Re-Evaluation of the Cancridae Latreille, 1802 (Decapoda: Brachyura) Including Three New Genera and Three New Species 4 Carrie E

Total Page:16

File Type:pdf, Size:1020Kb

Re-Evaluation of the Cancridae Latreille, 1802 (Decapoda: Brachyura) Including Three New Genera and Three New Species 4 Carrie E WW L^^ii»~^i • **«^«' s^f J-CLI//^/*IP / +' IU ! U~~> O' S~*Af/^i Contributions to Zoology, 69 (4) 223-250 (2000) SPB Academic Publishing hv. The Hague Re-evaluation of the Cancridae Latreille, 1802 (Decapoda: Brachyura) including three new genera and three new species 4 Carrie E. Schweitzer & Rodney M. Feldmann Department of Geology, Kent State University, Kent, Ohio 44242 U.S.A. E-mail: [email protected]. edit and [email protected] Keywords: Decapoda, Brachyura, Cancridae, Tertiary, paleobiogeography, Tethys Abstract Metacarcinus A. Milne Edwards, 1862 235 Metacarcinus goederti new species 236 New fossils referrable to the Cancridae Latreille, 1802 extend Notocarcinus new genus 239 the known stratigraphic range of the family into the middle Eocene Notocarcinus sulcatus new species 240 and the geographic range into South America. Each genus within Platepistoma Rathbun, 1906 241 the family has been reevaluated within the context of the new Romaleon Gistl, 1848 242 material. A suite of diagnostic characters for each cancrid ge­ Subfamily Lobocarcininae Beurlen, 1930 243 nus makes it possible to assign both extant and fossil speci­ Lobocarcinus Reuss, 1867 243 mens to genera and the two cancrid subfamilies, the Cancrinae Miocyclus Miiller, 1979 244 Latreille, 1802, and Lobocarcininae Beurlen, 1930, based solely Tasadia Miiller in Janssen and Miiller, 1984 244 upon dorsal carapace morphology. Cheliped morphology is useful Discussion 245 in assigning genera to the family but is significantly less useful Acknowledgements 246 at the subfamily and generic level. Each of the four subgenera References 246 sensu Nations (1975), Cancer Linnaeus, 1758, Glebocarcinus Appendix A 249 Nations, 1975, Metacarcinus A. Milne Edwards, 1862, and Appendix B 249 Romaleon Gistl, 1848, are elevated to full generic status. Addi­ tionally, three new genera and three new species accommodate the new, as well as some previously described taxa, and include Introduction Anatolikos new genus, Anisospinos berglundi new genus and species, and Notocarcinus sulcatus new genus and species and several new combinations. Recognition of new genera and The Cancridae Latreille, 1802, has heretofore con­ reassignment of several species within the Cancrinae indicates sisted of two extant genera known from the fossil that that subfamily may have arisen in the southern hemisphere, record, Cancer sensu lato and Platepistoma Rath- contrary to the previous interpretation of the subfamily as a primarily North Pacific or Tethyan group. The Lobocarcininae bun, 1906, and several exclusively fossil genera was primarily a Tethyan group. including Lobocarcinus Reuss, 1867; Microdium Reuss, 1867; Miocyclus, Miiller, 1979; Parapirimela Van Straelen, 1937; and Tasadia Miiller in Janssen Contents and Miiller, 1984. Cancer sensu lato was subdivided into four subgenera by Nations (1975) including Introduction 223 Cancer, Glebocarcinus, Metacarcinus, and Roma­ Systematic Paleontology 224 leon. All of these genera and subgenera were de­ Family Cancridae Latreille, 1802 224 fined primarily upon the number, size, and shape Subfamily Cancrinae, Latreille, 1802 226 of the frontal spines; the number, size, ornament, Cancer sensu stricto Linnaeus, 1758 227 and shape of the anterolateral spines; the ornament Anatolikos new genus 228 Anisospinos new genus 229 of the posterolateral margin; the shape, develop­ Anisospinos berglundi new species 231 ment, and ornament of carapace regions, and the Glebocarcinus Nations, 1975 234 shape and ornament of the chelae. 