Multiple Measures of Thermal Performance of Early Stage Eastern Rock Lobster in a Fast-Warming Ocean Region

Total Page:16

File Type:pdf, Size:1020Kb

Multiple Measures of Thermal Performance of Early Stage Eastern Rock Lobster in a Fast-Warming Ocean Region Vol. 624: 1–11, 2019 MARINE ECOLOGY PROGRESS SERIES Published August 15 https://doi.org/10.3354/meps13054 Mar Ecol Prog Ser OPENPEN ACCESSCCESS FEATURE ARTICLE Multiple measures of thermal performance of early stage eastern rock lobster in a fast-warming ocean region Samantha Twiname1,*, Quinn P. Fitzgibbon1, Alistair J. Hobday2, Chris G. Carter1, Gretta T. Pecl1 1Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 49, Hobart, TAS 7001, Australia 2CSIRO Oceans and Atmosphere, Castray Esplanade, Hobart, TAS 7001, Australia ABSTRACT: To date, many studies trying to under- stand species’ climate-driven changes in distribution, or ‘range shifts’, have each focused on a single poten- tial mechanism. While a single performance measure may give some insight, it may not be enough to ac - curately predict outcomes. Here, we used multiple measures of performance to explore potential mech- anisms behind species range shifts. We examined the thermal pattern for multiple measures of performance, including measures of aerobic metabolism and multi- ple as pects of escape speed, using the final larval stage (puerulus) of eastern rock lobster Sagmariasus verreauxi as a model species. We found that aerobic scope and escape speed had different thermal per- Single thermal performance measures for eastern rock lob- formances and optimal temperatures. The optimal ster Sagmariasus verreauxi may not accurately predict whole temperature for aerobic scope was 27.5°C, while the animal performance under future ocean warming. pseudo-optimal temperature for maximum escape Photo: Peter Mathew speed was 23.2°C. This discrepancy in thermal per- formance indicators illustrates that one measure of performance may not be sufficient to accurately pre- 1. INTRODUCTION dict whole-animal performance under future warm- ing. Using multiple measures of performance and ap - propriate modelling techniques may lead to a more Ocean warming is affecting marine species world- accurate prediction of future range shifts, in cluding wide (Pecl et al. 2017). One of the most prevalent the timing and extent of climate-driven species effects are changes to species’ geographical distribu- redistribution. tions (Sunday et al. 2012, Poloczanska et al. 2013). While these ‘range shifts’ occur in many marine sys- KEY WORDS: Aerobic scope · Climate change · tems, we do not yet have a clear understanding of the Crustacean larvae · Escape speed · Puerulus · Respi- mechanisms driving the high variation in rate and ratory metabolism · Sagmariasus verreauxi magnitude of the changes within (Last et al. 2011, Sunday et al. 2015) and between regions (Poloczan- © The authors 2019. Open Access under Creative Commons by *Corresponding author: [email protected] Attribution Licence. Use, distribution and reproduction are un - restricted. Authors and original publication must be credited. Publisher: Inter-Research · www.int-res.com 2 Mar Ecol Prog Ser 624: 1–11, 2019 ska et al. 2013). Part of the explanation may lie in the thermal preference or performance in juvenile barra- complex physiology of marine species and how each mundi (Norin et al. 2014). aspect of their physiology reacts to changes in their To gain a more robust understanding of the effects thermal environments. of climate change on marine communities, we need to Many marine species are ectothermic, meaning incorporate measures of species’ interactions, such as that their internal physiology is highly dependent on competition or predation performance, along with ambient temperature which, in turn, strongly in - this individual physiological performance data (Evans fluences a species’ function and behaviour (Pörtner & et al. 2015). Another potential constraint, or conversely, Knust 2007, Pörtner & Farrell 2008, Doney et al. 2012). facilitator, to species’ range change under ocean warm- To understand the effect of temperature on many ing are