68 Guide to Crustacea
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Classification of Living and Fossil Genera of Decapod Crustaceans
RAFFLES BULLETIN OF ZOOLOGY 2009 Supplement No. 21: 1–109 Date of Publication: 15 Sep.2009 © National University of Singapore A CLASSIFICATION OF LIVING AND FOSSIL GENERA OF DECAPOD CRUSTACEANS Sammy De Grave1, N. Dean Pentcheff 2, Shane T. Ahyong3, Tin-Yam Chan4, Keith A. Crandall5, Peter C. Dworschak6, Darryl L. Felder7, Rodney M. Feldmann8, Charles H. J. M. Fransen9, Laura Y. D. Goulding1, Rafael Lemaitre10, Martyn E. Y. Low11, Joel W. Martin2, Peter K. L. Ng11, Carrie E. Schweitzer12, S. H. Tan11, Dale Tshudy13, Regina Wetzer2 1Oxford University Museum of Natural History, Parks Road, Oxford, OX1 3PW, United Kingdom [email protected] [email protected] 2Natural History Museum of Los Angeles County, 900 Exposition Blvd., Los Angeles, CA 90007 United States of America [email protected] [email protected] [email protected] 3Marine Biodiversity and Biosecurity, NIWA, Private Bag 14901, Kilbirnie Wellington, New Zealand [email protected] 4Institute of Marine Biology, National Taiwan Ocean University, Keelung 20224, Taiwan, Republic of China [email protected] 5Department of Biology and Monte L. Bean Life Science Museum, Brigham Young University, Provo, UT 84602 United States of America [email protected] 6Dritte Zoologische Abteilung, Naturhistorisches Museum, Wien, Austria [email protected] 7Department of Biology, University of Louisiana, Lafayette, LA 70504 United States of America [email protected] 8Department of Geology, Kent State University, Kent, OH 44242 United States of America [email protected] 9Nationaal Natuurhistorisch Museum, P. O. Box 9517, 2300 RA Leiden, The Netherlands [email protected] 10Invertebrate Zoology, Smithsonian Institution, National Museum of Natural History, 10th and Constitution Avenue, Washington, DC 20560 United States of America [email protected] 11Department of Biological Sciences, National University of Singapore, Science Drive 4, Singapore 117543 [email protected] [email protected] [email protected] 12Department of Geology, Kent State University Stark Campus, 6000 Frank Ave. -
A Revision of the Palaeocorystoidea and the Phylogeny of Raninoidian Crabs (Crustacea, Decapoda, Brachyura, Podotremata)
Zootaxa 3215: 1–216 (2012) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Monograph ZOOTAXA Copyright © 2012 · Magnolia Press ISSN 1175-5334 (online edition) ZOOTAXA 3215 A revision of the Palaeocorystoidea and the phylogeny of raninoidian crabs (Crustacea, Decapoda, Brachyura, Podotremata) BARRY W.M. VAN BAKEL1, 6, DANIÈLE GUINOT2, PEDRO ARTAL3, RENÉ H.B. FRAAIJE4 & JOHN W.M. JAGT5 1 Oertijdmuseum De Groene Poort, Bosscheweg 80, NL–5283 WB Boxtel, the Netherlands; and Nederlands Centrum voor Biodiver- siteit [Naturalis], P.O. Box 9517, NL–2300 RA Leiden, the Netherlands E-mail: [email protected] 2 Département Milieux et peuplements aquatiques, Muséum national d'Histoire naturelle, 61 rue Buffon, CP 53, F–75231 Paris Cedex 5, France E-mail: [email protected] 3 Museo Geológico del Seminario de Barcelona, Diputación 231, E–08007 Barcelona, Spain E-mail: [email protected] 4 Oertijdmuseum De Groene Poort, Bosscheweg 80, NL–5283 WB Boxtel, the Netherlands E-mail: [email protected] 5 Natuurhistorisch Museum Maastricht, de Bosquetplein 6–7, NL–6211 KJ Maastricht, the Netherlands E-mail: [email protected] 6 Corresponding author Magnolia Press Auckland, New Zealand Accepted by P. Castro: 2 Dec. 2011; published: 29 Feb. 2012 BARRY W.M. VAN BAKEL, DANIÈLE GUINOT, PEDRO ARTAL, RENÉ H.B. FRAAIJE & JOHN W.M. JAGT A revision of the Palaeocorystoidea and the phylogeny of raninoidian crabs (Crustacea, Deca- poda, Brachyura, Podotremata) (Zootaxa 3215) 216 pp.; 30 cm. 29 Feb. 2012 ISBN 978-1-86977-873-6 (paperback) ISBN 978-1-86977-874-3 (Online edition) FIRST PUBLISHED IN 2012 BY Magnolia Press P.O. -
Part I. an Annotated Checklist of Extant Brachyuran Crabs of the World
