1 Potential Influences on the Prospect of Renewable Energy Development in OPEC Members Hanan Alsadi1 1. Introduction the Global
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Working Paper
WORKING PAPER The Value of Oil Price Projectiom Nebojsa Nakinnovic Leo SchrattenhoLzer October 1935 IQ-85-68 lnternrtionrl Institute tor -lid System, Anrlyth NOT FOR QUOTATION WITHOUT THE PERMISSION OF THE AUTHORS The Value of Oil Price Projections Nebo jsa Nakicenovic Leo SchrattenhoLzer October 1935 TW-85-68 Working Papers are interim reports on work of the International Institute for Applied Systems Analysis and have received only limited review. Views or opinions expressed herein do not necessarily represent those of the Institute or of its National Member Organizations. INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS 2361 Laxenburg, Austria -ABSTRACT AND SUBXAXY The central theme of this paper is the development of the international price of crude oil. A short overview of oil price his6ry is followed by a discussion of the factors that were responsible for previous, sometimes erratic, changes. We con- clude that these factors are likely to maintain their influence in the future, thus giving the forecasts of oil prices a high uncertainty. This uncertainty is reflected in several reports containing oil price proje[ctions. We argue, therefore, that a question soieiy about future oil prices must remain unanswered. Tnis does not render the efforts to examine the future futile; it simpiy means that the question shouid be rephrased. We offer one possible problem formulation that explicitly accounts for the high uncertainty. This formulation requires that specific policy probiems and options for solving them be specified before oil prices are projected - a condition that does not always hold or, at least, that does not seem to be regarded as important enougn to be described in many reports on oil price studies. -
U.S. Energy in the 21St Century: a Primer
U.S. Energy in the 21st Century: A Primer March 16, 2021 Congressional Research Service https://crsreports.congress.gov R46723 SUMMARY R46723 U.S. Energy in the 21st Century: A Primer March 16, 2021 Since the start of the 21st century, the U.S. energy system has changed tremendously. Technological advances in energy production have driven changes in energy consumption, and Melissa N. Diaz, the United States has moved from being a net importer of most forms of energy to a declining Coordinator importer—and a net exporter in 2019. The United States remains the second largest producer and Analyst in Energy Policy consumer of energy in the world, behind China. Overall energy consumption in the United States has held relatively steady since 2000, while the mix of energy sources has changed. Between 2000 and 2019, consumption of natural gas and renewable energy increased, while oil and nuclear power were relatively flat and coal decreased. In the same period, production of oil, natural gas, and renewables increased, while nuclear power was relatively flat and coal decreased. Overall energy production increased by 42% over the same period. Increases in the production of oil and natural gas are due in part to technological improvements in hydraulic fracturing and horizontal drilling that have facilitated access to resources in unconventional formations (e.g., shale). U.S. oil production (including natural gas liquids and crude oil) and natural gas production hit record highs in 2019. The United States is the largest producer of natural gas, a net exporter, and the largest consumer. Oil, natural gas, and other liquid fuels depend on a network of over three million miles of pipeline infrastructure. -
Commercialization and Deployment at NREL: Advancing Renewable
Commercialization and Deployment at NREL Advancing Renewable Energy and Energy Efficiency at Speed and Scale Prepared for the State Energy Advisory Board NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Management Report NREL/MP-6A42-51947 May 2011 Contract No. DE-AC36-08GO28308 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof. Available electronically at http://www.osti.gov/bridge Available for a processing fee to U.S. Department of Energy and its contractors, in paper, from: U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831-0062 phone: 865.576.8401 fax: 865.576.5728 email: mailto:[email protected] Available for sale to the public, in paper, from: U.S. -
Atlantic Offshore Wind Energy Development: Values and Implications for Recreation and Tourism
