The Illusion of Green Flying

Total Page:16

File Type:pdf, Size:1020Kb

The Illusion of Green Flying The Illusion of Green Flying Aviation is the fastest way to the climate crisis. Yet air travel is growing rapidly, with hundreds of new airports currently planned – despite local resistance and an urgent need to abate the climate crisis. The aviation industry has announced its intention to become greener in the future. Do its strategies deliver on their promises? Is carbon-neutral growth a realistic goal? Or do we need to set a limit – a red line – for air travel? 1 Published by: Finance & Trade Watch, c/o GLOBAL 2000, Neustiftgasse 36, 1070 Vienna, Austria www.ftwatch.at Author: Magdalena Heuwieser Lectorship: Mira Kapfinger Illustration/ Layout: Sarah Heuzeroth Print: Gugler, Vienna Release: November 2017 Translation: Christopher Hay Download: www.ftwatch.at/flying_green (English) and www.ftwatch.at/gruenes_fliegen (German) Contact: [email protected] / [email protected] Many thanks to Jutta Kill for the support with the writing. Thanks to Paco Yoncaova for the help with the research on the diagrams. And thanks to everyone else for the helpful feedback. Thanks for the financial contribution by the Heinrich Böll Foundation, Lush and the Dreikönigsaktion Austria. DIAGRAM 1: New airports and runways in the offing Currently 423 new airports are planned or under construction. 223 of these are in the Asian-Pacific region alone and 58 in Europe. Additional runways thought to number 121 worldwide (28 in Europe) are also planned or under construction. Residents are protesting many of these projects for a multitude of reasons, thus the realisation of these plans is still contested. What the diagram does not show are a further 205 planned runway extensions, 262 new terminals and 175 terminal extensions. Source: CAPA 2017 Infrastructure projects New Airports: 423 New Runways: 121 Headlong growth in a green guise Right now, at this very moment, at least half a million peo- industry’s profits. This is why airlines, airports, transport ple are in the air.1 Over the past 25 years, air travel has ministries and lobbyists are claiming to have found the transformed from a luxury to a common means of trans- perfect solution: green growth. port. Low-cost carriers have made it affordable to quickly discover the world and have spawned an ongoing boom High in the sky: an industry ascendant in weekend breaks by air. For a growing middle and up- From 1990 to 2010, global CO2 emissions rose by an es- per class, this convenience has become a seemingly natu- timated 25%. Over the same period, the CO2 emissions ral part of their holiday plans, of their choice of where to of international aviation rose by more than 70%.2 Within live and work and which relationships they foster. But how the European Union, as elsewhere, emissions from avia- normal is it really to fly, and for whom? And who bears tion rose more rapidly than those from other sectors of the the cost? economy.3 Aviation is the mode of transport with the biggest climate The number of aircraft and the number of passenger-kilo- impact by far: per 1000 passenger-kilometres travelled, a metres flown is expected to double over the next 20 years flight generates on average 18 times as much carbon di- – entailing hundreds of new infrastructure projects around oxide (CO2) as a journey by rail (see Diagram 5). Yet, air the world (see Diagram 1). The international aviation in- travel is growing faster than any other sector. The industry dustry anticipates annual growth of 4.3% throughout the has successfully resisted emission reductions in absolute next decades.4 This could cause the greenhouse gas emis- terms because any such limitation would impact on the sions from aviation to increase four- to eight-fold by 2050.5 Sulphate CH4 reduction Water vapour Soot Contrails Not considered by CORSIA Cooling effects Ozone (26,3 mW/m2) Induced Cloudiness (estimate ...) Considered by CORSIA 2 CO2 (28 mW/m ) Warming effects DIAGRAM 2: Aviation’s climate impacts Aircraft emit various other substances in addition to CO2. Each of those substances has a specific warming or cooling effect of its own. Overall, they amplify the climate impact of aviation. Their specific contribution depends on the assumptions made in calculations. A key variable in calculations is the time horizon that is taken into account, as most sub- stances have a shorter residence time in the atmosphere than CO2 but during this time, their impact on the climate is particularly strong. Austria’s Environment Agency recom- mends assigning a Radiative Forcing Index (RFI) factor of 2.7 to these additional effects, meaning 2.7 times the impact of CO2. Germany’s Federal Environment Agency uses an Emission Weighting Factor (EWF) of 2. Sources: Lee/Fahey et al. 2009, UBA Deutschland 2012, UBA Deutschland 