Renewable Energy Technologies for Rural Development

Total Page:16

File Type:pdf, Size:1020Kb

Renewable Energy Technologies for Rural Development U N I T E D N ATIONS CONFEREN C E O N T R A D E A N D D EVELOPMENT Renewable Energy Technologies for Rural Development U N C T A D C U RRE nt S tud IE S O N S C IE nc E , T E C H N OLOGY and I nn OV at IO N . N º 1 UNITED NATIONS CONFERENCE ON TRADE AND DEVELOPMENT UNCTAD CURRENT STUDIES ON SCIENCE, TECHNOLOGY AND INNOVATION Renewable Energy Technologies for Rural Development UNITED NATIONS New York and Geneva, 2010 UNCTAD CURRENT STUDIES ON SCIENCE, TECHNOLOGY AND INNOVATION. NO.1 Notes The United Nations Conference on Trade and Development (UNCTAD) serves as the lead entity within the United Nations Secretariat for matters related to science and technology as part of its work on the integrated treatment of trade and development, investment and finance. The current work programme of UNCTAD is based on the mandates set at UNCTAD XII, held in 2008 in Accra, Ghana, as well as on the decisions by the United Nations Commission on Science and Technology for Development (CSTD), which is served by the UNCTAD secretariat. UNCTAD’s work programme is built on its three pillars of research analysis, consensus-building and technical cooperation, and is carried out through intergovernmental deliberations, research and analysis, technical assistance activities, seminars, workshops and conferences. This series of publications seeks to contribute to exploring current issues in science, technology and innovation, with particular emphasis on their impact on developing countries. The term “country” as used in this study also refers, as appropriate, to territories or areas; the designations employed and the presentation of the material do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delineation of its frontiers or boundaries. In addition, the designations of country groups are intended solely for statistical or analytical convenience and do not necessarily express a judgement about the stage of development reached by a particular country or area in the development process. Mention of any firm, organization or policies does not imply endorsement by the United Nations. The material contained in this publication may be freely quoted with appropriate acknowledgement. UNCTAD/DTL/STICT/2009/4 Copyright © United Nations, 2010 All rights reserved ii RENEWABLE ENERGY TECHNOLOGIES FOR RURAL DEVELOPMENT Acknowledgements This paper was prepared by Jim Watson of the Sussex Energy Group and Tyndall Centre Climate Change and Energy Programme, SPRU – Science and Technology Policy Research, University of Sussex and Oliver Johnson of the Sussex Energy Group, SPRU – Science and Technology Policy Research, University of Sussex. It was finalized by Dong Wu of the UNCTAD secretariat. Anne Miroux and Mongi Hamdi provided overall guidance. It was edited by Jennifer Rietbergen and Nadège Hadjemian designed the cover. Elvira Chudzinski provided administrative support. The paper benefited from comments and suggestions provided by Judith Cherni (Imperial College, London), Yacob Mulugetta (University of Surrey), Rob Byrne and Alexandra Mallett (Sussex Energy Group, SPRU, University of Sussex). iii UNCTAD CURRENT STUDIES ON SCIENCE, TECHNOLOGY AND INNOVATION. NO.1 iv RENEWABLE ENERGY TECHNOLOGIES FOR RURAL DEVELOPMENT Table of Contents 1. Introduction ......................................................................................................................... 1 2. Energy poverty and rural development ............................................................................ 2 2.1. International commitments on reducing energy poverty................................................ 2 2.2. Linking energy access and rural development ............................................................... 2 3. Renewable energy technologies.......................................................................................... 5 3.1. Defining RETs................................................................................................................ 5 3.2. Benefits/impacts of RETs............................................................................................... 6 3.3. The need for institutional support .................................................................................. 6 4. Case studies .......................................................................................................................... 9 4.1. Introduction .................................................................................................................... 9 4.2. Access to energy for domestic use ................................................................................. 9 4.2.1. Introduction ........................................................................................................ 9 4.2.2. Nepal: biogas plants......................................................................................... 10 4.2.3. Eritrea: mixed fuel stoves................................................................................. 12 4.2.4. Guatemala: wood stoves................................................................................... 15 4.3. Access to electricity...................................................................................................... 17 4.3.1. Introduction ...................................................................................................... 17 4.3.2. China: solar PV and wind for off-grid electrification...................................... 17 4.3.3. Argentina: mixed technologies for on- and off-grid electrification ................. 