224 C.E. Schweitzer & R.M. Feldmann - Re-evaluation ofCancridae The discovery of new fossil material from Alaska Systematic Paleontology and Washington, USA, and southern Argentina requires a re-evaluation of the family. Within this Order Decapoda Latreille, 1802 work, the four subgenera referred to Cancer sensu Infraorder Brachyura Latreille, 1802 lato are elevated to full generic status. Examination Section Heterotremata Guinot, 1977 of all species referred to the Cancridae necessitates Family Cancridae Latreille, 1802 the transfer of several species to other genera and results in recognition of three new genera to accom­ Diagnosis. - Carapace wider than long; anterior modate new material as well as some previously margin with four to six spines, with odd or even described fossil and extant species (Appendix A). number usually diagnostic of subfamilies; antero­ New genera include Anatolikos, Anisospinos, and lateral margin with numerous spines, usually more Notocarcinus. Neither Parapirimela nor Branchio- than eight; posterolateral margin entire, rimmed lambrus are verifiable members of the Cancridae or spined; carapace regions ranging from indis­ as discussed below. Additionally, the morphology tinct to extremely well-defined; carapace ornament of the chelae has been found to be useful in assigning ranging from smooth to coarsely granular to spined; taxa to the family based upon the overall shape chelae typically with keels, spines or granules on and ornamentation. However, chelae are signifi­ manus and fingers. Sternum narrow, triangular in cantly less useful in assigning taxa to genera, be­ shape; sternites 3-5 often fused in males. "Anten- cause of the variability in chela morphology. nules folded lengthwise. Antennal flagella present, The evolutionary and biogeographic history of short, more or less hairy. Third maxillipeds usu­ the group must be reinterpreted within the context ally overlapping endostome" (Rathbun, 1930, p. of the new fossil material. The discovery of Noto­ 176). "Carapace broadly oval or hexagonal. Last carcinus sulcatus new genus and species from pair of legs not adapted for swimming" (Williams, middle Eocene rocks of Argentina constitutes the 1984, p. 351). earliest known occurrence of the Cancrinae and also the first known fossil occurrence of the Can­ Remarks. - This diagnosis (and all the diagnoses cridae in South America. Anisospinos berglundi to follow) focus on characters that are typically is the only other Eocene occurrence known, re­ preserved in fossils and that are therefore most ported from late Eocene rocks of the western useful to paleontologists. The main feature unit­ Washington. It is possible that the Cancrinae arose ing the family is a high degree of carapace orna­ in the southern hemisphere and subsequently dis­ mentation, especially the frontal, anterolateral, and persed northward to the North Pacific and North posterolateral spines and/or rims. Additionally, Atlantic Oceans, where it is currently well-estab­ members of the family possess mani of the first lished. The Cancrinae was previously believed to pereiopods that are equal or subequal and orna­ have had a primarily North Pacific (Nations, 1975, mented with smooth, granular, or spined keels. A 1979; Carvacho, 1989) or Tethyan (Newman, 1991) key to all genera herein included within the family distribution. Most of the genera assigned to the (Appendix B; Fig. 1), employs these characteristics Cancrinae in this report, including Anatolikos new to distinguish taxa. Miiller (1984) placed the genus genus, Anisospinos new genus, Cancer sensu stricto, Microdium, within the Cancridae, and suggested Platepistoma, and Romaleon, apparently originated that it may be closely allied to or synonymous with in the North Pacific region based upon known Cancer s. I. However, the holotype for the sole occurrences. Assignment of the European genera species, M. nodulosum, has been lost (Miiller, 1984), Miocyclus and Tasadia to the Lobocarcininae sup­ so confirmation of the status of that genus is im­ ports the primarily Tethyan distribution of that possible. According to Miiller (1984, p. 77), it is subfamily. clear that the taxon does belong within the Cancridae, but because of the lost type, the genus is not included in the key. Van Straelen (1937) and Glaessner (1969) placed Contributions to Zoology, 69 (4) - 2000 225 mm I TASADIA 1. LOBOCARCINUS 4\ MIOCYCLUS l< I? S .NOTOCARC/NUS i 1 cc l< 18 ANA TOLIKOS !S \ i METACARCINUS h- CANCER / I II I AN I SOSPIN OS II I Mlui -Hi M,< ROMALEON *>' \l !