inter-specific interactions. Changes to a spe- physiological and biological processes, thermal per- cies’ individual physiology under climate change are formance curves can be constructed. Thermal per- also likely to influence its interactions with other spe- formance curves allow visualisation of the effects of cies, by modifying or eliminating current interactions temperature on bodily rates such as meta bolism, or creating new ones (Pitt et al. 2010, Kordas et al. growth and reproduction (Eme & Bennett 2009, Dell 2011, Pinsky et al. 2013). For example, predation plays et al. 2014, Donelson et al. 2014). With in creasing a critical role in the structuring and functioning of ocean temperatures, bodily rates are likely to change marine communities, as predator−prey interactions due to heightened metabolic performance, with con- provide a link for transfer of energy, nutrients and sequent effects on species performance and behav- materials from basal species to apex predators (Paine iour. While single thermal performance curves may 1974, Dell et al. 2014). Predator−prey interactions are provide some insight to how a particular body function affected by temperature through effects on active may change under ocean warming, it may be of lim- body velocity in ectotherms (Grigaltchik et al. 2012, ited use as a predictor of whole-animal performance. Dell et al. 2014). As attack and escape performance Aerobic scope, a proxy for the amount of energy are key factors in the outcome of predator−prey inter- available for non-essential body processes, is a key actions, the effect of ocean warming on ectotherm mo- component of organismal energy budgets and is bility and locomotion may have far-reaching effects dependent on ambient temperature experienced by on marine community structure (Cairns et al. 2008, ecto therms (Watson et al. 2014). The oxygen and Dell et al. 2014, Öhlund et al. 2015). capacity-limited thermal tolerance hypothesis pro- The south east coast of Australia has been identified poses that there is a limited thermal range for in- as an ocean warming hotspot, where rates of warming dividual ectotherm species in which performance, are up to 4 times the global average (Hobday & Pecl measured as aerobic scope, is maximised (Pörtner & 2014, Pecl et al. 2014). In recent years, Australia has Knust 2007). This optimisation, and subsequent de - seen many changes in the distribution and abundance cline in performance at temperatures outside of this of local species as well as new species not previously optimal range, is hypothesised to be due to the mis- recorded in the region, from pelagic fish to sedentary match between oxygen demand and supply (Pörtner invertebrates (Pitt et al. 2010, Last et al. 2011, Robin- & Knust 2007). This measure of organismal perform- son et al. 2015). One such species suspected of under- ance has been proposed as a way to predict future going a range shift into the area is the eastern rock changes in population characteristics under climate lobster S. verreauxi (H. Milne Edwards, 1851), a large change (Pörtner & Farrell 2008). While aerobic scope species of spiny lobster found along the east coast of is a valuable measure of performance, there has been Australia between southern Queensland and northern an increase in the number of studies that suggest that Tasmania, as well as New Zealand. There is evidence aerobic scope is an incomplete measure of whole- that S. verreauxi is becoming more common further organism performance (Norin et al. 2014, Fitzgibbon south along the Tasmanian east coast (Robinson et al. et al. 2017, Jutfelt et al. 2018). Different organismal 2015), although isolated individuals have been re- processes have different responses to increases in ported over many decades. This potential range shift ambient temperatures, such as the difference between has implications for both fisheries and ecological growth rate optimums and aerobic scope in juvenile management. While not currently a targeted fisheries eastern rock lobster Sagmariasus verreauxi (Fitzgib- species in Tasmania due to low abundance, continued bon et al. 2017) and different thermal