20 4.3.4. Lao People’s Democratic Republic: market-driven pico-hydro ...................... 22 4.3.5. Namibia: wind turbines and solar PV for powering telecoms base stations.... 23 5. Synthesis ............................................................................................................................. 25 6. Conclusions ........................................................................................................................ 29 Bibliography ........................................................................................................................... 31 List of figures Table 1. Energy efficiency of cooking fuels ......................................................................... 3 Table 2. Levels of electricity access in selected sub-Saharan African countries .................. 4 Table 3. Renewable energy sources and corresponding RETs.............................................. 5 Table 4. List of case studies .................................................................................................. 9 Figure 1. Use of biomass in relation to GNP per person in 80 countries.............................. 4 Figure 2. Typical biogas plant designed for Nepal.............................................................. 11 Figure 3. Improved Ertirean mogogo stove......................................................................... 14 Figure 4. Typical plancha stove promoted by the Social Fund (FIS) in Guatemala ........... 16 v UNCTAD CURRENT STUDIES ON SCIENCE, TECHNOLOGY AND INNOVATION. NO.1 vi RENEWABLE ENERGY TECHNOLOGIES FOR RURAL DEVELOPMENT 1. Introduction This paper provides an overview of some of the issues surrounding the use of renewable energy technologies (RETs) to increase access to modern energy services in rural areas. RETs include, inter alia, the provision of electricity generated from renewable sources such as wind, solar, water, tide/wave and geothermal, and the provision of other modern energy services that are powered by renewable sources for activities such as household heating, space conditioning and water pumping. These kinds of technologies have long been subject to international debate and action as a means of expanding access to electricity by means of off- grid or grid extension programmes. Similarly, the development of RETs such as improved cookstoves to increase efficiency and reduce health impacts of traditional fuel use has had a long history and has shown some success. However, growing concern over climate change and the increasing acceptance of a need for low-carbon development trajectories have provided renewed emphasis on improving access to modern energy services using RETs. Chapter 2 of this paper reviews current international commitments to RET use and rural development and examine the literature connecting RETs with rural development. Chapter 3 looks at RET options and some potential benefits and challenges to deploying them. Chapter 4 investigates, using a number of case studies, how RETs have been used to promote rural development and how innovative project/programme design can help overcome some of the barriers inherent to RET deployment in the market. Chapter 5 provides a synthesis of our case study findings and Chapter 6 presents conclusions and recommendations. 1 UNCTAD CURRENT STUDIES ON SCIENCE, TECHNOLOGY AND INNOVATION. NO.1 2. Energy poverty and rural development 2.1. International commitments on reducing energy poverty The potential of RETs to power rural development has been understood for many decades. However, it is only recently that significant effort has been made to mobilize the resources to realize this potential and there is still a long way to go (Kristoferson, 1997; Bhattacharyya, 2006; Boyle et al., 2006). In September 2000, the connection between clean sources of energy and
Recommended publications
  • 1 Potential Influences on the Prospect of Renewable Energy Development in OPEC Members Hanan Alsadi1 1. Introduction the Global
    1 Potential Influences on the Prospect of Renewable Energy Development in OPEC Members Hanan Alsadi1 1. Introduction The global energy transitioning trend escalates due to the continuous growth of energy consumption and advancing climate change. While the total fossil fuel consumption is increasing twice as fast as the average rate over the last decade, making 70% of the global energy demand, the reckless use of fossil fuel is causing substantial damage to the environment (International Energy Agency, 2018; Šolc, 2013). An effective fix to the problem while dubious is to replace the energy source by alternatives. The renewable energy (RE) offers the most definite prospect for producing clean, sustainable power in substantial quantities, which arouses interest around the world. According to Gielen and Colleagues (2019), the RE’s share of global consumption energy would rise from 15% in 2015 to 63% in 2050. However, if this increasing trend in renewable energies would also prevail among Organization of Petroleum Exporting Countries (OPEC), is subject to debate. They all have abundant potential to invest in renewable energy sources. Yet, some of the Middle Eastern and Arab Gulf OPEC members do not have or have a small amount of renewable energy sources. In contrast, other members have significant renewable energy sources. Researchers have studied some aspects of renewable energy and its relationship to the OPEC countries. For example, Wittmann (2013) looked at the potential for transitioning from petroleum exportation to renewable energy exportation among the OPEC countries. Still, Wittmann does not explain any specific transition strategies or plans for the Middle Eastern OPEC countries.