< o «/ I GLEBOCARCINUS PLATEPISTOMA > CENOZOIC Fig. 1. Illustrated key to the subfamilies and genera of the Cancridae showing the geologic range of each genus. The branching structure of the key does not reflect phylogeny; each node represents a couplet in the dichotomous key (Appendix B). 226 C.E. Schweitzer & R.M. Feldmann - Re-evaluation of Cancridae Parapirimela within the Cancridae. The sole spe­ Remarks. - The Cancrinae, until now, has been a cies, P. angolensis van Straelen, 1937, was founded small subfamily comprised of only a few genera, upon a fragment of dorsal carapace and cheliped. Cancer s. I. and Platepistoma as well as Para­ The anterolateral margin was described as possess­ pirimela, Microdium, and Branchiolambrus, which ing four anterolateral spines, the last of which is have been discussed above. This report introduces bifid; a front with five spines including the poorly three new genera to the subfamily; in addition, the developed inner orbital spines; and a carapace that four subgenera of Cancer s. I., Cancer s. s., Gle­ is wider than long. None of these characteristics bocarcinus, Metacarcinus, and Romaleon, are can be seen on the illustrations of this taxon. The herein elevated to generic status, bringing the holotype is described as housed in a private col­ number of included genera to eight. Diagnoses and lection and may, therefore, be lost. Thus, it is im­ included species for each genus are provided be­ possible to confirm placement
Recommended publications
  • A Classification of Living and Fossil Genera of Decapod Crustaceans
    RAFFLES BULLETIN OF ZOOLOGY 2009 Supplement No. 21: 1–109 Date of Publication: 15 Sep.2009 © National University of Singapore A CLASSIFICATION OF LIVING AND FOSSIL GENERA OF DECAPOD CRUSTACEANS Sammy De Grave1, N. Dean Pentcheff 2, Shane T. Ahyong3, Tin-Yam Chan4, Keith A. Crandall5, Peter C. Dworschak6, Darryl L. Felder7, Rodney M. Feldmann8, Charles H. J. M. Fransen9, Laura Y. D. Goulding1, Rafael Lemaitre10, Martyn E. Y. Low11, Joel W. Martin2, Peter K. L. Ng11, Carrie E. Schweitzer12, S. H. Tan11, Dale Tshudy13, Regina Wetzer2 1Oxford University Museum of Natural History, Parks Road, Oxford, OX1 3PW, United Kingdom [email protected] [email protected] 2Natural History Museum of Los Angeles County, 900 Exposition Blvd., Los Angeles, CA 90007 United States of America [email protected] [email protected] [email protected] 3Marine Biodiversity and Biosecurity, NIWA, Private Bag 14901, Kilbirnie Wellington, New Zealand [email protected] 4Institute of Marine Biology, National Taiwan Ocean University, Keelung 20224, Taiwan, Republic of China [email protected] 5Department of Biology and Monte L. Bean Life Science Museum, Brigham Young University, Provo, UT 84602 United States of America [email protected] 6Dritte Zoologische Abteilung, Naturhistorisches Museum, Wien, Austria [email protected] 7Department of Biology, University of Louisiana, Lafayette, LA 70504 United States of America [email protected] 8Department of Geology, Kent State University, Kent, OH 44242 United States of America [email protected] 9Nationaal Natuurhistorisch Museum, P. O. Box 9517, 2300 RA Leiden, The Netherlands [email protected] 10Invertebrate Zoology, Smithsonian Institution, National Museum of Natural History, 10th and Constitution Avenue, Washington, DC 20560 United States of America [email protected] 11Department of Biological Sciences, National University of Singapore, Science Drive 4, Singapore 117543 [email protected] [email protected] [email protected] 12Department of Geology, Kent State University Stark Campus, 6000 Frank Ave.