THE RAFFLES BULLETIN OF ZOOLOGY 2008 17: 1–286 Date of Publication: 31 Jan.2008 © National University of Singapore SYSTEMA BRACHYURORUM: PART I. AN ANNOTATED CHECKLIST OF EXTANT BRACHYURAN CRABS OF THE WORLD Peter K. L. Ng Raffles Museum of Biodiversity Research, Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 119260, Republic of Singapore Email: [email protected] Danièle Guinot Muséum national d'Histoire naturelle, Département Milieux et peuplements aquatiques, 61 rue Buffon, 75005 Paris, France Email: [email protected] Peter J. F. Davie Queensland Museum, PO Box 3300, South Brisbane, Queensland, Australia Email: [email protected] ABSTRACT. – An annotated checklist of the extant brachyuran crabs of the world is presented for the first time. Over 10,500 names are treated including 6,793 valid species and subspecies (with 1,907 primary synonyms), 1,271 genera and subgenera (with 393 primary synonyms), 93 families and 38 superfamilies. Nomenclatural and taxonomic problems are reviewed in detail, and many resolved. Detailed notes and references are provided where necessary. The constitution of a large number of families and superfamilies is discussed in detail, with the positions of some taxa rearranged in an attempt to form a stable base for future taxonomic studies. This is the first time the nomenclature of any large group of decapod crustaceans has been examined in such detail. KEY WORDS. – Annotated checklist, crabs of the world, Brachyura, systematics, nomenclature. CONTENTS Preamble .................................................................................. 3 Family Cymonomidae .......................................... 32 Caveats and acknowledgements ............................................... 5 Family Phyllotymolinidae .................................... 32 Introduction .............................................................................. 6 Superfamily DROMIOIDEA ..................................... 33 The higher classification of the Brachyura ........................ -
Belgian Register of Marine Species
BELGIAN REGISTER OF MARINE SPECIES September 2010 Belgian Register of Marine Species – September 2010 BELGIAN REGISTER OF MARINE SPECIES, COMPILED AND VALIDATED BY THE VLIZ BELGIAN MARINE SPECIES CONSORTIUM VLIZ SPECIAL PUBLICATION 46 SUGGESTED CITATION Leen Vandepitte, Wim Decock & Jan Mees (eds) (2010). Belgian Register of Marine Species, compiled and validated by the VLIZ Belgian Marine Species Consortium. VLIZ Special Publication, 46. Vlaams Instituut voor de Zee (VLIZ): Oostende, Belgium. 78 pp. ISBN 978‐90‐812900‐8‐1. CONTACT INFORMATION Flanders Marine Institute – VLIZ InnovOcean site Wandelaarkaai 7 8400 Oostende Belgium Phone: ++32‐(0)59‐34 21 30 Fax: ++32‐(0)59‐34 21 31 E‐mail: [email protected] or [email protected] ‐ 2 ‐ Belgian Register of Marine Species – September 2010 Content Introduction ......................................................................................................................................... ‐ 5 ‐ Used terminology and definitions ....................................................................................................... ‐ 7 ‐ Belgian Register of Marine Species in numbers .................................................................................. ‐ 9 ‐ Belgian Register of Marine Species ................................................................................................... ‐ 12 ‐ BACTERIA ............................................................................................................................................. ‐ 12 ‐ PROTOZOA ........................................................................................................................................... -
How to Become a Crab: Phenotypic Constraints on a Recurring Body Plan
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 December 2020 doi:10.20944/preprints202012.0664.v1 How to become a crab: Phenotypic constraints on a recurring body plan Joanna M. Wolfe1*, Javier Luque1,2,3, Heather D. Bracken-Grissom4 1 Museum of Comparative Zoology and Department of Organismic & Evolutionary Biology, Harvard University, 26 Oxford St, Cambridge, MA 02138, USA 2 Smithsonian Tropical Research Institute, Balboa–Ancon, 0843–03092, Panama, Panama 3 Department of Earth and Planetary Sciences, Yale University, New Haven, CT 06520-8109, USA 4 Institute of Environment and Department of Biological Sciences, Florida International University, Biscayne Bay Campus, 3000 NE 151 Street, North Miami, FL 33181, USA * E-mail: [email protected] Summary: A fundamental question in biology is whether phenotypes can be predicted by ecological or genomic rules. For over 140 years, convergent evolution of the crab-like body plan (with a wide and flattened shape, and a bent abdomen) at least five times in decapod crustaceans has been known as ‘carcinization’. The repeated loss of this body plan has been identified as ‘decarcinization’. We offer phylogenetic strategies to include poorly known groups, and direct evidence from fossils, that will resolve the pattern of crab evolution and the degree of phenotypic variation within crabs. Proposed ecological advantages of the crab body are summarized into a hypothesis of phenotypic integration suggesting correlated evolution of the carapace shape and abdomen. Our premise provides fertile ground for future studies of the genomic and developmental basis, and the predictability, of the crab-like body form. Keywords: Crustacea, Anomura, Brachyura, Carcinization, Phylogeny, Convergent evolution, Morphological integration 1 © 2020 by the author(s). -