OCS Study BOEM 2018-013 Atlantic Offshore Wind Energy Development: Values and Implications for Recreation and Tourism US Department of the Interior Bu reau of Ocean Energy Management Office of Renewable Energy Programs OCS Study BOEM 2018-013 Atlantic Offshore Wind Energy Development: Values and Implications for Recreation and Tourism March 2018 Authors: George Parsons Jeremy Firestone Prepared under M12AC00017 By University of Delaware 210 Hullihen Hall, Newark, DE 19716-0099 US Department of the Interior Bu reau of Ocean Energy Management Office of Renewable Energy Programs DISCLAIMER Study collaboration and funding were provided by the US Department of the Interior, Bureau of Ocean Energy Management (BOEM), Environmental Studies Program, Washington, DC, under Agreement Number M12AC00017. This report has been technically reviewed by BOEM, and it has been approved for publication. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the opinions or policies of the US Government, nor does mention of trade names or commercial products constitute endorsement or recommendation for use. REPORT AVAILABILITY To download a PDF file of this report, go to the US Department of the Interior, Bureau of Ocean Energy Management Data and Information Systems webpage (http://www.boem.gov/Environmental-Studies- EnvData/), click on the link for the Environmental Studies Program Information System (ESPIS), and search on 2018-013. The report is also available at the National Technical Reports Library at https://ntrl.ntis.gov/NTRL/. CITATION Parsons, G. Firestone, J. 2018. Atlantic Offshore Wind Energy Development: Values and Implications for Recreation and Tourism. -
China's Energy Situation and Its Future and the New Energy Security Concept
ThirdThird OPECOPEC InternationalInternational SeminarSeminar ChinaChina’’ss EnergyEnergy SituationSituation andand itsits FutureFuture aandnd thethe NewNew EnergyEnergy SecuritySecurity ConceptConcept Ambassador TANG Guoqiang Permanent Mission of the People’s Republic of China to the United Nations and other International Organizations in Vienna Vienna September 12th, 2006 OutlinesOutlines I.I. TheThe CurrentCurrent EnergyEnergy SituationSituation inin ChinaChina II.II. ChinaChina’’ss FutureFuture EnergyEnergy PolicyPolicy III.III. ChinaChina’’ss NewNew EnergyEnergy SecuritySecurity ConceptConcept I.I. CurrentCurrent EnergyEnergy SituationSituation inin ChinaChina China has become one of the world largest energy producers and consumers and in 2005 Primary energy production: equivalent to 2.06 billion tons of standard coal, increased 9.5% over the previous year Coal production: 38 % of the world the 1st largest producer Crude oil production: 180 million tons ranking the 6th in the world Hydro-electricity: 401 billion kw hours ranking 1st in the world 93% Consumption: equivalent to 2.22 billion tons of standard coal Energy self-sufficiency rate: 93 % Energy self-sufficiency rate: 93 % Energy Self-sufficiency Rate HugeHuge exploitativeexploitative potentialpotential inin ChinaChina By the end of 2005 Total conventional energy recourses: 823 billion standard tons of coal Proven recoverable deposits : 139.2 billion standard tons of coal 10.1 % of the world Proven coal deposit: 12 % of the world No. 1 rank the 3rd of the world No. -
A Holistic Framework for the Study of Interdependence Between Electricity and Gas Sectors
November 2015 A holistic framework for the study of interdependence between electricity and gas sectors OIES PAPER: EL 16 Donna Peng Rahmatallah Poudineh The contents of this paper are the authors’ sole responsibility. They do not necessarily represent the views of the Oxford Institute for Energy Studies or any of its members. Copyright © 2015 Oxford Institute for Energy Studies (Registered Charity, No. 286084) This publication may be reproduced in part for educational or non-profit purposes without special permission from the copyright holder, provided acknowledgment of the source is made. No use of this publication may be made for resale or for any other commercial purpose whatsoever without prior permission in writing from the Oxford Institute for Energy Studies. ISBN 978-1-78467-042-9 A holistic framework for the study of interdependence between electricity and gas sectors i Acknowledgements The authors are thankful to Malcolm Keay, Howard Rogers and Pablo Dueñas for their invaluable comments on the earlier version of this paper. The authors would also like to extend their sincere gratitude to Bassam Fattouh, director of OIES, for his support during this project. A holistic framework for the study of interdependence between electricity and gas sectors ii Contents Acknowledgements .............................................................................................................................. ii Contents ............................................................................................................................................... -
GGGI Technical Guideline No.4 – Green Energy Development