    [Show full text]
  • 68 Guide to Crustacea
    68 Guide to Crustacea. The arrow indicates the course of the respiratory current, which, however, may sometimes be temporarily reversed, especially in burrowing species. The typical members of the family Portunidae (Swimming FIG. 46. Pseudocarcinus gigas, from Tasmania. The carapace of this specimen is just over a foot in width. [Above Wall-cases Nos. 5 and 6.] Crabs) may be recognised by the flattened, paddle-shaped, last pair of legs. Two British species of the genus Portunus are exhibited : the colours of P. depurator have been carefully copied from a living individual, and the specimen is mounted on a sample Decapoda—Brachyura. 69 of the shell-gravel on which it was actually caught. The large Neptunus pelagicus is the commonest edible Crab in many parts of the East. The Common Shore Crab, Carcinus maenas, is also referred to this family, although the paddle-shape of the last legs is not so marked as in the more typical Portunidae. Podophthalmus vigil (Fig. 47) is remarkable for the great length of the eye-stalks, which is quite unusual among the Cyclometopa, and gives this Crab a curious likeness to the genus Macrophthalmus among the Ocypodidae (see Table-case No. 16). The resemblance, however, is quite superficial, for in this case FIG. 47. Podophthalmus vigil (reduced). [Table-case No. 15.] it is the first of the two segments of the eye-stalk which is elongated, while in Macrophthalmus it is the second. The genus Platyonychus, of which a group of specimens is mounted in Wall-case No. 5, also belongs to this family.
    [Show full text]
  • Part I. an Annotated Checklist of Extant Brachyuran Crabs of the World
    THE RAFFLES BULLETIN OF ZOOLOGY 2008 17: 1–286 Date of Publication: 31 Jan.2008 © National University of Singapore SYSTEMA BRACHYURORUM: PART I. AN ANNOTATED CHECKLIST OF EXTANT BRACHYURAN CRABS OF THE WORLD Peter K. L. Ng Raffles Museum of Biodiversity Research, Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 119260, Republic of Singapore Email: [email protected] Danièle Guinot Muséum national d'Histoire naturelle, Département Milieux et peuplements aquatiques, 61 rue Buffon, 75005 Paris, France Email: [email protected] Peter J. F. Davie Queensland Museum, PO Box 3300, South Brisbane, Queensland, Australia Email: [email protected] ABSTRACT. – An annotated checklist of the extant brachyuran crabs of the world is presented for the first time. Over 10,500 names are treated including 6,793 valid species and subspecies (with 1,907 primary synonyms), 1,271 genera and subgenera (with 393 primary synonyms), 93 families and 38 superfamilies. Nomenclatural and taxonomic problems are reviewed in detail, and many resolved. Detailed notes and references are provided where necessary. The constitution of a large number of families and superfamilies is discussed in detail, with the positions of some taxa rearranged in an attempt to form a stable base for future taxonomic studies. This is the first time the nomenclature of any large group of decapod crustaceans has been examined in such detail. KEY WORDS. – Annotated checklist, crabs of the world, Brachyura, systematics, nomenclature. CONTENTS Preamble .................................................................................. 3 Family Cymonomidae .......................................... 32 Caveats and acknowledgements ............................................... 5 Family Phyllotymolinidae .................................... 32 Introduction .............................................................................. 6 Superfamily DROMIOIDEA ..................................... 33 The higher classification of the Brachyura ........................