Seasonal Movements and Distribution of Dungeness Crabs Cancer Magister in a Glacial Southeastern Alaska Estuary
MARINE ECOLOGY PROGRESS SERIES Vol. 214: 167–176, 2001 Published April 26 Mar Ecol Prog Ser Seasonal movements and distribution of Dungeness crabs Cancer magister in a glacial southeastern Alaska estuary Robert P. Stone*, Charles E. O’Clair Auke Bay Laboratory, Alaska Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 11305 Glacier Highway, Juneau, Alaska 99801, USA ABSTRACT: The movements of 10 female and 8 male adult Dungeness crabs, Cancer magister (Dana, 1852), were monitored biweekly to monthly with ultrasonic biotelemetry for periods ranging from 73 to 555 d. Female and male crabs had different seasonal patterns of habitat use, depth distri- bution, and activity. The general pattern for female crabs was: (1) a relatively inactive period between November and mid-April at depths below 20 m; ovigerous crabs were typically buried dur- ing this period in a dense aggregation; (2) abrupt movement into shallow water (<8 m) in late April and residence there until early June; this movement was coincident with the spring phytoplankton bloom and initiation of larval hatching; (3) increased activity beginning in July with movement back to deeper water, presumably to forage. Females that molted prior to oviposition did so in June and July. Male crabs occupied deep water (>40 m) from November to April, then concentrated in shallow water (<25 m), segregated from females, until late July. Males were most active in late summer and moved into deeper water (>30 m) near the mouth of the cove in fall. The range of depths were –0.5 to –61.3 m for females and +0.1 to –89.0 m for males. -
A Biotope Sensitivity Database to Underpin Delivery of the Habitats Directive and Biodiversity Action Plan in the Seas Around England and Scotland
English Nature Research Reports Number 499 A biotope sensitivity database to underpin delivery of the Habitats Directive and Biodiversity Action Plan in the seas around England and Scotland Harvey Tyler-Walters Keith Hiscock This report has been prepared by the Marine Biological Association of the UK (MBA) as part of the work being undertaken in the Marine Life Information Network (MarLIN). The report is part of a contract placed by English Nature, additionally supported by Scottish Natural Heritage, to assist in the provision of sensitivity information to underpin the implementation of the Habitats Directive and the UK Biodiversity Action Plan. The views expressed in the report are not necessarily those of the funding bodies. Any errors or omissions contained in this report are the responsibility of the MBA. February 2003 You may reproduce as many copies of this report as you like, provided such copies stipulate that copyright remains, jointly, with English Nature, Scottish Natural Heritage and the Marine Biological Association of the UK. ISSN 0967-876X © Joint copyright 2003 English Nature, Scottish Natural Heritage and the Marine Biological Association of the UK. Biotope sensitivity database Final report This report should be cited as: TYLER-WALTERS, H. & HISCOCK, K., 2003. A biotope sensitivity database to underpin delivery of the Habitats Directive and Biodiversity Action Plan in the seas around England and Scotland. Report to English Nature and Scottish Natural Heritage from the Marine Life Information Network (MarLIN). Plymouth: Marine Biological Association of the UK. [Final Report] 2 Biotope sensitivity database Final report Contents Foreword and acknowledgements.............................................................................................. 5 Executive summary .................................................................................................................... 7 1 Introduction to the project .............................................................................................. -