    [Show full text]
  • Commercialization and Deployment at NREL: Advancing Renewable
    Commercialization and Deployment at NREL Advancing Renewable Energy and Energy Efficiency at Speed and Scale Prepared for the State Energy Advisory Board NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Management Report NREL/MP-6A42-51947 May 2011 Contract No. DE-AC36-08GO28308 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof. Available electronically at http://www.osti.gov/bridge Available for a processing fee to U.S. Department of Energy and its contractors, in paper, from: U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831-0062 phone: 865.576.8401 fax: 865.576.5728 email: mailto:[email protected] Available for sale to the public, in paper, from: U.S.
    [Show full text]
  • Atlantic Offshore Wind Energy Development: Values and Implications for Recreation and Tourism
    OCS Study BOEM 2018-013 Atlantic Offshore Wind Energy Development: Values and Implications for Recreation and Tourism US Department of the Interior Bu reau of Ocean Energy Management Office of Renewable Energy Programs OCS Study BOEM 2018-013 Atlantic Offshore Wind Energy Development: Values and Implications for Recreation and Tourism March 2018 Authors: George Parsons Jeremy Firestone Prepared under M12AC00017 By University of Delaware 210 Hullihen Hall, Newark, DE 19716-0099 US Department of the Interior Bu reau of Ocean Energy Management Office of Renewable Energy Programs DISCLAIMER Study collaboration and funding were provided by the US Department of the Interior, Bureau of Ocean Energy Management (BOEM), Environmental Studies Program, Washington, DC, under Agreement Number M12AC00017. This report has been technically reviewed by BOEM, and it has been approved for publication. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the opinions or policies of the US Government, nor does mention of trade names or commercial products constitute endorsement or recommendation for use. REPORT AVAILABILITY To download a PDF file of this report, go to the US Department of the Interior, Bureau of Ocean Energy Management Data and Information Systems webpage (http://www.boem.gov/Environmental-Studies- EnvData/), click on the link for the Environmental Studies Program Information System (ESPIS), and search on 2018-013. The report is also available at the National Technical Reports Library at https://ntrl.ntis.gov/NTRL/. CITATION Parsons, G. Firestone, J. 2018. Atlantic Offshore Wind Energy Development: Values and Implications for Recreation and Tourism.
    [Show full text]
  • China's Energy Situation and Its Future and the New Energy Security Concept
    ThirdThird OPECOPEC InternationalInternational SeminarSeminar ChinaChina’’ss EnergyEnergy SituationSituation andand itsits FutureFuture aandnd thethe NewNew EnergyEnergy SecuritySecurity ConceptConcept Ambassador TANG Guoqiang Permanent Mission of the People’s Republic of China to the United Nations and other International Organizations in Vienna Vienna September 12th, 2006 OutlinesOutlines I.I. TheThe CurrentCurrent EnergyEnergy SituationSituation inin ChinaChina II.II. ChinaChina’’ss FutureFuture EnergyEnergy PolicyPolicy III.III. ChinaChina’’ss NewNew EnergyEnergy SecuritySecurity ConceptConcept I.I. CurrentCurrent EnergyEnergy SituationSituation inin ChinaChina China has become one of the world largest energy producers and consumers and in 2005 Primary energy production: equivalent to 2.06 billion tons of standard coal, increased 9.5% over the previous year Coal production: 38 % of the world the 1st largest producer Crude oil production: 180 million tons ranking the 6th in the world Hydro-electricity: 401 billion kw hours ranking 1st in the world 93% Consumption: equivalent to 2.22 billion tons of standard coal Energy self-sufficiency rate: 93 % Energy self-sufficiency rate: 93 % Energy Self-sufficiency Rate HugeHuge exploitativeexploitative potentialpotential inin ChinaChina By the end of 2005 Total conventional energy recourses: 823 billion standard tons of coal Proven recoverable deposits : 139.2 billion standard tons of coal 10.1 % of the world Proven coal deposit: 12 % of the world No. 1 rank the 3rd of the world No.