    [Show full text]
  • First Record of Dromia Neogenica Müller, 1979 (Decapoda, Brachyura, Dromiidae) from Neogene Strata in the Southern North Sea Basin
    FIRST RECORD OF DROMIA NEOGENICA MÜLLER, 1979 (DECAPODA, BRACHYURA, DROMIIDAE) FROM NEOGENE STRATA IN THE SOUTHERN NORTH SEA BASIN BY RENÉ H.B. FRAAIJE1,4), BARRY W.M. VAN BAKEL1,2,5) and JOHN W.M. JAGT3,6) 1) Oertijdmuseum De Groene Poort, Bosscheweg 80, NL-5283 Boxtel, The Netherlands 2) Nederlands Centrum voor Biodiversiteit (Naturalis), P.O. Box 9517, NL-2300 RA Leiden, The Netherlands 3) Natuurhistorisch Museum Maastricht, de Bosquetplein 6-7, NL-6211 KJ Maastricht, The Netherlands ABSTRACT The sponge crab Dromia neogenica Müller, 1979 (Dromiidae) is recorded for the first time from strata of Neogene (late Miocene-early Pliocene) age in the southern North Sea Basin, on the basis of two concretion-preserved carapaces from Bemmel (north of Nijmegen, province of Gelderland, The Netherlands). The presence of this species, which was previously known from the middle-upper Miocene of Hungary and Algeria, suggests relatively higher seawater temperatures in the North Sea during the late Miocene-early Pliocene. Morphological differences (extraorbital and anterolateral teeth, development of cervical and branchiocardiac grooves) between D. neogenica and extant D. personata (Linnaeus, 1758) are relatively minor. This observation, coupled with the absence of the former species in mid-Pliocene and younger strata, and with the robust record of the latter in the mid-Pliocene to upper Pleistocene of Italy, would indicate that D. neogenica and D. personata are closely related, and probably represent the same lineage. RÉSUMÉ La dromie éponge Dromia neogenica Müller, 1979 (Dromiidae) est signalée pour la premiére fois dans les strates du Néogène (fin du Miocène-début du Pliocène) du sud du bassin de la mer du Nord.
    [Show full text]
  • The Mediterranean Decapod and Stomatopod Crustacea in A
    ANNALES DU MUSEUM D'HISTOIRE NATURELLE DE NICE Tome V, 1977, pp. 37-88. THE MEDITERRANEAN DECAPOD AND STOMATOPOD CRUSTACEA IN A. RISSO'S PUBLISHED WORKS AND MANUSCRIPTS by L. B. HOLTHUIS Rijksmuseum van Natuurlijke Historie, Leiden, Netherlands CONTENTS Risso's 1841 and 1844 guides, which contain a simple unannotated list of Crustacea found near Nice. 1. Introduction 37 Most of Risso's descriptions are quite satisfactory 2. The importance and quality of Risso's carcino- and several species were figured by him. This caused logical work 38 that most of his names were immediately accepted by 3. List of Decapod and Stomatopod species in Risso's his contemporaries and a great number of them is dealt publications and manuscripts 40 with in handbooks like H. Milne Edwards (1834-1840) Penaeidea 40 "Histoire naturelle des Crustaces", and Heller's (1863) Stenopodidea 46 "Die Crustaceen des siidlichen Europa". This made that Caridea 46 Risso's names at present are widely accepted, and that Macrura Reptantia 55 his works are fundamental for a study of Mediterranean Anomura 58 Brachyura 62 Decapods. Stomatopoda 76 Although most of Risso's descriptions are readily 4. New genera proposed by Risso (published and recognizable, there is a number that have caused later unpublished) 76 authors much difficulty. In these cases the descriptions 5. List of Risso's manuscripts dealing with Decapod were not sufficiently complete or partly erroneous, and Stomatopod Crustacea 77 the names given by Risso were either interpreted in 6. Literature 7S different ways and so caused confusion, or were entirely ignored. It is a very fortunate circumstance that many of 1.