1 GGGI Technical Guideline No.4 Green Energy Development NOVEMBER 2017 2 Acknowledgment The Green Energy Development Guidelines were developed under the guidance and leadership of Per Olof Bertilsson, Assistant Director-General of the Planning and Implementation Division at the Global Green Growth Institute (GGGI). Dereje Senshaw, Principal Specialist at GGGI, prepared the guidelines. The report benefited considerably from the review and input of GGGI experts, namely Katerina Syngellakis, Carol Litwin, Dagmar Zwebe, Pheakdey Heng, Jisu Min, Walelign Girma Teka, Gulshan Vashistha, Ahmed Alamra, Karolien Casaer, Chan Ho Park, Srabani Roy, and Inhee Chung. The final draft benefited from valuable editorial and design support by Darren Karjama, Eric Plunkett, Jeong Won Kim, Feelgeun Song, Eliza Villarino, Julie Robles, and Miguel Laranjo. 3 Contents LIST OF BOXES 5 LIST OF FIGURES 6 LIST OF TABLES 6 ABBREVIATIONS AND ACRONYMS 7 CHAPTER 1: INTRODUCTION 8 1.1 PURPOSE OF THE GUIDELINES 9 1.2 DEFINITIONS OF KEYWORDS AND PHRASES 9 1.3 HOW TO USE THE GUIDELINES 12 1.4 TARGET USERS OF THE GUIDELINES 12 1.5 WHY GREEN ENERGY DEVELOPMENT? 12 CHAPTER 2: GGGI AND GREEN ENERGY 13 DEVELOPMENT 2.1 ENERGY’S DESIRED STRATEGIC OUTCOMES 13 2.2 GGGI’S GUIDING PRINCIPLES ON SERVICE DELIVERY 14 2.3 GGGI’S MAJOR ACTIVITIES IN ENERGY SERVICE DELIVERY TO ACHIEVE 14 ENERGY OUTCOMES 2.4 INTERVENTION APPROACHES AND MAJOR SERVICE OFFERINGS 15 2.4.1 GGGI intervention approach: Inclusive green energy investment 15 2.4.2 GGGI’s major service offerings in the energy thematic area 16 CHAPTER 3: HOW TO PLAN AND DEVELOP GREEN 19 ENERGY PROGRAMS AND PROJECTS 3.1 PHASE I: DIAGNOSIS 20 3.1.1 Macroeconomic review 20 3.1.2 Policy framework assessment and strengthening 20 3.1.3 Institutional assessment 21 4 3.2 PHASE II: GREEN IMPACT ASSESSMENT 21 3.3 PHASE III: ENERGY SECTOR/SUBSECTOR STRATEGY AND PLANNING 23 3.3.1 Step 1. -
2019 OUTLOOK for ENERGY: 2018 Outlook Fora Energy: PERSPECTIVE a View to 2040 to 2040
2019 OUTLOOK FOR ENERGY: 2018 Outlook forA Energy: PERSPECTIVE A View to 2040 TO 2040 David Khemakhem November 20, 2019 The Outlook for Energy includes Exxon Mobil Corporation’s internal estimates of both historical levels and projections of challenging topics such as energy demand, supply, and trends through 2040 based upon internal data and analyses as well as publicly available information from many external sources including the International Energy Agency. Separate from ExxonMobil’s analysis, we include a number of third party scenarios such as the EMF 27 scenarios and the IEA’s Sustainable Development Scenario. Third-party scenarios discussed in this report reflect the modeling assumptions and outputs of their respective authors, not ExxonMobil, and their use and inclusion herein is not an endorsement by ExxonMobil of their likelihood or probability. Work on the Outlook and report was conducted during 2018 and the first half of 2019. The report contains forward looking statements, including projections, targets, expectations, estimates and assumptions of future behaviors. Actual future conditions and results (including energy demand, energy supply, the growth of energy demand and supply, the impact of new technologies, the relative mix of energy across sources, economic sectors and geographic regions, imports and exports of energy) could differ materially due to changes in economic conditions, the ability to scale new technologies on a cost-effective basis, unexpected technological developments, the development of new supply sources, changes in law or government policy, political events, demographic changes and migration patterns, trade patterns, the development and enforcement of global, regional or national mandates, and other ‹#› factors discussed herein and under the heading “Factors Affecting Future Results” in the Investors section of our website at www.exxonmobil.com. -
All-Of-The-Above Energy Strategy As a Path to Sustainable Economic Growth
THE ALL-OF-THE-ABOVE ENERGY STRATEGY AS A PATH TO SUSTAINABLE ECONOMIC GROWTH Updated: July 2014 **Draft** The All-Of-The-Above Energy Strategy as a Path to Sustainable Economic Growth Executive Summary ............................................................................................................................2 I. Introduction: Elements of the All-of-the-Above Energy Strategy ...............................................5 II. The Energy Revolution and the Economic Recovery .................................................................9 The Energy Revolution in Historical Perspective ...................................................................................... 9 GDP, Jobs, and the Trade Deficit ............................................................................................................. 15 Energy Prices, Households, and Manufacturers ..................................................................................... 18 III. The Energy Revolution and Energy Security: A Macroeconomic Perspective ........................... 20 Trends in Oil Import Prices and Shares ................................................................................................... 21 Macroeconomic Channels of Oil Price Shocks ........................................................................................ 22 Empirical Analysis of Energy Price Shocks .............................................................................................. 24 The changing sensitivity of the U.S. economy to oil price -
Chapter 1: Energy Challenges September 2015 1 Energy Challenges