    [Show full text]
  • GGGI Technical Guideline No.4 – Green Energy Development
    1 GGGI Technical Guideline No.4 Green Energy Development NOVEMBER 2017 2 Acknowledgment The Green Energy Development Guidelines were developed under the guidance and leadership of Per Olof Bertilsson, Assistant Director-General of the Planning and Implementation Division at the Global Green Growth Institute (GGGI). Dereje Senshaw, Principal Specialist at GGGI, prepared the guidelines. The report benefited considerably from the review and input of GGGI experts, namely Katerina Syngellakis, Carol Litwin, Dagmar Zwebe, Pheakdey Heng, Jisu Min, Walelign Girma Teka, Gulshan Vashistha, Ahmed Alamra, Karolien Casaer, Chan Ho Park, Srabani Roy, and Inhee Chung. The final draft benefited from valuable editorial and design support by Darren Karjama, Eric Plunkett, Jeong Won Kim, Feelgeun Song, Eliza Villarino, Julie Robles, and Miguel Laranjo. 3 Contents LIST OF BOXES 5 LIST OF FIGURES 6 LIST OF TABLES 6 ABBREVIATIONS AND ACRONYMS 7 CHAPTER 1: INTRODUCTION 8 1.1 PURPOSE OF THE GUIDELINES 9 1.2 DEFINITIONS OF KEYWORDS AND PHRASES 9 1.3 HOW TO USE THE GUIDELINES 12 1.4 TARGET USERS OF THE GUIDELINES 12 1.5 WHY GREEN ENERGY DEVELOPMENT? 12 CHAPTER 2: GGGI AND GREEN ENERGY 13 DEVELOPMENT 2.1 ENERGY’S DESIRED STRATEGIC OUTCOMES 13 2.2 GGGI’S GUIDING PRINCIPLES ON SERVICE DELIVERY 14 2.3 GGGI’S MAJOR ACTIVITIES IN ENERGY SERVICE DELIVERY TO ACHIEVE 14 ENERGY OUTCOMES 2.4 INTERVENTION APPROACHES AND MAJOR SERVICE OFFERINGS 15 2.4.1 GGGI intervention approach: Inclusive green energy investment 15 2.4.2 GGGI’s major service offerings in the energy thematic area 16 CHAPTER 3: HOW TO PLAN AND DEVELOP GREEN 19 ENERGY PROGRAMS AND PROJECTS 3.1 PHASE I: DIAGNOSIS 20 3.1.1 Macroeconomic review 20 3.1.2 Policy framework assessment and strengthening 20 3.1.3 Institutional assessment 21 4 3.2 PHASE II: GREEN IMPACT ASSESSMENT 21 3.3 PHASE III: ENERGY SECTOR/SUBSECTOR STRATEGY AND PLANNING 23 3.3.1 Step 1.
    [Show full text]
  • Exploring Regional Opportunities in the U.S. for Clean Energy Technology Innovation Volume 1
    About the Cover The images on the cover represent regional capabilities and resources of energy technology innovation across the United States from nuclear energy to solar and photovoltaics, and smart grid electricity to clean coal and carbon capture. Disclaimer This volume is one of two volumes and was written by the Department of Energy. This volume summarizes the results of university-hosted regional forums on regional clean energy technology innovation. The report draws on the proceedings and reports produced by the universities noted in Volume 2 for some of its content; as a result, the views expressed do not necessarily represent the views of the Department or the Administration. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. Message from the Secretary of Energy The U.S. Department of Energy (Department or DOE) is pleased to present this report, Exploring Regional Opportunities in the U.S. for Clean Energy Technology Innovation. The report represents DOE’s summary of the insights gained through fourteen university-hosted workshop events held nationwide during the spring and summer of 2016. These events brought together members of Congress, governors, other federal, state, tribal, and local officials, academic leaders, private sector energy leaders, DOE officials, and other stakeholders from economic development organizations and nongovernmental organizations to examine clean energy technology innovation from a regional perspective.
    [Show full text]
  • Bottom-Up Electrification Introducing New Smart Grids Architecture
    energies Article Bottom-Up Electrification Introducing New Smart Grids Architecture—Concept Based on Feasibility Studies Conducted in Rwanda Bartosz Soltowski *, David Campos-Gaona , Scott Strachan and Olimpo Anaya-Lara Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow G1 1XQ, UK; [email protected] (D.C.-G.); [email protected] (S.S.); [email protected] (O.A.-L.) * Correspondence: [email protected] Received: 30 April 2019; Accepted: 14 June 2019; Published: 25 June 2019 Abstract: Over the past eight years, off-grid systems, in the form of stand-alone solar home systems (SHSs), have proved the most popular and immediate solution for increasing energy access in rural areas across the Global South. Although deployed in significant numbers, issues remain with the cost, reliability, utilization, sustainability and scalability of these off-grid systems to provide higher-tiered energy access. Interconnection of existing stand-alone solar home systems (SHSs) can form a microgrid of interconnected prosumers (i.e., households owning SHS capable of producing and consuming power) and consumers (i.e., households without an SHS, and only capable of consuming power). This paper focuses on the role of a smart energy management (SEM) platform in the interconnection of off-grid systems and making bottom-up electrification scalable, and how it can improve the overall sustainability, efficiency and flexibility of off-grid technology. An interconnected SHS microgrid has the potential to unlock latent generation and storage capacity, and so effectively promote connected customers to higher tiers of energy access. This approach can therefore extend the range of products currently used by people located in the remote areas of developing countries to include higher-power devices such as refrigerators, TVs and potentially, electric cookers.