optima for ocean warming and in creased S. verreauxi recruit- feeding and growth performance in juvenile barra- ment may facilitate a new lobster fishery or compete mundi Lates calcarifer (Katersky & Carter 2007). with the more valuable existing southern rock lobster Moreover, aerobic scope is not useful for predicting Jasus edwardsii fishery in the region. Twiname et al.: Thermal performance of early stage lobster 3 Spiny lobsters have among the longest and most from phyllosoma to puerulus stage larvae, animals complex larval life cycles of any marine invertebrate, were transferred to individual cylindrical vessels lasting for up to 2 yr in some species, with this stage (300 ml) suspended in a 68 l polypropylene sump. being important for dispersal and possible range Each sump held 9 vessels, each with a single pueru- extension (Phillips et al. 2006). These early life stages lus within, with each temperature treatment con- may also be more susceptible to effects of climate ducted in separate sumps. Each vessel had a 5 mm change and ocean warming than their juvenile and oyster mesh shelter for the pueruli, a mesh bottom adult counterparts (Pörtner & Farrell 2008, Storch et and received water circulated from the sump. The al. 2011, Fitzgibbon et al. 2014b). The puerulus stage sumps were supplied with flow-through filtered sea- of the spiny lobster life cycle is a critical transitional water from a larger temperature-controlled sump at a stage from pelagic larvae to recruitment into the rate of 50 l h−1 (0.74 exchanges h−1). An air stone was juvenile population. It is a nektonic, non-feeding used to increase mixing and aeration within each stage that actively swims to settle onto suitable habi- sump, which was maintained above 100% dissolved tat substrate in coastal regions (Fitzgibbon et al. oxygen saturation. Upon placement of pueruli into 2014a). Like many larvae settling into new communi- this holding system, they were held for a period of ties, puerulus must survive the ‘wall of mouths’ in 7−9 d at 21°C before any experimental treatments their new environment (Emery 1973, Hamner et al. were applied.
Recommended publications
  • Goldstein Et Al 2019
    Journal of Crustacean Biology Advance Access published 24 August 2019 Journal of Crustacean Biology The Crustacean Society Journal of Crustacean Biology 39(5), 574–581, 2019. doi:10.1093/jcbiol/ruz055 Downloaded from https://academic.oup.com/jcb/article-abstract/39/5/574/5554142/ by University of New England Libraries user on 04 October 2019 Development in culture of larval spotted spiny lobster Panulirus guttatus (Latreille, 1804) (Decapoda: Achelata: Palinuridae) Jason S. Goldstein1, Hirokazu Matsuda2, , Thomas R. Matthews3, Fumihiko Abe4, and Takashi Yamakawa4, 1Wells National Estuarine Research Reserve, Maine Coastal Ecology Center, 342 Laudholm Farm Road, Wells, ME 04090 USA; 2Mie Prefecture Fisheries Research Institute, 3564-3, Hamajima, Shima, Mie 517-0404 Japan; 3Florida Fish and Wildlife Conservation Commission, Fish and Wildlife Research Institute, 2796 Overseas Hwy, Suite 119, Marathon, FL 33050 USA; and 4Department of Aquatic Bioscience, Graduate School of Agricultual and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657 Japan HeadA=HeadB=HeadA=HeadB/HeadA Correspondence: J.S. Goldstein: e-mail: [email protected] HeadB=HeadC=HeadB=HeadC/HeadB (Received 15 May 2019; accepted 11 July 2019) HeadC=HeadD=HeadC=HeadD/HeadC Ack_Text=DisHead=Ack_Text=HeadA ABSTRACT NList_lc_rparentheses_roman2=Extract1=NList_lc_rparentheses_roman2=Extract1_0 There is little information on the early life history of the spotted spiny lobster Panulirus guttatus (Latreille, 1804), an obligate reef resident, despite its growing importance as a fishery re- BOR_HeadA=BOR_HeadB=BOR_HeadA=BOR_HeadB/HeadA source in the Caribbean and as a significant predator. We cultured newly-hatched P. guttatus BOR_HeadB=BOR_HeadC=BOR_HeadB=BOR_HeadC/HeadB larvae (phyllosomata) in the laboratory for the first time, and the growth, survival, and mor- BOR_HeadC=BOR_HeadD=BOR_HeadC=BOR_HeadD/HeadC phological descriptions are reported through 324 days after hatch (DAH).