QUADRENNIAL TECHNOLOGY REVIEW AN ASSESSMENT OF ENERGY TECHNOLOGIES AND RESEARCH OPPORTUNITIES Chapter 1: Energy Challenges September 2015 1 Energy Challenges Energy is the Engine of the U.S. Economy Quadrennial Technology Review 1 1 Energy Challenges 1.1 Introduction The United States’ energy system, vast in size and increasingly complex, is the engine of the economy. The national energy enterprise has served us well, driving unprecedented economic growth and prosperity and supporting our national security. The U.S. energy system is entering a period of unprecedented change; new technologies, new requirements, and new vulnerabilities are transforming the system. The challenge is to transition to energy systems and technologies that simultaneously address the nation’s most fundamental needs—energy security, economic competitiveness, and environmental responsibility—while providing better energy services. Emerging advanced energy technologies can do much to address these challenges, but further improvements in cost and performance are important.1 Carefully targeted research, development, demonstration, and deployment (RDD&D) are essential to achieving these improvements and enabling us to meet our nation’s energy objectives. This report, the 2015 Quadrennial Technology Review (QTR 2015), examines science and technology RDD&D opportunities across the entire U.S. energy system. It focuses primarily on technologies with commercialization potential in the mid-term and beyond. It frames various tradeoffs that all energy technologies must balance, across such dimensions as diversity and security of supply, cost, environmental impacts, reliability, land use, and materials use. Finally, it provides data and analysis on RDD&D pathways to assist decision makers as they set priorities, subject to budget constraints, to develop more secure, affordable, and sustainable energy services. -
Exploring Regional Opportunities in the U.S. for Clean Energy Technology Innovation Volume 1
About the Cover The images on the cover represent regional capabilities and resources of energy technology innovation across the United States from nuclear energy to solar and photovoltaics, and smart grid electricity to clean coal and carbon capture. Disclaimer This volume is one of two volumes and was written by the Department of Energy. This volume summarizes the results of university-hosted regional forums on regional clean energy technology innovation. The report draws on the proceedings and reports produced by the universities noted in Volume 2 for some of its content; as a result, the views expressed do not necessarily represent the views of the Department or the Administration. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. Message from the Secretary of Energy The U.S. Department of Energy (Department or DOE) is pleased to present this report, Exploring Regional Opportunities in the U.S. for Clean Energy Technology Innovation. The report represents DOE’s summary of the insights gained through fourteen university-hosted workshop events held nationwide during the spring and summer of 2016. These events brought together members of Congress, governors, other federal, state, tribal, and local officials, academic leaders, private sector energy leaders, DOE officials, and other stakeholders from economic development organizations and nongovernmental organizations to examine clean energy technology innovation from a regional perspective. -
Harmonizing States' Energy Utility Regulation Frameworks and Climate Laws: a Case Study of New York
FINAL 11/15/20 © COPYRIGHT 2020 BY THE ENERGY BAR ASSOCIATION HARMONIZING STATES’ ENERGY UTILITY REGULATION FRAMEWORKS AND CLIMATE LAWS: A CASE STUDY OF NEW YORK Justin Gundlach and Elizabeth B. Stein*. Synopsis: Several states have recently passed legislation mandating ambi- tious levels of economy-wide greenhouse gas emissions reductions. Maine and New Jersey have each adopted “80 x 50” mandates, meaning that they set 2050 as the deadline for reducing annual emissions by 80% from their level in a benchmark year. Colorado’s mandate calls for a 90% reduction by 2050. California adopted a 40% by 2030 mandate in 2006 (later supplemented by executive orders directing state agencies to aim for “80 x 50” and then net-zero emissions by 2045). New York has adopted the goal of net-zero emissions by 2050, with an underlying an- nual emission reduction mandate of at least 85% below 1990 levels. Massachu- setts resembles New York, but its 2008 legislative mandate both called for an 80% reduction by 2050 and authorized updates by the Secretary of State, who in April 2020 announced a net-zero target for 2050 and mandated a reduction in annual emissions to at least 85% below 1990 levels. More state mandates are likely to be adopted in the coming years by legislatures across the country. While the laws establishing these state mandates authorize agencies to adopt new regulations and, in some cases, create ways to challenge inconsistent agency action, they do not spell out what to do about existing laws that require, authorize, or subsidize the development and use of infrastructure designed to enable the consumption of fossil fuels.