Governing Large-Scale Carbon Dioxide Removal: Are We Ready? November 2018
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Has Joint Implementation Reduced GHG Emissions? Lessons Learned for the Design of Carbon Market Mechanisms
Stockholm Environment Institute, Working Paper 2015-07 Has Joint Implementation reduced GHG emissions? Lessons learned for the design of carbon market mechanisms Anja Kollmuss, Lambert Schneider and Vladyslav Zhezherin Stockholm Environment Institute Linnégatan 87D 104 51 Stockholm Sweden Tel: +46 8 674 7070 Fax: +46 8 674 7020 Web: www.sei-international.org Author contact: Anja Kollmuss, [email protected] Director of Communications: Robert Watt Editors: Elaine Beebe and Marion Davis Cover photo: A steel plant in Ukraine with a coal waste heap in the background. Photo © Mykola Ivashchenko. This publication may be reproduced in whole or in part and in any form for educa- tional or non-profit purposes, without special permission from the copyright holder(s) provided acknowledgement of the source is made. No use of this publication may be made for resale or other commercial purpose, without the written permission of the copyright holder(s). About SEI Working Papers: The SEI working paper series aims to expand and accelerate the availability of our research, stimulate discussion, and elicit feedback. SEI working papers are work in progress and typically contain preliminary research, analysis, findings, and recom- mendations. Many SEI working papers are drafts that will be subsequently revised for a refereed journal or book. Other papers share timely and innovative knowledge that we consider valuable and policy-relevant, but which may not be intended for later publication. Copyright © August 2015 by Stockholm Environment Institute STOCKHOLM ENVIRONMENT INSTITUTE WORKING PAPER NO. 2015-07 Has Joint Implementation reduced GHG emissions? Lessons learned for the design of carbon market mechanisms Anja Kollmuss, Lambert Schneider Stockholm Environment Institute – U.S. -
The Supplementarity Challenge: CDM, JI & EU Emissions Trading
Policy Paper Nr. 1/2004 Erstellt im März 2004 The Supplementarity Challenge: CDM, JI & EU Emissions Trading This policy paper is a contribution to the ongoing discussion on the Commission’s proposal for a directive ‘amending the Directive 2003/…/EC establishing a scheme for greenhouse gas emission allowance trading within the Community, in respect of the Kyoto Protocol’s project mechanisms’ (henceforward called Proposed Directive and ET Directive respectively). It is largely based on a policy brief that has been produced within the framework of the IEEP/Ecologic contract ‘External expertise on emerging regulatory and policy issues within the responsibility of the EP Environment Committee’ (project EP/IV/A/2003/09/01). This policy brief can be downloaded from the European Parliaments website at http://www.europarl.eu.int/comparl/envi/externalexpertise/default_en.htm. The focus of this paper is on the question of supplementarity in the context of linking the project-based mechanisms CDM and JI to the EU Emission Allowance Trading. The EU 15 as a whole as well as many of its member states will find it very difficult to achieve compliance with the Kyoto Protocol. It might therefore become necessary to make use of the flexibility provided by the Kyoto Protocol. However, the EU’s credibility crucially depends on meeting the supplementarity requirement, i.e. achieving at least 50% of its emission reductions through domestic action. The relevant provision contained in the Proposed Directive is not comprehensive enough to guarantee this outcome, the authors therefore recommend that a more wide-ranging approach is taken. Introduction: The Situation in the EU with Respect to Compliance with the Kyoto Protocol Most of the EU 15 member states will have to make significant additional efforts to achieve compliance with the Kyoto Protocol. -
Science-Based Target Setting Manual Version 4.1 | April 2020
Science-Based Target Setting Manual Version 4.1 | April 2020 Table of contents Table of contents 2 Executive summary 3 Key findings 3 Context 3 About this report 4 Key issues in setting SBTs 5 Conclusions and recommendations 5 1. Introduction 7 2. Understand the business case for science-based targets 12 3. Science-based target setting methods 18 3.1 Available methods and their applicability to different sectors 18 3.2 Recommendations on choosing an SBT method 25 3.3 Pros and cons of different types of targets 25 4. Set a science-based target: key considerations for all emissions scopes 29 4.1 Cross-cutting considerations 29 5. Set a science-based target: scope 1 and 2 sources 33 5.1 General considerations 33 6. Set a science-based target: scope 3 sources 36 6.1 Conduct a scope 3 Inventory 37 6.2 Identify which scope 3 categories should be included in the target boundary 40 6.3 Determine whether to set a single target or multiple targets 42 6.4 Identify an appropriate type of target 44 7. Building internal support for science-based targets 47 7.1 Get all levels of the company on board 47 7.2 Address challenges and push-back 49 8. Communicating and tracking progress 51 8.1 Publicly communicating SBTs and performance progress 51 8.2 Recalculating targets 56 Key terms 57 List of abbreviations 59 References 60 Acknowledgments 63 About the partner organizations in the Science Based Targets initiative 64 Science-Based Target Setting Manual Version 4.1 -2- Executive summary Key findings ● Companies can play their part in combating climate change by setting greenhouse gas (GHG) emissions reduction targets that are aligned with reduction pathways for limiting global temperature rise to 1.5°C or well-below 2°C compared to pre-industrial temperatures. -