Dungeness Crab (Cancer Magister) Fishery
STATE OF WASHINGTON December 2008 Management Recommendations for Washington’s Priority Habitats and Species Dungeness Crab illustration courtesy of California Department of Fish and Game Dungeness Crab Cancer magister By Wendy Fisher and Donald Velasquez Washington Department of FISH AND WILDLIFE GENERAL RANGE AND WASHINGTON DISTRIBUTION Dungeness Crabs (Cancer magister) are found in the coastal marine and estuarine waters of the northeastern Pacific Ocean from the Pribilof Islands, Alaska, to Santa Barbara, California (Jensen 1995). In Washington, Dungeness Crabs live in all marine waters, bays, and estuaries, including Willapa Bay, Grays Harbor, and Puget Sound (Figure 1). Within Puget Sound, they are most abundant in the waters north of Seattle, somewhat abundant in Hood Canal, and much less abundant in southern Puget Sound (Bumgarner 1990). RATIONALE The ecological requirements of Dungeness Crabs make them vulnerable to decline. This species is more susceptible to population impacts from harvest, disease, and dredging in areas where it concentrates for mating and egg incubation. It is also susceptible to mortality when caught in derelict fishing Figure 1. Washington’s distribution of gear (e.g., lost or abandoned crab pots and gillnets). Dungeness Crab. Dungeness Crab is included as a priority species in Washington Department of Fish and Wildlife’s (WDFW’s) Priority Habitats and Species List (PHS List). They are an important resource for recreational, commercial and tribal harvests. Co-managed by the Washington Department of Fish and Wildlife and Washington’s Treaty Tribes, Washington’s commercial harvest ranked first among all Pacific states and provinces between 2000 and 2004 (Pacific States Marine Fisheries Commission data). -
Social Behaviors of Several Ocypodoid Crabs Observed in Mangrove Swamps in Southern Thailand
Crustacean Research 2018 Vol.47: 35–41 ©Carcinological Society of Japan. doi: 10.18353/crustacea.47.0_35 Social behaviors of several ocypodoid crabs observed in mangrove swamps in southern Thailand Keiji Wada Abstract.̶ The social behaviors of crabs in the families Dotillidae and Macroph- thalmidae inhabiting mangrove swamps in southern Thailand were observed in the field. The cheliped motion and duration of the waving display were determined for four dotillid crabs (Dotillopsis brevitarsis, Ilyoplax delsmani, Ilyoplax gangetica, and Ilyoplax orientalis) and two macrophthalmid crabs (Macrophthalmus erato and Macrophthalmus pacificus), and their motion patterns were compared with those of congeneric species. The sequential events of coupling by a male and a female were observed in D. brevitarsis, I. gangetica, and Ilyoplax obliqua. Fighting events were noted for D. brevitarsis, I. gangetica, I. obliqua, and M. erato. A threat display based on the vertical movement of the chelipeds was observed in the dotillid species Dotilla myctiroides. The chela-quivering display by male I. obliqua was described based on the cheliped motion and the context in which the display occurred. Key words: dotillid crabs, macrophthalmid crabs, mangrove swamp, sexual behavior, Thailand, waving display ■ Introduction 1999; Weis & Weis, 2004) and fighting (Koga et al., 1999; Tina et al., 2015) behaviors of fid- Intertidal ocypodoid crabs exhibit developed dler crabs of the family Ocypodidae have often social behaviors, such as diversified visual dis- been studied . plays -
Responses of Aquatic Non-Native Species to Novel Predator Cues and Increased Mortality
Portland State University PDXScholar Dissertations and Theses Dissertations and Theses Spring 5-17-2017 Responses of Aquatic Non-Native Species to Novel Predator Cues and Increased Mortality Brian Christopher Turner Portland State University Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds Part of the Terrestrial and Aquatic Ecology Commons Let us know how access to this document benefits ou.y Recommended Citation Turner, Brian Christopher, "Responses of Aquatic Non-Native Species to Novel Predator Cues and Increased Mortality" (2017). Dissertations and Theses. Paper 3620. https://doi.org/10.15760/etd.5512 This Dissertation is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. Responses of Aquatic Non-Native Species to Novel Predator Cues and Increased Mortality by Brian Christopher Turner A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Environmental Sciences and Resources Dissertation Committee: Catherine E. de Rivera, Chair Edwin D. Grosholz Michael T. Murphy Greg M. Ruiz Ian R. Waite Portland State University 2017 Abstract Lethal biotic interactions strongly influence the potential for aquatic non-native species to establish and endure in habitats to which they are introduced. Predators in the recipient area, including native and previously established non-native predators, can prevent establishment, limit habitat use, and reduce abundance of non-native species. Management efforts by humans using methods designed to cause mass mortality (e.g., trapping, biocide applications) can reduce or eradicate non-native populations. -
