Computerising 2D Animation and the Cleanup Power of Snakes
Total Page:16
File Type:pdf, Size:1020Kb
Computerising 2D Animation and the Cleanup Power of Snakes. Fionnuala Johnson Submitted for the degree of Master of Science University of Glasgow, The Department of Computing Science. January 1998 ProQuest Number: 13818622 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 13818622 Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 GLASGOW UNIVERSITY LIBRARY U3 ^coji^ \ Abstract Traditional 2D animation remains largely a hand drawn process. Computer-assisted animation systems do exists. Unfortunately the overheads these systems incur have prevented them from being introduced into the traditional studio. One such prob lem area involves the transferral of the animator’s line drawings into the computer system. The systems, which are presently available, require the images to be over- cleaned prior to scanning. The resulting raster images are of unacceptable quality. Therefore the question this thesis examines is; given a sketchy raster image is it possible to extract a cleaned-up vector image? Current solutions fail to extract the true line from the sketch because they possess no knowledge of the problem area. However, snakes use prior knowledge about the nature of sketchy images to deter mine the correct line from several possibilities. As a snake is an energy minimising spline, the result is in vector format. Therefore in extracting the clean line from the sketch the conversion from raster to vector is also achieved. This technique makes snakes less prone to errors than the current algorithms. In reducing the errors, the overhead produced when transferring the drawings from paper to computer is also reduced. Contents 1 Introduction: 1 1.1 Motivation behind this Thesis ...................................................................... 1 1.2 Overview of Problem Area ............................................................................ 3 1.3 Introduction to Proposed Solution.............................................................. 5 1.4 Thesis Organisation........................................................................................ 6 2 Background and Related Works: 8 2.1 Techniques used in a Traditional Animation Studio............................... 8 2.2 Areas of 2D Animation Already Computerised........................................ 13 2.2.1 Ink and Paint System s..................................................................... 14 2.2.2 Automated Inbetweening S y s te m.............................................. s 17 2.2.3 Paperless System s........................................................................... 19 2.3 Inbetweening Techniques............................................................................... 23 3 Problem Area and Proposed Solution: 33 3.1 Restatement of the Problem Area............................................................... 33 3.2 Current Solutions............................................................................................ 35 3.3 Proposed Solution........................................................................................... 52 4 Snakes: Theory and Applications: 56 4.1 An Introduction to Snakes............................................................................ 56 4.2 The Theory of Snakes.................................................................................... 59 4.3 Proposal to Use Snakes to Solve Problem Area....................................... 74 5 Limitations and Further Work: 78 5.1 Problems with Proposal................................................................................ 78 ii 5.2 Further Work.................................................................................................... 80 6 Summary. 83 iii List of Figures 1.1 Mickey M ouse................................................................................................. 3 2.1 Model Sheet.................................................................................................... 10 2.2 Ink and D raw ................................................................................................. 15 2.3 Inbetweening S y ste m................................................................................. s 17 2.4 P a p erless....................................................................................................... 20 2.5 Moving-Points ............................................................................................. 25 2.6 Multi-resolution............................................................................................. 28 2.7 Evolution P a t h ............................................................................................. 29 2.8 Skeleton.......................................................................................................... 30 2.9 Leg Sequence................................................................................................. 31 2.10 S t a r ................................................................................................................. 32 3.1 Thinning ....................................................................................................... 36 3.2 Medial A x is .................................................................................................... 38 3.3 M SM ................................................................................................................. 39 3.4 Point Set ....................................................................................................... 41 3.5 Structuring E lem en t.................................................................................... 42 3.6 D ila tio n .......................................................................................................... 43 3.7 An example of Dilation ............................................................................. 44 3.8 E r o s io n.......................................................................................................... 45 3.9 An Example of Erosion ............................................................................. 46 3.10 M orphology.................................................................................................... 47 3.11 B e z ie r .............................................................................................................. 48 3.12 Continuity....................................................................................................... 49 iv 3.13 P -to -Q (t)....................................................................................................... 50 3.14 Fitting C u rve................................................................................................. 52 3.15 Example of a Fitting C u rv e ....................................................................... 53 4.1 Zero-crossings................................................................................................. 58 4.2 S n a k e .............................................................................................................. 60 4.3 Subject-contours.......................................................................................... 63 4.4 Tree-rings....................................................................................................... 64 4.5 L i p s ................................................................................................................. 65 4.6 Edge D efinition............................................................................................. 69 4.7 G a m m a .......................................................................................................... 70 4.8 Cutting Snake................................................................................................. 72 4.9 Snake Evaluation .......................................................................................... 77 v Acknowledgments I would like to thank my supervisor, John Patterson, University of Glasgow, for his help, advice and encouragement throughout the research that is described in this thesis. I would also like to thank Ray Welland, University of Glasgow for providing valuable feedback on early drafts of this document. Chapter 1 Introduction: 1.1 Motivation behind this Thesis. Animation, at best, is a costly procedure, in both time and money, and anything that eases its birth process should not be ignored. If audiences only knew all that is involved in any animated production, their respect for what I consider one of the most creative art forms would increase. [20] With today’s advances in computer graphics, it is incredible to think the major ity of traditional 2D animation is still done by hand. In fact the process has changed little over the last 50 years. Yet other areas of computer graphics have blossomed, as can be seen in the many spectacular 3D commercials and art works. Why has the expensive time-consuming process of 2D animation been left behind? It would be untrue to think that computers are