2016, UBA Österreich 2016 4 5 Aviation: the fast way to fry the planet time, protests mount in regions inundated by mass tour- The problem is that every tonne of CO2 emitted caus- ism driven by cheap flights and luxury cruise travel. Water es about three square metres of Arctic summer ice to dis- reserves dwindle under the dual pressure of climate crisis appear, as a recent study has found.6 For instance, if one and tourism. Landfills grow, meanwhile culture becomes person flies from Vienna to the Canary Islands and back, an attraction and a commodity.15 The annual number of about four-and-a-half square metres of Arctic ice melt as a passengers carried by airlines totals 3.6 billion16 – but this result.7 And climate change is not just a matter of glaciers does not mean that half of the world’s population flies. and polar bears. It is not a marginal environmental nui- sance. Climate change means rising sea levels and regions Who flies, who does not? Inequity in airspace around the world that will become uninhabitable. It means At the turn of the millennium, less than 5% of the world’s increased risk of forced displacement of human popula- population had ever sat in an aircraft.17 Latin America and tions, extreme weather events, potential health crises, Africa account for only 11% of passenger traffic by air, threats to agriculture and the food supply, and conflicts while North America and Europe together account for over access to water and fertile land.8 Climate change is half, despite their smaller populations.18 Products such increasingly becoming climate crisis – and thus a crisis for as electronic goods, perishable foods and semi-luxuries, local as well as global economies, threatening livelihoods cut flowers and ‘fast fashion’ products are increasingly be- and human lives. ing carried by air and are mostly consumed in the Global North.19 Industry representatives like to point out that emissions from aviation account for only 2% of global CO2 emis- Within countries, too, there are major disparities in who sions, and that international flights account for only 1.3%. uses air transport and who does not. These are linked di- What they conveniently omit is that the share of emissions rectly to income disparities within societies. It is therefore from the aviation sector is increasing rapidly. In a 2015 re- less paradoxical than it appears at first sight that voters of port to the European Parliament, the research organisation The Greens are the most frequent flyers when compared 20 Öko-Institut warns that CO2 emissions from international to voters of other parties in Germany. They tend to be aviation may reach a share of 22% of global emissions by among those with higher incomes. Those in the highest in- 2050.9 An even larger share is probable for the aviation in- come bracket in Germany fly 6.6 times on average per year, dustry in some individual countries: For the United King- those in the lowest 0.6 times – the latter still being a very dom, projections indicate that if the goal of limiting global high figure on a global scale.21 warming to 1.5 degrees is taken seriously, and the con- So, flying is by no means normal. Rather, this fossil mobili- troversial expansion of London’s Heathrow Airport goes ty system is highly exclusive and imperial: those who travel ahead anyway, aviation will consume up to 71% of the na- by plane or opt for certain products do so at the expense tional emissions budget in 2050.10 of others: residents exposed to noise and particle pollution from the planes, local ecosystems, future generations and It is not just about CO2 of those in the Global South who are already bearing the The aviation industry not only ignores its growing share brunt of the impacts of climate change.22 in emissions compared to other sectors. Its statistics and climate strategies also fail to mention that CO2 is just one dimension of the climate impact of flying (see Diagram 2). The latest scientific studies Example Box 1: estimate that in 2005, aviation’s London City Airport: who bears the consequences? contribution to human-induced climate change amounted to 5%.11 On 6 September 2016, a dozen activists of the Black Lives Matter group blockaded a runway at London City Various other impacts of aviation are often Airport. Their message: ‘Climate Crisis is a Racist Crisis’. ignored: The combustion of fossil fuel is not This act of civil disobedience was directed against the only a principal cause of global warming; its expansion of the business airport, which is located in extraction and transport also contributes to a workers’ district of London. People living in the flight the broader environmental crisis through paths of the airport – many of whom are Black British ecosystem degradation, geopolitical conflict Africans – have incomes that are far lower than those and war.