A Review of Manchester's Carbon Budgets for Direct / Energy-Only
A Review of Manchester’s Carbon Budgets for Direct / Energy-only CO2 Emissions Client: Manchester Climate Change Agency Document Reference: MCCA DIRECT Version: V.5.3 FINAL Date: February 2019 Prepared by: Dr Christopher Jones NB: All views contained with this report are attributable solely to the author and do not necessarily reflect those of researchers within the wider Tyndall Centre. 1 Introduction In June 2018 the Tyndall Centre for Climate Change Research at the University of Manchester was commissioned by Manchester Climate Change Agency to advise on science-based carbon reduction targets for Manchester. This led to the development of the Agency’s ‘Playing our Full Part’ proposal (http://www.manchesterclimate.com/targets-2018) and the formal adoption of science-based carbon reduction targets for Manchester’s direct1 /energy-only CO2 emissions by Manchester City Council, in November 2018. In November 2019 the Tyndall Centre was commissioned by the Agency to review the city’s climate change targets and recommend revised targets, as required. The review covers four areas of activity: Direct / energy-only CO2 emissions Indirect / consumption-based CO2 emissions CO2 emissions from flights from Manchester Airport Target-setting and reporting methodology for organisations and sectors The full brief is available from http://www.manchesterclimate.com/targets-2020. This report covers the review of direct /energy-only aspect of the brief in Part 1. Part 2 of this report considers a proposal for a 2030 zero carbon target. 1 This definition of ‘direct’ refers to fuel use (Scope 1) and electricity use (Scope 2) within the local authority geographic area. -
Greenhouse Gas Mitigation in Land Use – Measuring Economic Potential
Dominic Moran and Kimberly Pratt CHAPTER XI Greenhouse gas mitigation in land use – measuring economic potential INTRODUCTION As noted in other sections the global technical mitigation potential of agriculture, excluding fossil fuel, offsets from biomass is around 5.5–6 Gt CO2eq/year. This can be delivered through a range of technically effective measures that can be deployed in a variety of farm and land-use systems. These measures can be deployed at varying cost, including a range of ancillary environmental and social costs and benefits that need to be taken into account when moving to some consideration of the socio-economic potential of mitigation pathways. This chapter will explore the distinction between the technical and economic potential as applied more generally to land-use mitigation measures. Specifically, the chapter considers how issues of efficiency and equity are important corollaries to the effectiveness of grassland mitigation. The consideration of efficiency is made with reference to a carbon (C) price, which provides a benchmark cost for comparing mitigation options on a cost per tonne basis. The equity dimension then addresses the distributional impacts arising if efficient measures are adopted across different income groups. We demonstrate these points with the example of biochar, a soils additive that is widely considered to offer a low-cost mitigation potential applicable in a wide variety of high- and low-income farm and land use systems. This example is used to illustrate the data requirements for developing a bottom-up marginal abatement cost curve, which is essential for judging the relative effectiveness and efficient of mitigation measures. -
Zero Emissions Pathways to the Europe We Want
O NET ZERO BY 2050: FROM WHETHER TO HOW ZERO EMISSIONS PATHWAYS TO THE EUROPE WE WANT SEPTEMBER 2018 ACKNOWLEDGEMENTS We are grateful to the following organisations for their expertise and insight. CONTENTS Model testers - the following organisations supported the analytical team in testing the model, which is itself derived from the ClimateWorks Foundation’s Carbon Transparency Initiative (CTI): 4 FOREWORD 6 METHODOLOGY & SCENARIOS OVERVIEW 8 EXECUTIVE SUMMARY 18 INTRODUCTION 20 1. REACHING NET-ZERO GREENHOUSE GAS EMISSIONS IN 2050 IS FEASIBLE but requires robust action across all sectors, widening the range of low-carbon options used for the transition Agora-Energiewende, Climate Strategy, The Coalition for Energy Savings, Friends of the Earth (FoE) UK, Grantham Research Institute - 30 2. NET-ZERO GREENHOUSE GAS EMISSIONS IN 2050 London School of Economics, Iberdrola, Institute for European Environmental Policy (IEEP), Institute for Sustainable Development and International Relations (IDDRI), Third Generation Environmentalism (E3G), UK Department for Business, Energy and Industrial Strategy REQUIRES RAISING THE 2030 AMBITION LEVEL (BEIS), and the World Wide Fund for Nature (WWF) European Policy Office. to leverage the no regrets options and Members of these organisations tested the model during the summer of 2018 and explored a variety of decarbonisation pathways. These set Europe on the right trajectory scenarios have informed our conclusions but were not used directly. Other organisations were consulted on sector specific discussions: -
