently picture by picture and imagined that they would be screened in the same way, failing at that time to grasp the principle of the cinematograph. —Flann O’Brien CONTENTS LIST OF FIGURES...............................................................................................................................v ABSTRACT.......................................................................................................................................vii ACKNOWLEDGMENTS....................................................................................................................viii INTRODUCTION LOOKING AT LABOR......................................................................................1 CHAPTER 1 ANIMATION AND MONTAGE; or, Photographic Records of Documents...................................................22 CHAPTER 2 A VIEW OF THE WORLD Toward a Photographic Theory of Cel Animation ...................................72 CHAPTER 3 PARS PRO TOTO Character Animation and the Work of the Anonymous Artist................121 CHAPTER 4 THE MULTIPLICATION OF TRACES Xerographic Reproduction and One Hundred and One Dalmatians.......174 -
Toy Story: How Pixar Reinvented the Animated Feature
Brown, Noel. " An Interview with Steve Segal." Toy Story: How Pixar Reinvented the Animated Feature. By Susan Smith, Noel Brown and Sam Summers. London: Bloomsbury Academic, 2017. 197–214. Bloomsbury Collections. Web. 2 Oct. 2021. <http:// dx.doi.org/10.5040/9781501324949.ch-013>. Downloaded from Bloomsbury Collections, www.bloomsburycollections.com, 2 October 2021, 03:24 UTC. Copyright © Susan Smith, Sam Summers and Noel Brown 2018. You may share this work for non-commercial purposes only, provided you give attribution to the copyright holder and the publisher, and provide a link to the Creative Commons licence. 1 97 Chapter 13 A N INTERVIEW WITH STEVE SEGAL N o e l B r o w n Production histories of Toy Story tend to focus on ‘big names’ such as John Lasseter and Pete Docter. In this book, we also want to convey a sense of the animator’s place in the making of the fi lm and their perspective on what hap- pened, along with their professional journey leading up to that point. Steve Segal was born in Richmond, Virginia, in 1949. He made his fi rst animated fi lms as a high school student before studying Art at Virginia Commonwealth University, where he continued to produce award- winning, independent ani- mated shorts. Aft er graduating, Segal opened a traditional animation studio in Richmond, making commercials and educational fi lms for ten years. Aft er completing the cult animated fi lm Futuropolis (1984), which he co- directed with Phil Trumbo, Segal moved to Hollywood and became interested in com- puter animation. -
Slides for Students
SLIDES FOR STUDENTS The Effective Use of Powerpoint in Education GARY D. FISK SLIDES FOR STUDENTS The Effective Use of Powerpoint in Education GARY D. FISK Blue Ridge | Cumming | Dahlonega | Gainesville | Oconee Copyright © 2019 by Gary D. Fisk All rights reserved. No part of this book may be reproduced in whole or in part without written permission from the publisher, except by reviewers who may quote brief excerpts in connections with a review in newspaper, magazine, or electronic publications; nor may any part of this book be reproduced, stored in a retrieval system, or transmitted in any form or by any means electronic, mechanical, photocopying, recording, or other, without the written permission from the publisher. Published by: University of North Georgia Press Dahlonega, Georgia Printing Support by: Lightning Source Inc. La Vergne, Tennessee Book design by Corey Parson. ISBN: 978-1-940771-43-4 Printed in the United States of America For more information, please visit: http://ung.edu/university-press Or e-mail: [email protected] CONTENTS 0 Introduction vii 1 Presentation Software 1 2 Powerpointlessness 14 3 Educational Effectiveness and Student Perceptions 32 4 Avoiding Death by Powerpoint 53 5 Design for Emotion I 67 6 Design for Emotion II 84 7 Design for Sensation 100 8 Design for Perception I 117 9 Design for Perception II 135 10 Design for Attention 156 11 Design for Cognition I 170 12 Design for Cognition II 190 13 Design for Behavior 213 14 Technology Choices 232 15 Tips and Tricks for Slide Presentations 247 16 A Classroom Presentation Example 264 17 The Bright Future of Powerpoint in Education 292 A Appendix A 307 B Appendix B 310 C Appendix C 314 0 INTRODUCTION The creative spark that motivated this book was the observation that powerpoint presentations sometimes fail to produce a positive impact on student learning. -
The Significance of Anime As a Novel Animation Form, Referencing Selected Works by Hayao Miyazaki, Satoshi Kon and Mamoru Oshii
The significance of anime as a novel animation form, referencing selected works by Hayao Miyazaki, Satoshi Kon and Mamoru Oshii Ywain Tomos submitted for the degree of Doctor of Philosophy Aberystwyth University Department of Theatre, Film and Television Studies, September 2013 DECLARATION This work has not previously been accepted in substance for any degree and is not being concurrently submitted in candidature for any degree. Signed………………………………………………………(candidate) Date …………………………………………………. STATEMENT 1 This dissertation is the result of my own independent work/investigation, except where otherwise stated. Other sources are acknowledged explicit references. A bibliography is appended. Signed………………………………………………………(candidate) Date …………………………………………………. STATEMENT 2 I hereby give consent for my dissertation, if accepted, to be available for photocopying and for inter-library loan, and for the title and summary to be made available to outside organisations. Signed………………………………………………………(candidate) Date …………………………………………………. 2 Acknowledgements I would to take this opportunity to sincerely thank my supervisors, Elin Haf Gruffydd Jones and Dr Dafydd Sills-Jones for all their help and support during this research study. Thanks are also due to my colleagues in the Department of Theatre, Film and Television Studies, Aberystwyth University for their friendship during my time at Aberystwyth. I would also like to thank Prof Josephine Berndt and Dr Sheuo Gan, Kyoto Seiko University, Kyoto for their valuable insights during my visit in 2011. In addition, I would like to express my thanks to the Coleg Cenedlaethol for the scholarship and the opportunity to develop research skills in the Welsh language. Finally I would like to thank my wife Tomoko for her support, patience and tolerance over the last four years – diolch o’r galon Tomoko, ありがとう 智子. -