Recommended publications
  • Science-Based Target Setting Manual Version 4.1 | April 2020
    Science-Based Target Setting Manual Version 4.1 | April 2020 Table of contents Table of contents 2 Executive summary 3 Key findings 3 Context 3 About this report 4 Key issues in setting SBTs 5 Conclusions and recommendations 5 1. Introduction 7 2. Understand the business case for science-based targets 12 3. Science-based target setting methods 18 3.1 Available methods and their applicability to different sectors 18 3.2 Recommendations on choosing an SBT method 25 3.3 Pros and cons of different types of targets 25 4. Set a science-based target: key considerations for all emissions scopes 29 4.1 Cross-cutting considerations 29 5. Set a science-based target: scope 1 and 2 sources 33 5.1 General considerations 33 6. Set a science-based target: scope 3 sources 36 6.1 Conduct a scope 3 Inventory 37 6.2 Identify which scope 3 categories should be included in the target boundary 40 6.3 Determine whether to set a single target or multiple targets 42 6.4 Identify an appropriate type of target 44 7. Building internal support for science-based targets 47 7.1 Get all levels of the company on board 47 7.2 Address challenges and push-back 49 8. Communicating and tracking progress 51 8.1 Publicly communicating SBTs and performance progress 51 8.2 Recalculating targets 56 Key terms 57 List of abbreviations 59 References 60 Acknowledgments 63 About the partner organizations in the Science Based Targets initiative 64 Science-Based Target Setting Manual Version 4.1 -2- Executive summary Key findings ● Companies can play their part in combating climate change by setting greenhouse gas (GHG) emissions reduction targets that are aligned with reduction pathways for limiting global temperature rise to 1.5°C or well-below 2°C compared to pre-industrial temperatures.
    [Show full text]
  • A Review of Manchester's Carbon Budgets for Direct / Energy-Only
    A Review of Manchester’s Carbon Budgets for Direct / Energy-only CO2 Emissions Client: Manchester Climate Change Agency Document Reference: MCCA DIRECT Version: V.5.3 FINAL Date: February 2019 Prepared by: Dr Christopher Jones NB: All views contained with this report are attributable solely to the author and do not necessarily reflect those of researchers within the wider Tyndall Centre. 1 Introduction In June 2018 the Tyndall Centre for Climate Change Research at the University of Manchester was commissioned by Manchester Climate Change Agency to advise on science-based carbon reduction targets for Manchester. This led to the development of the Agency’s ‘Playing our Full Part’ proposal (http://www.manchesterclimate.com/targets-2018) and the formal adoption of science-based carbon reduction targets for Manchester’s direct1 /energy-only CO2 emissions by Manchester City Council, in November 2018. In November 2019 the Tyndall Centre was commissioned by the Agency to review the city’s climate change targets and recommend revised targets, as required. The review covers four areas of activity: Direct / energy-only CO2 emissions Indirect / consumption-based CO2 emissions CO2 emissions from flights from Manchester Airport Target-setting and reporting methodology for organisations and sectors The full brief is available from http://www.manchesterclimate.com/targets-2020. This report covers the review of direct /energy-only aspect of the brief in Part 1. Part 2 of this report considers a proposal for a 2030 zero carbon target. 1 This definition of ‘direct’ refers to fuel use (Scope 1) and electricity use (Scope 2) within the local authority geographic area.