    [Show full text]
  • Large Spiny Lobsters Reduce the Catchability of Small Conspecifics
    Vol. 666: 99–113, 2021 MARINE ECOLOGY PROGRESS SERIES Published May 20 https://doi.org/10.3354/meps13695 Mar Ecol Prog Ser OPEN ACCESS Size matters: large spiny lobsters reduce the catchability of small conspecifics Emma-Jade Tuffley1,2,3,*, Simon de Lestang2, Jason How2, Tim Langlois1,3 1School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia 2Aquatic Science and Assessment, Department of Primary Industries and Regional Development, 39 Northside Drive, Hillarys, WA 6025, Australia 3The UWA Oceans Institute, Indian Ocean Marine Research Centre, Cnr. of Fairway and Service Road 4, Crawley, WA 6009, Australia ABSTRACT: Indices of lobster abundance and population demography are often derived from pot catch rate data and rely upon constant catchability. However, there is evidence in clawed lobsters, and some spiny lobsters, that catchability is affected by conspecifics present in pots, and that this effect is sex- and size-dependent. For the first time, this study investigated this effect in Panulirus cyg nus, an economically important spiny lobster species endemic to Western Australia. Three studies: (1) aquaria trials, (2) pot seeding experiments, and (3) field surveys, were used to investi- gate how the presence of large male and female conspecifics influence catchability in smaller, immature P. cygnus. Large P. cygnus generally reduced the catchability of small conspecifics; large males by 26−33% and large females by 14−27%. The effect of large females was complex and varied seasonally, dependent on the sex of the small lobster. Conspecific-related catchability should be a vital consideration when interpreting the results of pot-based surveys, especially if population demo graphy changes.
    [Show full text]
  • REMINDER: Supporting Seafood Future (SSF) Grants Program
    PFA Update 4 January 2019 The PFA represents its members’ interests. If you need our help on any issue, please do not hesitate in contacting the PFA head office (6652-7374) &/or the Chief Executive Officer (0429303371) REMINDER: Supporting Seafood Future (SSF) grants program The Supporting Seafood Future (SSF) grants program is designed to build marketing and promotion capability within seafood businesses through small-scale (less than $10,000 including GST) and large-scale ($10,000 to $200,000 including GST) grants. The purpose of the campaign is to increase consumption of NSW seafood, drive the value of NSW seafood through increased awareness and consumption, and build industry capabilities and cohesiveness. Strategic objectives of the campaign are to: • Increase value, through consumption of farmed and wild caught NSW seafood • Increase shopper options across a broader variety of NSW seafood • Drive awareness and build social licence of the NSW seafood community Contact the PFA if you have any ideas that you wish our support, partnership or would like us to help put together an application. Information regarding program guidelines are outlined in the Program Guidelines. NATIONAL SEAFOOD INDUSTRY LEADERSHIP PROGRAM (NSILP 2019) Applications are now open for the 2019 National Seafood Industry Leadership Program. Each year the Sydney Fish Market is proud to fund 2-3 staff/industry representatives to attend the program. If you would like to be put forward by SFM as one of their sponsored candidates, please contact SFM or the PFA for the nomination form. These forms must be returned to SFM by Friday Jan 11th. The National Seafood Industry Leadership Program (NSLIP) is designed for people wishing to take up leadership roles throughout the industry.