    [Show full text]
  • A Clean Tech Rural Development Model Using Quality of Life Indicators to Select Optimal Renewable Energy Solutions
    Small Scale Innovation for Large Scale Progress: A Clean Tech Rural Development Model Using Quality of Life Indicators to Select Optimal Renewable Energy Solutions The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Yeh, Bee Hui. 2016. Small Scale Innovation for Large Scale Progress: A Clean Tech Rural Development Model Using Quality of Life Indicators to Select Optimal Renewable Energy Solutions. Master's thesis, Harvard Extension School. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:33797356 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Small Scale Innovation for Large Scale Progress: A Clean Tech Rural Development Model Using Quality of Life Indicators to Select Optimal Renewable Energy Solutions Bee Hui Yeh A Thesis in the Field of Sustainability and Environmental Management for the Degree of Master of Liberal Arts in Extension Studies Harvard University May 2016 © Copyright 2016 Bee Hui Yeh Abstract The energy poverty challenge sits in an estimated $6.4 trillion clean technology market opportunity in developing and emerging markets over the next decade (World Bank, 2014). As a result, private sector investments have magnetized towards renewable energy technology solutions that while innovative, are limited in scalability. However, large-scale electrification has seen narrow success, often only using income levels as a proxy for development – a myopic measure for Quality of Life (QOL) in rural areas with drastically different livelihoods than their urban counterparts.
    [Show full text]
  • Exploiting Underutilised Waste Heat to Generate Environmental Friendly
    International Journal of M echanical Engineering (IJME) ISSN(P): 2319 - 2240; ISSN( E ): 2319 - 2259 Vol. 5, Issue 3, Apr - May 2016; 1 - 10 © IASET EXPLOITING UNDERUTILISEDWASTE HEAT TO GENERATE ENVIRONMENTAL FRIENDLY ENERGY OL AYODELE & MTE KAHN Cape Peninsula University of Technology , Cape Town, South Africa ABSTRACT The growing concern over the continued usage of fossil fuels for electrical energy generation and hence the need to sign ificantly reduce reliance on this non - renewable energy source as well as the requirement for long - lived power supplies have necessitated the pragmatic shift towards the realization of cleaner, safer, and renewable energy sources. The increasing interest in space exploration, satellite activities, structural health monitoring and terrestrial monitoring in harsh and inaccessible environments place a high demand for energy sources for autonomous systems . The existing battery technologies that can be utilized for autonomous systems are plagued by short - life, low energy storage density, associated unwanted maintenance burdens of recharging or replacement and disposal of unwanted batteries which poses a threa t to the environment. Autonomous energy sources from waste heat for home appliances and industrial machineries will also mitigate the effect of global warming which threatens the environment as a result of fossil fuel energy based sources that release unde sirable carbon - monoxide into the atmosphere. Thermoelectric energy generation, based on Seebeck effect, an innovative approach to convert heat energy into usable forms can significantly contribute towards sustainable energy development and meet the growing need for power in small scale applications due to its relative advantages over other sources of energy generation. This paper presents an insight into various ways by which underutilize waste heat can be exploited to meet the growing energy demand.
    [Show full text]
  • Iceland As a Case Study
    Sustainable Energy Development: Iceland as a Case Study Brynhildur Davidsdottir, Environment and Natural Resources, University of Iceland ABSTRACT Increasing energy prices, political unrest in the Middle East and climate change are only a few issues that have pushed planning for Sustainable energy development (SED) onto the political horizon. SED is broadly defined as ‘the provision of adequate energy services at affordable cost in a secure and environmentally benign manner, in conformity with social and economic development needs’. Planning for SED implies that we need to consider the three dimensions of sustainable development, where such movement should not have negative consequences for the economy, the public (social dimension), nor the environment. This paper presents the development of the Icelandic Energy System since the year 1900 in this context. Iceland has in the last 40 years gone from being mostly reliant on coal and oil, towards extracting 73% of its primary energy needs from renewable energy, and at the same time achieved impressive economic success. Only the transportation sector relies on fossil fuels, and various experiments are being conducted to significantly reduce the reliance on imported fossil fuels. Some of those experiments include planning for a hydrogen economy by 2050. A central question that is asked in this presentation is if Iceland’s path is indeed sustainable, if it is unique and if other countries possibly can do the same. Sustainable Development Introduction Since the publication of the Brundtland Report (WCED 1987), sustainable development (SD) has evolved from a vague concept into a somewhat coherent development framework. In the Brundland report sustainable development was defined as: “development that meets the needs of the present without compromising the ability of future generations to meet their own needs”.