    [Show full text]
  • The University of Michigan
    CONTRIBUTIONS FROM THE MUSEUM OF PALEONTOLOGY THE UNIVERSITY OF MICHIGAN VOL. 31, NO. 4, PP. 89-118 July 30, 2004 NEW DECAPODA (CRUSTACEA) FROM THE MIDDLE AND LATE EOCENE OF PAKISTAN AND A REVISION OF LOBONOTUS A. MILNE EDWARDS, 1864 BY CARRIE E. SCHWEITZER, RODNEY M. FELDMANN, AND PHILIP D. GINGERICH MUSEUM OF PALEONTOLOGY THE UNIVERSITY OF MICHIGAN ANN ARBOR CONTRIBUTIONS FROM THE MUSEUM OF PALEONTOLOGY Philip D. Gingerich, Director This series of contributions from the Museum of Paleontology is a medium for publication of papers based chiefly on collections in the Museum. When the number of pages issued is sufficient to make a volume, a title page plus a table of contents will be sent to libraries on the Museum’s mailing list. This will be sent to individuals on request. A list of the separate issues may also be obtained by request. Correspondence should be directed to the Publications Secretary, Museum of Paleontology, The University of Michigan, 1109 Geddes Road, Ann Arbor, Michigan 48109-1079 ([email protected]). VOLS. 1-31: Parts of volumes may be obtained if available. Price lists are available upon inquiry. See also: www.paleontology.lsa.umich.edu/Publications/publicationIntro.html Text and illustrations ©2004 by the Museum of Paleontology, University of Michigan NEW DECAPODA (CRUSTACEA) FROM THE MIDDLE AND LATE EOCENE OF PAKISTAN AND A REVISION OF LOBONOTUS A. MILNE EDWARDS, 1864 BY CARRIE E. SCHWEITZER1, RODNEY M. FELDMANN2, AND PHILIP D. GINGERICH3 Abstract– Recovery of new decapod specimens from middle and late Eocene rocks of Pakistan prompted reevaluation of the known decapod fauna of the region.
    [Show full text]
  • (Stomatopoda: Decapoda) Associated with the Deepwater
    Revista de Biología Tropical ISSN: 0034-7744 [email protected] Universidad de Costa Rica Costa Rica Wehrtmann, Ingo S.; Echeverría-Sáenz, Silvia Crustacean fauna (Stomatopoda: Decapoda) associated with the deepwater fishery of Heterocarpus vicarius (Decapoda: Pandalidae) along the Pacific coast of Costa Rica Revista de Biología Tropical, vol. 55, núm. 1, 2007, pp. 121-130 Universidad de Costa Rica San Pedro de Montes de Oca, Costa Rica Available in: http://www.redalyc.org/articulo.oa?id=44909916 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Crustacean fauna (Stomatopoda: Decapoda) associated with the deepwater fishery of Heterocarpus vicarius (Decapoda: Pandalidae) along the Pacific coast of Costa Rica Ingo S. Wehrtmann 1,2,3 & Silvia Echeverría-Sáenz 1 1 Escuela de Biología, 2 Museo de Zoología y 3 Centro de Investigaciones en Ciencias del Mar y Limnología (CIMAR), Universidad de Costa Rica, 2060 San José, Costa Rica; [email protected] Received 11-X-2005. Corrected 08-VIII-2006. Accepted 16-III-2007. Abstract: Commercial bottom trawling is a successful and commonly used method to catch marine shrimps. However, the shrimp fishing gears are poorly selective, and in addition to the target species they catch and retain large quantities of non-target species (bycatch). This study presents data concerning species composition and depth distribution of the crustacean fauna (stomatopods and decapods) associated with Heterocarpus vicarius catches from Pacific Costa Rica.