    [Show full text]
  • Greenhouse Gas Mitigation in Land Use – Measuring Economic Potential
    Dominic Moran and Kimberly Pratt CHAPTER XI Greenhouse gas mitigation in land use – measuring economic potential INTRODUCTION As noted in other sections the global technical mitigation potential of agriculture, excluding fossil fuel, offsets from biomass is around 5.5–6 Gt CO2eq/year. This can be delivered through a range of technically effective measures that can be deployed in a variety of farm and land-use systems. These measures can be deployed at varying cost, including a range of ancillary environmental and social costs and benefits that need to be taken into account when moving to some consideration of the socio-economic potential of mitigation pathways. This chapter will explore the distinction between the technical and economic potential as applied more generally to land-use mitigation measures. Specifically, the chapter considers how issues of efficiency and equity are important corollaries to the effectiveness of grassland mitigation. The consideration of efficiency is made with reference to a carbon (C) price, which provides a benchmark cost for comparing mitigation options on a cost per tonne basis. The equity dimension then addresses the distributional impacts arising if efficient measures are adopted across different income groups. We demonstrate these points with the example of biochar, a soils additive that is widely considered to offer a low-cost mitigation potential applicable in a wide variety of high- and low-income farm and land use systems. This example is used to illustrate the data requirements for developing a bottom-up marginal abatement cost curve, which is essential for judging the relative effectiveness and efficient of mitigation measures.
    [Show full text]
  • Zero Emissions Pathways to the Europe We Want
    O NET ZERO BY 2050: FROM WHETHER TO HOW ZERO EMISSIONS PATHWAYS TO THE EUROPE WE WANT SEPTEMBER 2018 ACKNOWLEDGEMENTS We are grateful to the following organisations for their expertise and insight. CONTENTS Model testers - the following organisations supported the analytical team in testing the model, which is itself derived from the ClimateWorks Foundation’s Carbon Transparency Initiative (CTI): 4 FOREWORD 6 METHODOLOGY & SCENARIOS OVERVIEW 8 EXECUTIVE SUMMARY 18 INTRODUCTION 20 1. REACHING NET-ZERO GREENHOUSE GAS EMISSIONS IN 2050 IS FEASIBLE but requires robust action across all sectors, widening the range of low-carbon options used for the transition Agora-Energiewende, Climate Strategy, The Coalition for Energy Savings, Friends of the Earth (FoE) UK, Grantham Research Institute - 30 2. NET-ZERO GREENHOUSE GAS EMISSIONS IN 2050 London School of Economics, Iberdrola, Institute for European Environmental Policy (IEEP), Institute for Sustainable Development and International Relations (IDDRI), Third Generation Environmentalism (E3G), UK Department for Business, Energy and Industrial Strategy REQUIRES RAISING THE 2030 AMBITION LEVEL (BEIS), and the World Wide Fund for Nature (WWF) European Policy Office. to leverage the no regrets options and Members of these organisations tested the model during the summer of 2018 and explored a variety of decarbonisation pathways. These set Europe on the right trajectory scenarios have informed our conclusions but were not used directly. Other organisations were consulted on sector specific discussions:
    [Show full text]
  • Foundations of Science-Based Target Setting
    Foundations of Science-based Target Setting Version 1.0 April 2019 Table of Contents 1. Introduction ...............................................................................................................................4 1.1 Outline ........................................................................................................................4 2. Background ................................................................................................................................6 2.1 Target-setting methods ................................................................................................6 GHG budgets ......................................................................................................................................... 7 Emissions scenarios ............................................................................................................................... 7 Allocation approach .............................................................................................................................. 8 Constructing SBTi methods ................................................................................................................... 8 Box 1. Understanding scenarios ..............................................................................................9 Box 2. Determining useful GHG budgets ............................................................................... 11 3. Methods and scenarios the SBTi currently endorses .................................................................