Foundations of Science-Based Target Setting
Foundations of Science-based Target Setting Version 1.0 April 2019 Table of Contents 1. Introduction ...............................................................................................................................4 1.1 Outline ........................................................................................................................4 2. Background ................................................................................................................................6 2.1 Target-setting methods ................................................................................................6 GHG budgets ......................................................................................................................................... 7 Emissions scenarios ............................................................................................................................... 7 Allocation approach .............................................................................................................................. 8 Constructing SBTi methods ................................................................................................................... 8 Box 1. Understanding scenarios ..............................................................................................9 Box 2. Determining useful GHG budgets ............................................................................... 11 3. Methods and scenarios the SBTi currently endorses ................................................................. -
The Scientific and International Context for the Fifth Carbon Budget
The scientific and international context for the fifth carbon budget October 2015 Acknowledgements The Committee would like to thank: The team that prepared the analysis for this report: This was led by Matthew Bell, Adrian Gault and Mike Thompson and included Owen Bellamy, Ewa Kmietowicz, Amy McQueen, Dean Pearson and Stephen Smith. Other members of the Secretariat who contributed to this report: Jo Barrett and David Joffe. A number of organisations and individuals for their significant support: Climate Action Tracker, the Department of Energy and Climate Change, the AVOID 2 consortium, the Grantham Institute on Climate Change, Matthew England and Jules Kajtar (University of New South Wales), Louise Jeffery (Potsdam Institute for Climate Impact Research), Carman Mak (Imperial College London), Alex Luta and Damien Morris (Sandbag), Martin Parry (Adaptation Sub-Committee, Joeri Rogelj (IIASA) and David Vaughan (British Antarctic Survey). __________________________________________________________________ 1 Contents The Committee 3-5 ________________________________________________________________________________ Executive summary 6-10 ________________________________________________________________________________ Chapter 1: The science of climate change 11-26 ________________________________________________________________________________ Chapter 2: International action to limit climate change 27-49 ________________________________________________________________________________ Chapter 3: The EU and UK share of international action 50-68 -
Carbon Sequestration in Agricultural Soils
Carbon Sequestration in Agricultural Soils A Multidisciplinary Approach to Innovative Methods Bearbeitet von Alessandro Piccolo 1. Auflage 2012. Buch. xiv, 310 S. Hardcover ISBN 978 3 642 23384 5 Format (B x L): 15,5 x 23,5 cm Gewicht: 649 g Weitere Fachgebiete > Geologie, Geographie, Klima, Umwelt > Geologie > Bodenkunde, Sedimentologie Zu Inhaltsverzeichnis schnell und portofrei erhältlich bei Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft. Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr als 8 Millionen Produkte. Chapter 2 The Kyoto Protocol and European and Italian Regulations in Agriculture Davide Savy, Antonio Nebbioso, Rocı´oDa´nica Co´ndor, and Marina Vitullo Abstract Climate change represents the most important challenge for the interna- tional scientific community, for the inherent and irreversible modification brought about in natural ecosystems. International institutions increasingly adopt measures to promote preservation of ecosystems and counteract the social and economical consequences of environmental decline. Here we review the actions undertaken by both the Intergovernmental Panel for Climate Change (IPCC) and the United Nations Framework Convention on Climate Change (UNFCCC), aimed to stabilize and reduce concentrations of greenhouse gases (GHG) in atmosphere, including the Kyoto Protocol that obliges developed countries to provide the political and legal framework to meet the Protocol’s expectations. Moreover, it is mandatory for national policies to reduce the occurrence of main risky events, such as landslides, floods, and desertification processes, whose frequency have rapidly risen in the Mediterranean regions mostly susceptible to climatic changes. -
Carbon City Budget” Or “Climate-Proofed Municipal Budgets”?