    [Show full text]
  • Developmental Changes in the Mouthparts of Juvenile Caribbean Spiny Lobster, Panulirus Argus: Implications for Aquaculture
    FAD LIBRARIES Florida Atlantic University HARBOR BRANCH ~ FLORIDA ATLANTIC UNIVERSITY FAU Institutional Repository http://purl.fcla.edu/fau/fauir This paper was submitted by the faculty of FAU’s Harbor Branch Oceanographic Institute. Notice: ©2008 Elsevier B.V. The final published version of this manuscript is available at http://www.sciencedirect.com/science/journal/00448486. This article may be cited as: Cox, S. L., Jeffs, A. G., & Davis, M. (2008). Developmental changes in the mouthparts of juvenile Caribbean spiny lobster, Panulirus argus: Implications for aquaculture. Aquaculture, 283(1‐4), 168‐174. doi:10.1016/j.aquaculture.2008.07.019 Aquaculture 283 (2008) 168–174 Contents lists available at ScienceDirect Aquaculture journal homepage: www.elsevier.com/locate/aqua-online Developmental changes in the mouthparts of juvenile Caribbean spiny lobster, Panulirus argus: Implications for aquaculture Serena L. Cox a,b,⁎, Andrew G. Jeffs c, Megan Davis a a Aquaculture Division, Harbor Branch Oceanographic Institute at Florida Atlantic University, 5600 US 1 North, Fort Pierce, Florida 34946, USA b National Institute of Water and Atmospheric Research, Private Bag 14901, Kilbirnie, Wellington 6241, New Zealand c Leigh Marine Laboratory, University of Auckland, P.O. Box 349, Warkworth 0941, New Zealand article info abstract Article history: Light microscopy and video analysis were used to examine the mouthpart morphology and feeding Received 5 May 2008 behaviour of the Caribbean spiny lobster from puerulus (megalopal stage) (5–8 mm carapace length, CL) to Received in revised form 14 July 2008 adult (85 mm CL). Upon settlement the pueruli did not possess fully functional mouthparts, however, Accepted 14 July 2008 efficient feeding appendages appeared in the first instar juvenile (after the first moult from puerulus).
    [Show full text]
  • ANNOUNCEMENTS Breaking News – Postponement of ICWL 2020
    VOLUME THIRTY THREE MARCH 2020 NUMBER ONE ANNOUNCEMENTS Breaking News – Postponement of ICWL 2020 12th International Conference and Workshop on Lobster Biology and Management (ICWL) 18-23 October 2020 in Fremantle, Western Australia The Organising Committee of the 12th ICWL workshop met on the 31 March 2020 and decided to postpone the workshop to next year due to the Covid-19 outbreak around the world. Please check the website (https://icwl2020.com.au/) for updates as we determine the timing of the next conference. The World Fisheries Congress which was planned for 11-15 October 2020 in Adelaide, South Australia (wfc2020.com.au) has also been postponed to 2021. The Department of Primary Industries and Regional Development (DPIRD) and the Western Rock Lobster (WRL) council were looking forward to hosting scientists, managers and industry participants in Western Australia in 2020. However we are committed to having the conference in September / October 2021. Don’t hesitate to contact us or the conference organisers, Arinex, if you have any questions. Please stay safe and we look forward to seeing you in 2021. Co-hosts of the workshop Nick Caputi Nic Sofoulis DPIRD ([email protected]) WRL ([email protected]) The Lobster Newsletter Volume 33, Number 1: March 2020 1 VOLUME THIRTY THREE MARCH 2020 NUMBER ONE The Lobster Newsletter Volume 33, Number 1: March 2020 2 VOLUME THIRTY THREE MARCH 2020 NUMBER ONE The Natural History of the Crustacea 9: Fisheries and Aquaculture Edited by Gustavo Lovrich and Martin Thiel This is the ninth volume of the ten-volume series on The Natural History of the Crustacea published by Oxford University Press.