    [Show full text]
  • Minigrids in the Money Six Ways to Reduce Minigrid Costs by 60% for Rural Electrification
    M OUN KY T C A I O N R I N E STIT U T MINIGRIDS IN THE MONEY SIX WAYS TO REDUCE MINIGRID COSTS BY 60% FOR RURAL ELECTRIFICATION BY JOSH AGENBROAD, KELLY CARLIN, KENDALL ERNST, AND STEPHEN DOIG AUTHORS & ACKNOWLEDGMENTS AUTHORS PROGRAM SPONSORS Josh Agenbroad, Kelly Carlin, Kendall Ernst, and Sponsors of RMI’s Sustainable Energy for Economic Stephen Doig Development Program: Also contributing to this report: Ebun Ayandele, Olu Aruike Olu, Scarlett Santana, James Sherwood, and Eric Wanless * Authors and contributors listed alphabetically. All authors and contributors from Rocky Mountain Institute unless otherwise noted. CONTACTS Kendall Ernst, [email protected] Kelly Carlin, [email protected] SUGGESTED CITATION Agenbroad, Josh, Kelly Carlin, Kendall Ernst, and Stephen Doig. Minigrids in the Money: Six Ways to Reduce Minigrid Costs by 60% for Rural Electrification. Rocky Mountain Institute, 2018. www.rmi.org/insight/minigrids2018 Cover and back cover images © RMI, Solar Panels in Nigeria. Images courtesy of iStock unless otherwise noted. ABOUT US M OUN KY T C A I O N R I N E STIT U T ABOUT ROCKY MOUNTAIN INSTITUTE Rocky Mountain Institute (RMI)—an independent nonprofit founded in 1982—transforms global energy use to create a clean, prosperous, and secure low-carbon future. It engages businesses, communities, institutions, and entrepreneurs to accelerate the adoption of market-based solutions that cost-effectively shift from fossil fuels to efficiency and renewables. RMI has offices in Basalt and Boulder, Colorado; New York City; Washington, D.C.; and Beijing. TABLE OF CONTENTS EXECUTIVE SUMMARY ...................................................................................................................................... 5 01: THE OPPORTUNITY TO TRANSFORM RURAL AREAS WITH MINIGRID ELECTRICITY ......
    [Show full text]
  • Off-Grid Rural Electrification Experiences from South Asia
    Energy for Sustainable Development 15 (2011) 266–276 Contents lists available at ScienceDirect Energy for Sustainable Development Off-grid rural electrification experiences from South Asia: Status and best practices Debajit Palit ⁎, Akanksha Chaurey 1 Decentralised Electricity Solutions Division, The Energy and Resources Institute, IHC Complex, Lodhi Road, New Delhi 110 003, India article info abstract Article history: South Asia accounts for 42% of the global population without access to electricity. Such a situation continues to Received 15 January 2011 exist despite several initiatives and policies to support electrification efforts by the respective country Revised 6 July 2011 governments. The challenges to enhance electricity access are manifold including technical, financial, Accepted 7 July 2011 institutional and governance barriers. This paper makes a modest attempt, based on extensive literature Available online 6 August 2011 review, to highlight the rural electrification situation at the regional and country level in South Asia. The paper also does a comparative analysis to exploit cross learning potential and suggest specific boosters that could Keywords: fi Energy access serve as input for policy evaluation, review and improvements to assist future electri cation efforts in the Off-grid region. We focussed on renewable energy based mini-grids and stand-alone systems and also covered Rural electrification conventional grid extension. The paper raised some pertinent issues and attempted to find solutions to these South Asia issues. The household connection needs to be improved considerably through a targeted approach and innovative micro-lending model. At the same time the electricity supply also needs to be enhanced, such as through distributed power projects utilizing locally available renewable resources, to ensure that connected households continue to receive electricity and that supply constraints do not inhibit extending electrification to new areas.
    [Show full text]