    [Show full text]
  • The Scientific and International Context for the Fifth Carbon Budget
    The scientific and international context for the fifth carbon budget October 2015 Acknowledgements The Committee would like to thank: The team that prepared the analysis for this report: This was led by Matthew Bell, Adrian Gault and Mike Thompson and included Owen Bellamy, Ewa Kmietowicz, Amy McQueen, Dean Pearson and Stephen Smith. Other members of the Secretariat who contributed to this report: Jo Barrett and David Joffe. A number of organisations and individuals for their significant support: Climate Action Tracker, the Department of Energy and Climate Change, the AVOID 2 consortium, the Grantham Institute on Climate Change, Matthew England and Jules Kajtar (University of New South Wales), Louise Jeffery (Potsdam Institute for Climate Impact Research), Carman Mak (Imperial College London), Alex Luta and Damien Morris (Sandbag), Martin Parry (Adaptation Sub-Committee, Joeri Rogelj (IIASA) and David Vaughan (British Antarctic Survey). __________________________________________________________________ 1 Contents The Committee 3-5 ________________________________________________________________________________ Executive summary 6-10 ________________________________________________________________________________ Chapter 1: The science of climate change 11-26 ________________________________________________________________________________ Chapter 2: International action to limit climate change 27-49 ________________________________________________________________________________ Chapter 3: The EU and UK share of international action 50-68
    [Show full text]
  • Carbon City Budget” Or “Climate-Proofed Municipal Budgets”?
    Briefing / April 2020 “Carbon City budget” or “Climate-proofed municipal budgets”? What’s the difference, and how to implement them in my city. “We cannot set the right priorities with the wrong compass” Carbon budget”, “Climate-proofed municipal budgets”, “science-based targets”” are some of many different approaches offered to cities when they want to align their short, medium and long-term policies with the Paris Agreement. These instruments, measuring and monitoring tools, can be complementary. They, in any case, need to be adapted to the local context and to the local available data. Science-based targets can support cities in defining their strategy by identifying and leveraging on their own strengths; on the most impactful actions. 1. CARBON BUDGETS Carbon budgets emerged as a scientific concept from the IPCC’s 2014 Synthesis Report on Climate Change1 and relate to the “cumulative amount of CO2 emissions permitted over a period of time to keep within a 2 certain temperature threshold” . Much like a financial budget, a carbon sets out how much CO2 can be ‘spent’ over a fixed time period; and once it’s gone, it cannot be replenished (unless new technologies are rolled out at scale to extract CO2 from the atmosphere). This framing is used to inform local and national climate strategies using the 1.5°C or 2°C temperature targets as enshrined in international goals. Figure 1 tracks different interpretations given by different institutions. 1 Anderson et al. (2017). ‘Carbon budget and pathways to a fossil-free future in Järfälla Municipality’ 2 https://www.carbontracker.org/carbon-budgets-explained/ Figure 1.
    [Show full text]
  • Breaking the Plastic Wave
    Breaking the Plastic Wave A COMPREHENSIVE ASSESSMENT OF PATHWAYS TOWARDS STOPPING OCEAN PLASTIC POLLUTION Thought Partners SUMMARY REPORT X About The Pew Charitable Trusts Table of contents The Pew Charitable Trusts is driven by the power of knowledge to solve today’s most challenging problems. Pew applies a rigorous, analytical approach to improve public policy, inform the public, and invigorate civic life. As the United States and the world have evolved, we PREFACE 4 have remained dedicated to our founders’ emphasis on EXPERT PANEL 5 innovation. Today, Pew is a global research and public policy organization, still operated as an independent, nonpartisan, ENDORSEMENTS 6 nonprofit organization dedicated to serving the public. TIME FOR A PLASTIC PARADIGM SHIFT 8 Informed by the founders’ interest in research, practical knowledge, and public service, our portfolio includes public FAST FACTS: ‘BREAKING THE PLASTIC WAVE’ IN NUMBERS 12 opinion research; arts and culture; civic initiatives; and environmental, health, state, and consumer policy initiatives. ABOUT THIS PROJECT 14 Our goal is to make a difference for the public. That means TEN CRITICAL FINDINGS 16 working on a few key issues, with an emphasis on projects 1. Business-as-Usual will result in nearly three times more plastic leaking into the ocean in 2040 17 that can produce consequential outcomes, foster new ideas, attract partners, avoid partisanship or wishful thinking, and 2. Current commitments are inadequate for the scale of the challenge 19 achieve measurable results that serve the public interest. 3. Single-solution strategies cannot stop plastic pollution 20 Learn more at https://www.pewtrusts.org/en 4.