The Uses of Animation 1
The Uses of Animation 1 1 The Uses of Animation ANIMATION Animation is the process of making the illusion of motion and change by means of the rapid display of a sequence of static images that minimally differ from each other. The illusion—as in motion pictures in general—is thought to rely on the phi phenomenon. Animators are artists who specialize in the creation of animation. Animation can be recorded with either analogue media, a flip book, motion picture film, video tape,digital media, including formats with animated GIF, Flash animation and digital video. To display animation, a digital camera, computer, or projector are used along with new technologies that are produced. Animation creation methods include the traditional animation creation method and those involving stop motion animation of two and three-dimensional objects, paper cutouts, puppets and clay figures. Images are displayed in a rapid succession, usually 24, 25, 30, or 60 frames per second. THE MOST COMMON USES OF ANIMATION Cartoons The most common use of animation, and perhaps the origin of it, is cartoons. Cartoons appear all the time on television and the cinema and can be used for entertainment, advertising, 2 Aspects of Animation: Steps to Learn Animated Cartoons presentations and many more applications that are only limited by the imagination of the designer. The most important factor about making cartoons on a computer is reusability and flexibility. The system that will actually do the animation needs to be such that all the actions that are going to be performed can be repeated easily, without much fuss from the side of the animator. -
Jobs and Education
Vol. 3 Issue 3 JuneJune1998 1998 J OBS AND E DUCATION ¥ Animation on the Internet ¥ Glenn VilppuÕs Life Drawing ¥ CanadaÕs Golden Age? ¥ Below the Radar WHO IS JARED? Plus: Jerry BeckÕs Essential Library, ASIFA and Festivals TABLE OF CONTENTS JUNE 1998 VOL.3 NO.3 4 Editor’s Notebook It’s the drawing stupid! 6 Letters: [email protected] 7 Dig This! 1001 Nights: An Animation Symphony EDUCATION & TRAINING 8 The Essential Animation Reference Library Animation historian Jerry Beck describes the ideal library of “essential” books on animation. 10 Whose Golden Age?: Canadian Animation In The 1990s Art vs. industry and the future of the independent filmmaker: Chris Robinson investigates this tricky bal- ance in the current Canadian animation climate. 15 Here’s A How de do Diary: March The first installment of Barry Purves’ production diary as he chronicles producing a series of animated shorts for Channel 4. An Animation World Magazine exclusive. 20 Survey: It Takes Three to Tango Through a series of pointed questions we take a look at the relationship between educators, industry representatives and students. School profiles are included. 1998 33 What’s In Your LunchBox? Kellie-Bea Rainey tests out Animation Toolworks’ Video LunchBox, an innovative frame-grabbing tool for animators, students, seven year-olds and potato farmers alike! INTERNETINTERNET ANIMATIONANIMATION 38 Who The Heck is Jared? Well, do you know? Wendy Jackson introduces us to this very funny little yellow fellow. 39 Below The Digital Radar Kit Laybourne muses about the evolution of independent animation and looks “below the radar” for the growth of new emerging domains of digital animation. -
FLUID MODELING with STOCHASTIC and STRUCTURAL FEATURES a Dissertation Submitted to Kent State University in Partial Fulfillment
FLUID MODELING WITH STOCHASTIC AND STRUCTURAL FEATURES A dissertation submitted to Kent State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy by Zhi Yuan August 2013 Dissertation written by Zhi Yuan B.S., Huazhong University of Science and Technology, 2005 Ph.D., Kent State University, 2013 Approved by Dr. Ye Zhao , Chair, Doctoral Dissertation Committee Dr. Ruoming Jin , Members, Doctoral Dissertation Committee Dr. Austin Melton Dr. Xiaoyu Zheng Dr. Robin Selinger Accepted by Dr. Javed Khan , Chair, Department of Computer Science Dr. Raymond A. Craig , Dean, College of Arts and Sciences ii TABLE OF CONTENTS LISTOFFIGURES..................................... vi LISTOFTABLES ..................................... ix Acknowledgements ................................... .. x Dedication......................................... xi 1 Introduction ...................................... 1 1.1 Significance,ChallengeandObjectives. ........ 1 1.2 MethodologyandContribution . .... 3 1.3 Background.................................... 5 1.3.1 PhysicallyBasedFluidSimulationMethods . ...... 5 1.3.2 FluidTurbulence ............................. 6 1.3.3 FluidControl ............................... 7 1.3.4 FluidCompression ............................ 8 2 Incorporating Fluctuation and Uncertainty in Particle-basedFluidSimulation. 10 2.1 Introduction.................................... 10 2.2 BasicSPHAlgorithm............................... 15 2.3 StochasticTurbulenceinSPH . ... 16 2.4 TurbulenceEvolution . .. 17