    [Show full text]
  • Associate Professor Caleb Gardner
    Curriculum Vitae A ssoci ate Prof essor Caleb Gardner Contents 1. Summary 2 2. Personal Details 2 3. Qualifications 2 4. Current Employment 3 5. External Grants 3 6. Current Committee Membership 7 7. Refereed Publications 8 8. Research and Management Reports 14 9. Students 20 Caleb Gardner 16/12/2013 Page 1 Summary I have qualifications in both economics and biology which interact in research on commercial fisheries. I currently hold two positions. My main role is as the Director, Sustainable Marine Research Collaboration Agreement (SMRCA), Institute for Marine and Antarctic Studies, UTAS in South East Australia. This role involves supervision and resourcing of over 60 staff and 38 PhD students operating across around 150 projects. Research is mainly on the larger marine industries of farmed Atlantic salmon and wild harvest blacklip abalone and southern rock lobster. However activities also span many other operations including recreational fisheries, scalefish, crabs, scallops and oyster culture. In addition to my role as Director SMRCA, I lead several research projects dealing with wild fisheries species, generally with the objective of improving harvest strategies. I also have a smaller role in leading research activities on wild harvest fisheries at the Australian Seafood Cooperative Research Centre. Projects in this organisation are mainly related to improving economic yield and reducing ecosystem impacts through better management. Projects involve partnerships between research organisations around Australia and industry organisations including western rock lobster, southern rock lobster, abalone, finfish and prawn fisheries. Personal Details Name: Associate Professor Caleb Gardner Address: 2 Jersey St, Sandy Bay, 7005 Phone: H- +61 (03) 6224 8417 W- +61 (03) 6227 7233 Mob- 0409 427 366 Fax- +61 (03) 6227 8035 Email: [email protected] Qualifications • Bachelor of Science.
    [Show full text]
  • 5. Index of Scientific and Vernacular Names
    click for previous page 277 5. INDEX OF SCIENTIFIC AND VERNACULAR NAMES A Abricanto 60 antarcticus, Parribacus 209 Acanthacaris 26 antarcticus, Scyllarus 209 Acanthacaris caeca 26 antipodarum, Arctides 175 Acanthacaris opipara 28 aoteanus, Scyllarus 216 Acanthacaris tenuimana 28 Arabian whip lobster 164 acanthura, Nephropsis 35 ARAEOSTERNIDAE 166 acuelata, Nephropsis 36 Araeosternus 168 acuelatus, Nephropsis 36 Araeosternus wieneckii 170 Acutigebia 232 Arafura lobster 67 adriaticus, Palaemon 119 arafurensis, Metanephrops 67 adriaticus, Palinurus 119 arafurensis, Nephrops 67 aequinoctialis, Scyllarides 183 Aragosta 120 Aesop slipper lobster 189 Aragosta bianca 122 aesopius, Scyllarus 216 Aragosta mauritanica 122 affinis, Callianassa 242 Aragosta mediterranea 120 African lobster 75 Arctides 173 African spear lobster 112 Arctides antipodarum 175 africana, Gebia 233 Arctides guineensis 176 africana, Upogebia 233 Arctides regalis 177 Afrikanische Languste 100 ARCTIDINAE 173 Agassiz’s lobsterette 38 Arctus 216 agassizii, Nephropsis 37 Arctus americanus 216 Agusta 120 arctus, Arctus 218 Akamaru 212 Arctus arctus 218 Akaza 74 arctus, Astacus 218 Akaza-ebi 74 Arctus bicuspidatus 216 Aligusta 120 arctus, Cancer 217 Allpap 210 Arctus crenatus 216 alticrenatus, Ibacus 200 Arctus crenulatus 218 alticrenatus septemdentatus, Ibacus 200 Arctus delfini 216 amabilis, Scyllarus 216 Arctus depressus 216 American blunthorn lobster 125 Arctus gibberosus 217 American lobster 58 Arctus immaturus 224 americanus, Arctus 216 arctus lutea, Scyllarus 218 americanus,
    [Show full text]
  • Morphological Descriptions of Laboratory Reared Larvae And