    [Show full text]
  • From the Bohol Sea, the Philippines
    THE RAFFLES BULLETIN OF ZOOLOGY 2008 RAFFLES BULLETIN OF ZOOLOGY 2008 56(2): 385–404 Date of Publication: 31 Aug.2008 © National University of Singapore NEW GENERA AND SPECIES OF EUXANTHINE CRABS (CRUSTACEA: DECAPODA: BRACHYURA: XANTHIDAE) FROM THE BOHOL SEA, THE PHILIPPINES Jose Christopher E. Mendoza Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543; Institute of Biology, University of the Philippines, Diliman, Quezon City, 1101, Philippines Email: [email protected] Peter K. L. Ng Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Republic of Singapore Email: [email protected] ABSTRACT. – Two new genera and four new xanthid crab species belonging to the subfamily Euxanthinae Alcock (Crustacea: Decapoda: Brachyura) are described from the Bohol Sea, central Philippines. Rizalthus, new genus, with just one species, R. anconis, new species, can be distinguished from allied genera by characters of the carapace, epistome, chelipeds, male abdomen and male fi rst gonopod. Visayax, new genus, contains two new species, V. osteodictyon and V. estampadori, and can be distinguished from similar genera using a combination of features of the carapace, epistome, thoracic sternum, male abdomen, pereiopods and male fi rst gonopod. A new species of Hepatoporus Serène, H. pumex, is also described. It is distinguished from congeners by the unique morphology of its front, carapace sculpturing, form of the subhepatic cavity and structure of the male fi rst gonopod. KEY WORDS. – Crustacea, Xanthidae, Euxanthinae, Rizalthus, Visayax, Hepatoporus, Panglao 2004, the Philippines. INTRODUCTION & Jeng, 2006; Anker et al., 2006; Dworschak, 2006; Marin & Chan, 2006; Ahyong & Ng, 2007; Anker & Dworschak, There are currently 24 genera and 83 species in the xanthid 2007; Manuel-Santos & Ng, 2007; Mendoza & Ng, 2007; crab subfamily Euxanthinae worldwide, with most occurring Ng & Castro, 2007; Ng & Manuel-Santos, 2007; Ng & in the Indo-Pacifi c (Ng & McLay, 2007; Ng et al., 2008).
    [Show full text]
  • ICES Marine Science Symposia
    ICES mar. Sei. Symp., 199: 189-199. 1995 Distribution and abundance of molluscs and decapod crustaceans in trawl samples from the Galician Shelf (NW Spain) A. C. Farina and F. J. Pereiro Farina, A. C., and Pereiro, F. J. 1995. Distribution and abundance of molluscs and decapod crustaceans in trawl samples from the Galician Shelf (NW Spain). - ICES mar. Sei. Symp., 199: 189-199. This study presents the community composition and structure of molluscs and decapod crustaceans from trawl samples taken on the Galician Shelf in Northwest Spain. Spatial and temporal distribution, as well as the biomass and density of the main species, are presented in relation to depth and substrate type. A. C. Farina: Instituto Espanol Oceanografia, Apdo 130, 15080 La Coruna, Spain. F. J. Pereiro: Instituto Espanol Oceanografia, Apdo 1552, 36280 Vigo, Spain [tel: (+34) 98120 53 62, fax: (+34) 981 229077], Introduction with recruitment to the area (in the autumn) and the spawning season of the majority of the demersal and Two main groups of invertebrates (crustaceans and mol­ benthic species (in the spring). A stratified sampling luscs) are caught when trawling for fish on the Galician design was used and selection of the trawls was random. Shelf, which lies off northwestern Spain, reaching a The area is divided into three geographic sectors (Mino depth of 500 m 30 km from the coast along its southern to Finisterre, Finisterre to Estaca, and Estaca to Riba- part and broadening to 65 km from the coast in the deo), and each sector is divided into two strata by depth northern part.