    [Show full text]
  • Using the CO2 Budget to Meet the Paris Climate Targets
    Using the CO2 budget to meet the Paris climate targets ENVIRONMENTAL REPORT 2020 CHAPTER 2 Using the CO2 budget to meet the Paris 2 climate targets Contents 2 Using the CO2 budget to meet the Paris climate targets ................................ 5 2.1 Introduction ........................................................................................................ 6 2.2 The CO2 budget as the key metric for climate protection ............................................ 6 2.2.1 Basis for and uses of the CO2 budget ......................................................... 7 2.2.2 Factors in the calculation of the CO2 budget ............................................. 11 2.2.3 Size of the global CO2 budget ................................................................. 13 2.2.4 The CO2 budget for Europe, Germany and national sectors ........................ 15 2.3 Core principles and steps for ensuring compliance with a national CO2 budget ..............23 2.3.1 Switch rather than exit: renewable energies instead of fossil fuels ................ 24 2.3.2 No return to nuclear energy ................................................................... 27 2.3.3 The role of negative emis sions – limiting the use of CCS in Germany ............ 28 2.3.4 The need for regulation of the use of stemwood for energy ........................ 33 2.4 Governance: the key to remaining within the CO2 budget .......................................... 37 2.4.1 EU climate governance .........................................................................
    [Show full text]
  • Governing Large-Scale Carbon Dioxide Removal: Are We Ready? November 2018
    Governing large-scale carbon dioxide removal: are we ready? November 2018 Carnegie an initiative of Climate Geoengineering Governance Initiative This report was funded by the Carnegie Climate Geoengineering Governance Initiative (C2G2) which is an initiative of the Carnegie Council for Ethics and International Affairs. The report was prepared in partnership between Climate Analytics and C2G2. Any views expressed in this report are solely those of its authors, and do not reflect any official positions nor those of other contributors or reviewers. This publication may be reproduced in whole or in part and in any form for education or non-profit purposes without special permission from C2G2, provided acknowledgement or proper referencing of the source is made. Suggested citation: Mace, M.J., Fyson, C.L., Schaeffer, M., Hare, W.L. (2018). Governing large-scale carbon dioxide removal: are we ready? Carnegie Climate Geoengineering Governance Initiative (C2G2), November 2018, New York, US. Acknowledgments: The authors are grateful to the C2G2 team for coordinating, contributing to, and supporting this paper. The authors would also like to thank the following for very helpful conversations and insights that improved this paper: Katia Simeonova, Sabine Fuss, Anke Herold, Feja Lesniewska, Florian Claeys, Christine Dragisic, Ian Fry, Ursula Fuentes Hutfilter, Eduardo Reyes, Kuki Soejachmoen and Maria Cristina Urrutia Villanueva. The authors would also like to express their gratitude to a number of anonymous reviewers for their much-appreciated comments
    [Show full text]
  • Negative Emissions”: a Challenge for Climate Policy WP S Oliver Geden and Stefan Schäfer