    1 MORPHOLOGICAL DESCRIPTIONS OF LABORATORY REARED LARVAE AND 2 POST-LARVAE OF THE AUSTRALIAN SHOVEL-NOSED LOBSTER THENUS 3 AUSTRALIENSIS BURTON AND DAVIE, 2007 (DECAPODA, SCYLLARIDAE) 4 5 BY 6 7 KAORI WAKABAYASHI1,2,4) and BRUCE F. PHILLIPS3) 8 9 1) Graduate School of Biosphere Science, Hiroshima University, 1–4–4 Kagamiyama, 10 Higashi-hiroshima, Hiroshima 739-8528, Japan 11 2) Graduate School of Marine Science and Technology, Tokyo University of Marine Science 12 and Technology, 4-5-7 Konan, Minato, Tokyo 108-8477, Japan 13 3) Department of Environment and Agriculture, School of Science, Curtin University, 14 Technology Park, 1 Turner Avenue, Bentley, WA 6102, Australia 15 4) Corresponding author. Email: [email protected] 16 17 Running head: LARVAL DEVELOPMENT OF THENUS AUSTRALIENSIS 1 18 Abstract 19 Complete larval development from newly hatched larvae up to the juvenile stage was 20 successfully achieved in the Australian shovel-nosed lobster Thenus australiensis under 21 laboratory conditions. The larvae of this species passed through four phyllosoma Stages 22 (each Stage has a single instar), and developed into the first juvenile stage via a post-larval, 23 nisto stage. The shortest and mean durations from hatching to metamorphosis at a water 24 temperature of 25 °C were 32 and 38 days, respectively. Morphologies of body and 25 appendages for all four phyllosoma Stages and the nisto stage were described. The 26 phyllosomas were fed exclusively on the jellyfish Aurelia aurita throughout their culture. Our 27 results indicate that jellyfish may be a viable diet for T. australiensis phyllosoma in culture 28 and may therefore be useful for commercial-scale lobster production.
    [Show full text]
  • The 11Th International Conference and Workshop on Lobster Biology and Management, Hosted by the University of Maine and Boston University in Portland, Maine
    The University of Maine DigitalCommons@UMaine Maine Sea Grant Publications Maine Sea Grant 6-2017 The 11th nI ternational Conference and Workshop on Lobster Biology and Management Richard Wahle University of Maine, School of Marine Sciences, Darling Marine Center, Walpole, ME 04573, [email protected] Kari L. Lavalli Boston University, College of General Studies, Division of Natural Sciences & Mathematics, 871 Commonwealth Avenue, Boston, MA 02215, [email protected] Follow this and additional works at: https://digitalcommons.library.umaine.edu/seagrant_pub Part of the Aquaculture and Fisheries Commons Repository Citation Wahle, Richard and Lavalli, Kari L., "The 11th nI ternational Conference and Workshop on Lobster Biology and Management" (2017). Maine Sea Grant Publications. 144. https://digitalcommons.library.umaine.edu/seagrant_pub/144 This Conference Proceeding is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Maine Sea Grant Publications by an authorized administrator of DigitalCommons@UMaine. For more information, please contact [email protected]. PROGRAM & ABSTRACTS PROGRAM & ABSTRACTS OUR SPONSORS OUR SPONSORS The 11th ICWL Steering Committee gratefully acknowledges the support of the following The 11th ICWL Steering Committee gratefully acknowledges the support of the following (continued on back inside cover): (continued on back inside cover): Host Host Sponsors Sponsors Gold Silver Gold Silver Sponsor Sponsors Sponsor Sponsors Bronze Bronze Sponsors Sponsors Office of Research Office of Research Custom Custom Sponsors Sponsors School of Marine Sciences School of Marine Sciences 11TH INTERNATIONAL CONFERENCE & WORKSHOP ON LOBSTER BIOLOGY & MANAGEMENT Dear Participants, On behalf of the Steering Committee, we are pleased to welcome you to the 11th International Conference and Workshop on Lobster Biology and Management, hosted by the University of Maine and Boston University in Portland, Maine.