    [Show full text]
  • Crustacea, Copepoda, Harpacticoida): Proposed Emendation of Spelling to ZOSIMEIDAE to Remove Homonymy with ZOSIMINAE Alcock, 1898 (Crustacea, Decapoda, XANTHIDAE)
    24 Bulletin of Zoological Nomenclature 66(1) March 2009 Case 3467 ZOSIMIDAE Seifried, 2003 (Crustacea, Copepoda, Harpacticoida): proposed emendation of spelling to ZOSIMEIDAE to remove homonymy with ZOSIMINAE Alcock, 1898 (Crustacea, Decapoda, XANTHIDAE) Rony Huys and Paul F. Clark Department of Zoology, Natural History Museum, Cromwell Road, London SW7 5BD, U.K. (e-mail: [email protected] and [email protected]) Abstract. The purpose of this application, under Articles 29 and 55.3.1 of the Code, is to remove homonymy between the family-group names ZOSIMINAE Alcock, 1898 (Crustacea, Decapoda) and ZOSIMIDAE Seifried, 2003 (Crustacea, Copepoda) by changing the spelling of the junior homonym. It is proposed that the entire name Zosime Boeck, 1873 (Copepoda) be used to form ZOSIMEIDAE, leaving the stem of the senior homonym (based on the name Zosimus A.-G. Desmarest, 1823; Decapoda) unchanged. Zosimus A.-G. Desmarest, 1823 and Zosime Boeck, 1873 are respectively the type genera of ZOSIMINAE Alcock, 1898 (Decapoda) and ZOSIMIDAE Seifried, 2003 (Copepoda). Keywords. Nomenclature; taxonomy; Crustacea; Decapoda; Copepoda; Harpacti- coida; XANTHIDAE; ZOSIMEIDAE; ZOSIMIDAE; ZOSIMINAE; Zosime; Zosimus; Zosime typica; cosmopolitan. 1. Leach (1818) introduced the French vernacular names ‘Carpile’, ‘Clodorée’ (sic) and ‘Zosime’ for three genera of decapod crustaceans but did not include a descrip- tion, definition or indication of the taxa they denoted (Leach, 1818, pp. 74–75). Under Article 12 Leach’s names are nomina nuda and must be considered unavailable. 2. A.-G. Desmarest (1823, p. 228) latinised Leach’s (1818) vernacular names in a footnote to his text dealing with the genus Cancer, naming them Carpilius, Clorodius and Zosimus, respectively.
    [Show full text]
  • View, CMM-I-2126
    SYSTEMATICS AND PALEOECOLOGY OF MIOCENE PORTUNID AND CANCRID DECAPOD FOSSILS FROM THE ST. MARYS FORMATION, MARYLAND A thesis submitted To Kent State University in partial Fulfillment of the requirements for the Degree of Master of Science by Heedar Bahman August, 2018 © Copyright All rights reserved Except for previously published materials Thesis written by Heedar Bahman B.S., Kuwait University, 2011 M.S., Kent State University, 2018 Approved by Rodney M. Feldmann , Ph.D., Advisor Daniel Holm , Ph.D., Chair, Department of Geology James L. Blank , Ph.D., Dean, College of Arts and Sciences TABLE OF CONTENTS TABLE OF CONTENTS ................................................................................................... iii LIST OF FIGURES ........................................................................................................... iv LIST OF TABLES ............................................................................................................ vii ACKNOWLEDGMENTS ............................................................................................... viii SUMMARY .........................................................................................................................1 INTRODUCTION ...............................................................................................................2 GEOLOGICAL SETTING ..................................................................................................5 METHODS ..........................................................................................................................7
    [Show full text]
  • OREGON ESTUARINE INVERTEBRATES an Illustrated Guide to the Common and Important Invertebrate Animals
    OREGON ESTUARINE INVERTEBRATES An Illustrated Guide to the Common and Important Invertebrate Animals By Paul Rudy, Jr. Lynn Hay Rudy Oregon Institute of Marine Biology University of Oregon Charleston, Oregon 97420 Contract No. 79-111 Project Officer Jay F. Watson U.S. Fish and Wildlife Service 500 N.E. Multnomah Street Portland, Oregon 97232 Performed for National Coastal Ecosystems Team Office of Biological Services Fish and Wildlife Service U.S. Department of Interior Washington, D.C. 20240 Table of Contents Introduction CNIDARIA Hydrozoa Aequorea aequorea ................................................................ 6 Obelia longissima .................................................................. 8 Polyorchis penicillatus 10 Tubularia crocea ................................................................. 12 Anthozoa Anthopleura artemisia ................................. 14 Anthopleura elegantissima .................................................. 16 Haliplanella luciae .................................................................. 18 Nematostella vectensis ......................................................... 20 Metridium senile .................................................................... 22 NEMERTEA Amphiporus imparispinosus ................................................ 24 Carinoma mutabilis ................................................................ 26 Cerebratulus californiensis .................................................. 28 Lineus ruber .........................................................................
    [Show full text]