Briefing / April 2020 “Carbon City budget” or “Climate-proofed municipal budgets”? What’s the difference, and how to implement them in my city. “We cannot set the right priorities with the wrong compass” Carbon budget”, “Climate-proofed municipal budgets”, “science-based targets”” are some of many different approaches offered to cities when they want to align their short, medium and long-term policies with the Paris Agreement. These instruments, measuring and monitoring tools, can be complementary. They, in any case, need to be adapted to the local context and to the local available data. Science-based targets can support cities in defining their strategy by identifying and leveraging on their own strengths; on the most impactful actions. 1. CARBON BUDGETS Carbon budgets emerged as a scientific concept from the IPCC’s 2014 Synthesis Report on Climate Change1 and relate to the “cumulative amount of CO2 emissions permitted over a period of time to keep within a 2 certain temperature threshold” . Much like a financial budget, a carbon sets out how much CO2 can be ‘spent’ over a fixed time period; and once it’s gone, it cannot be replenished (unless new technologies are rolled out at scale to extract CO2 from the atmosphere). This framing is used to inform local and national climate strategies using the 1.5°C or 2°C temperature targets as enshrined in international goals. Figure 1 tracks different interpretations given by different institutions. 1 Anderson et al. (2017). ‘Carbon budget and pathways to a fossil-free future in Järfälla Municipality’ 2 https://www.carbontracker.org/carbon-budgets-explained/ Figure 1. -
4. Markets for Carbon Offsets
4. Markets for carbon offsets Widely dismissed as far-fetched only a few years ago, today there is a strengthening scientific consensus that global warming is a real and dangerous phenomenon. Global warming results from what scientists refer to as the Greenhouse Effect, which is caused by the build up of greenhouse gases (GHGs) including carbon dioxide, methane, nitrous oxides, chlorofluorocarbons, hydrofluorocarbons, perfluorocarbons and sulphur hexafluoride, in the atmosphere. GHGs absorb heat radiated from the Earth’s surface and, in the past, have been responsible for maintaining the Earth’s temperature at an average 15 degrees Celsius. Over the twentieth century the Inter-governmental Panel on Climate Change, an international group of leading climate scientists set up to advise the United Nations’ Framework Convention on Climate Change (UNFCCC), estimates that a 30% increase in atmospheric GHG levels has caused world temperatures to rise 0.6 degrees Celsius. By far the largest contributor has been fossil fuel burning, which accounts for about 75% of the increase in GHG, followed by forest degradation and deforestation, accounting for an estimated 20%. The Inter-governmental Panel on Climate Change has predicted that at present rates, temperatures will increase by a further 1.4 – 5.8 degrees Celsius over the next 100 years (IPCC, 2001). The increase in global temperatures will have uncertain implications for humans, but the Inter-governmental Panel on Climate Change posits several potential impacts including rising sea levels, more severe climatic events, coastal erosion, increased salinisation, loss of protective coral reefs, increased desertification, damaged forest ecosystems and increased disease. Poor people are particularly vulnerable to global warming. -
Breaking the Plastic Wave
Breaking the Plastic Wave A COMPREHENSIVE ASSESSMENT OF PATHWAYS TOWARDS STOPPING OCEAN PLASTIC POLLUTION Thought Partners SUMMARY REPORT X About The Pew Charitable Trusts Table of contents The Pew Charitable Trusts is driven by the power of knowledge to solve today’s most challenging problems. Pew applies a rigorous, analytical approach to improve public policy, inform the public, and invigorate civic life. As the United States and the world have evolved, we PREFACE 4 have remained dedicated to our founders’ emphasis on EXPERT PANEL 5 innovation. Today, Pew is a global research and public policy organization, still operated as an independent, nonpartisan, ENDORSEMENTS 6 nonprofit organization dedicated to serving the public. TIME FOR A PLASTIC PARADIGM SHIFT 8 Informed by the founders’ interest in research, practical knowledge, and public service, our portfolio includes public FAST FACTS: ‘BREAKING THE PLASTIC WAVE’ IN NUMBERS 12 opinion research; arts and culture; civic initiatives; and environmental, health, state, and consumer policy initiatives. ABOUT THIS PROJECT 14 Our goal is to make a difference for the public. That means TEN CRITICAL FINDINGS 16 working on a few key issues, with an emphasis on projects 1. Business-as-Usual will result in nearly three times more plastic leaking into the ocean in 2040 17 that can produce consequential outcomes, foster new ideas, attract partners, avoid partisanship or wishful thinking, and 2. Current commitments are inadequate for the scale of the challenge 19 achieve measurable results that serve the public interest. 3. Single-solution strategies cannot stop plastic pollution 20 Learn more at https://www.pewtrusts.org/en 4.