    Introduction Stiftung Wissenschaft und Politik German Institute for International and Security Affairs Comments “Negative Emissions”: A Challenge for Climate Policy WP S Oliver Geden and Stefan Schäfer The objective of the Paris Agreement is to limit global warming to well below 2 degrees Celsius, and to pursue efforts to limit the temperature increase to 1.5 degrees. The Inter- governmental Panel on Climate Change (IPCC) believes that these targets cannot be reached through conventional mitigation measures alone. The IPCC assumes that in addition to reducing emissions, technologies for removing greenhouse gases from the atmosphere will become indispensable. The preferred technology option combines increased use of bio-energy with the capture and storage of carbon dioxide. To date, climate policy has largely ignored the necessity for “negative emissions” to achieve the temperature targets set out in the Paris Agreement. Discussions on the underlying model assumptions, potentials and risks of imaginable technological options, as well as their political implications, are only just beginning. It would be wise for the EU and Germany to proactively shape this debate and increase funding for research and devel- opment. If the Paris climate objectives are upheld, climate policy pioneers will soon be facing calls to set emission-reduction targets of much more than 100 percent – a notion that today seems paradoxical, but may soon become reality. Global climate stabilisation targets, such be consumed by the mid-2030s, the budget as restricting global warming to 1.5 or 2 for 1.5 °C as soon as the early 2020s. Since degrees Celsius (°C) above pre-industrial, completely decarbonising the world econo- are usually translated into carbon budgets my within a time frame of only 5 to 20 years that show the total amount of emissions is unrealistic, climate models build on the that would still be allowed for meeting the concept of negative emissions.
    [Show full text]
  • The Consolidated European Synthesis of CH4 and N2O Emissions for the European Union and United Kingdom: 1990–2017
    Earth Syst. Sci. Data, 13, 2307–2362, 2021 https://doi.org/10.5194/essd-13-2307-2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. The consolidated European synthesis of CH4 and N2O emissions for the European Union and United Kingdom: 1990–2017 Ana Maria Roxana Petrescu1, Chunjing Qiu2, Philippe Ciais2, Rona L. Thompson3, Philippe Peylin2, Matthew J. McGrath2, Efisio Solazzo4, Greet Janssens-Maenhout4, Francesco N. Tubiello5, Peter Bergamaschi4, Dominik Brunner6, Glen P. Peters7, Lena Höglund-Isaksson8, Pierre Regnier9, Ronny Lauerwald9,23, David Bastviken10, Aki Tsuruta11, Wilfried Winiwarter8,12, Prabir K. Patra13, Matthias Kuhnert14, Gabriel D. Oreggioni4, Monica Crippa4, Marielle Saunois2, Lucia Perugini15, Tiina Markkanen11, Tuula Aalto11, Christine D. Groot Zwaaftink3, Hanqin Tian16, Yuanzhi Yao16, Chris Wilson17,18, Giulia Conchedda5, Dirk Günther19, Adrian Leip4, Pete Smith14, Jean-Matthieu Haussaire6, Antti Leppänen20, Alistair J. Manning21, Joe McNorton22, Patrick Brockmann2, and Albertus Johannes Dolman1 1Department of Earth Sciences, Vrije Universiteit Amsterdam, 1081HV, Amsterdam, the Netherlands 2Laboratoire des Sciences du Climat et de l’Environnement, 91190 Gif-sur-Yvette, France 3Norwegian Institute for Air Research (NILU), Kjeller, Norway 4European Commission, Joint Research Centre, 21027 Ispra (Va), Italy 5Food and Agriculture Organization of the United Nations, Statistics Division, 00153 Rome, Italy 6Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland 7CICERO Center for International Climate Research, Oslo, Norway 8International Institute for Applied Systems Analysis (IIASA), 2361 Laxenburg, Austria 9Biogeochemistry and Modeling of the Earth System, Université Libre de Bruxelles, 1050 Bruxelles, Belgium 10Department of Thematic Studies – Environmental Change, Linköping University, Sweden 11Finnish Meteorological Institute, P.O.
    [Show full text]