Distribution, Abundance, and Diversity of Epifaunal Benthic Organisms in Alitak and Ugak Bays, Kodiak Island, Alaska
DISTRIBUTION, ABUNDANCE, AND DIVERSITY OF EPIFAUNAL BENTHIC ORGANISMS IN ALITAK AND UGAK BAYS, KODIAK ISLAND, ALASKA by Howard M. Feder and Stephen C. Jewett Institute of Marine Science University of Alaska Fairbanks, Alaska 99701 Final Report Outer Continental Shelf Environmental Assessment Program Research Unit 517 October 1977 279 We thank the following for assistance during this study: the crew of the MV Big Valley; Pete Jackson and James Blackburn of the Alaska Department of Fish and Game, Kodiak, for their assistance in a cooperative benthic trawl study; and University of Alaska Institute of Marine Science personnel Rosemary Hobson for assistance in data processing, Max Hoberg for shipboard assistance, and Nora Foster for taxonomic assistance. This study was funded by the Bureau of Land Management, Department of the Interior, through an interagency agreement with the National Oceanic and Atmospheric Administration, Department of Commerce, as part of the Alaska Outer Continental Shelf Environment Assessment Program (OCSEAP). SUMMARY OF OBJECTIVES, CONCLUSIONS, AND IMPLICATIONS WITH RESPECT TO OCS OIL AND GAS DEVELOPMENT Little is known about the biology of the invertebrate components of the shallow, nearshore benthos of the bays of Kodiak Island, and yet these components may be the ones most significantly affected by the impact of oil derived from offshore petroleum operations. Baseline information on species composition is essential before industrial activities take place in waters adjacent to Kodiak Island. It was the intent of this investigation to collect information on the composition, distribution, and biology of the epifaunal invertebrate components of two bays of Kodiak Island. The specific objectives of this study were: 1) A qualitative inventory of dominant benthic invertebrate epifaunal species within two study sites (Alitak and Ugak bays). -
Macrophthalmus (Macrophthalmus) Ceratophorus Sakai, 1969 (Crustacea: Decapoda: Brachyura: Ocypodidae) Recorded from the Amirante Islands, Western Indian Ocean
Commemorative volume for the 80th birthday of Willem Vervoort in 1997 Macrophthalmus (Macrophthalmus) ceratophorus Sakai, 1969 (Crustacea: Decapoda: Brachyura: Ocypodidae) recorded from the Amirante Islands, western Indian Ocean C.H.J.M. Fransen Fransen, C.H.J.M. Macrophthalmus (Macrophthalmus) ceratophorus Sakai, 1969 (Crustacea: Decapoda: Brachyura: Ocypodidae) recorded from the Amirante Islands, western Indian Ocean. Zool. Verh. Leiden 323, 31.xii.1998: 341-348, figs 1-4.— ISSN 0024-1652/ISBN 90-73239-68-0. C.H.J.M. Fransen, Nationaal Natuurhistorisch Museum, Naturalis, P.O. Box 9517, 2300 RA Leiden, The Netherlands, e-mail: [email protected]. Key words: Crustacea; Decapoda; Brachyura; Ocypodidae; Macrophthalmus; Octolasmis; Hydrozoa; Amirante Islands. A note is presented on the crab Macrophthalmus (Macrophthalmus) ceratophorus Sakai, 1969, formerly only known from the holotype male specimen which was collected in Japanese waters. The species is redescribed on the basis of a large sample, collected from the Amirante Islands in the western Indian Ocean. All specimens were associated with the epizoic lepadid cirriped Octolasmis warwickii Gray, 1825, and an encrusting athecate hydroid. Introduction During the Dutch 'Oceanic Reefs' Expedition to the Seychelles (1992-1993) (van der Land, 1994) a large number of specimens of the crab Macrophthalmus (Macrophthal- mus) ceratophorus Sakai, 1969, was collected. The deck of the Research Vessel 'Tyro' was literally covered by floundering crabs. The specimens were caught at a depth of 54 m while trawling on a soft bottom with sponges and seagrass rhizomes, N of lie Desnoeufs, which belongs to the Amirante Islands. Additional fauna in the trawl comprised soft corals, fishes, sponges and molluscs.