    [Show full text]
  • Can Metamorphosis Survival During Larval Development in Spiny Lobster Sagmariasus Verreauxi Be Improved Through Quantitative Genetic Inheritance? Nguyen H
    Nguyen et al. BMC Genetics (2018) 19:27 https://doi.org/10.1186/s12863-018-0621-z RESEARCH ARTICLE Open Access Can metamorphosis survival during larval development in spiny lobster Sagmariasus verreauxi be improved through quantitative genetic inheritance? Nguyen H. Nguyen1*, Quinn P. Fitzgibbon2, Jane Quinn1, Greg Smith2, Stephen Battaglene2 and Wayne Knibb1 Abstract Background: One of the major impediments to spiny lobster aquaculture is the high cost of hatchery production due to the long and complex larval cycle and poor survival during the many moult stages, especially at metamorphosis. We examined if the key trait of larval survival can be improved through selection by determining if genetic variance exists for this trait. Specifically, we report, for the first time, genetic parameters (heritability and correlations) for early survival rates recorded at five larval phases; early-phyllosoma stages (instars 1–6; S1), mid-phyllosoma stages (instars; 7–12; S2), late-phyllosoma stages (instars 13–17; S3), metamorphosis (S4) and puerulus stage (S5) in hatchery-reared spiny lobster Sagmariasus verreauxi. Results: The data were collected from a total of 235,060 larvae produced from 18 sires and 30 dams over nine years (2006 to 2014). Parentage of the offspring and full-sib families was verified using ten microsatellite markers. Analysis of variance components showed that the estimates of heritability for all the five phases of larval survival obtained from linear mixed model were generally similar to those obtained from threshold logistic generalised models (0.03–0.47 vs. 0.01–0.50). The heritability estimates for survival traits recorded in the early larval phases (S1 and S2) were higher than those estimated in later phases (S3, S4 and S5).
    [Show full text]
  • Journal of Nutritional Science
    JNS JOURNAL OF NUTRITIONAL SCIENCE RESEARCH ARTICLE https://doi.org/10.1017/jns.2021.27 . Replacement of Antarctic krill (Euphausia superba) by extruded feeds with different proximate compositions: effects on growth, nutritional condition and digestive capacity of juvenile European lobsters (Homarus gammarus,L.) Renata Goncalves1* , Manuel Gesto1, Maria Alexandra Teodósio2, Vânia Baptista2, Carmen Navarro-Guillén2 and Ivar Lund1 1Technical University of Denmark, DTU Aqua, Section for Aquaculture, The North Sea Research Centre, 9850 Hirtshals, Denmark https://www.cambridge.org/core/terms 2CCMAR – Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal (Received 13 January 2021 – Final revision received 17 April 2021 – Accepted 20 April 2021) Journal of Nutritional Science (2021), vol. 10, e36, page 1 of 15 doi:10.1017/jns.2021.27 Abstract Extruded feeds are widely used for major aquatic animal production, particularly for finfish. However, the transition from fresh/frozen to extruded/ pelleted feeds remains a major obstacle to progressing sustainable farming of European lobster (Homarus gammarus).Theaimofthepresentstudywas to investigate the effects of using extruded feeds with different protein levels and lipid/carbohydrate ratios on growth, feed utilisation, nucleicacid derived indices (sRD) and digestive enzymatic activity of H. gammarus juveniles. Six extruded feeds were formulated to contain two protein levels (400 and 500 g/kg), with three lipid/carbohydrate ratios (LOW – 1:3; MEDium – 1:2; HIGH – 1:1). The extruded feeds were tested against Antarctic krill (Euphausia superba) used as control (CTRL). Overall, the CTRL and 500MED feed supported the highest growth and nutritional condition estimated by means of sRD, while the poorest results were observed for the 400HIGH and 400MED groups.
    [Show full text]
  • FOS Approved Customers & Suppliers & Retailers
    FOS Approved Customers & Suppliers & Retailers : Country Account Name Production Chain FOS certified species .Albania (1) Coral shpk Fishery - Processor;Fishery - Ship Owner European anchvy-engraulis Encrasicolus .Australia (22) EYRE PENINSULA SEAFOODS PTY LTD Aquaculture - Processor;Aquaculture - Mediterranean Mussel-Mytilus Aquaculture site galloprovincialis . Health World Limited Omega3 - Distributor Anchoveta-Engraulis ringens . Spring Bay Seafoods Pty Ltd Aquaculture - Aquaculture site Blue Mussel-Mytilus galloprovincialis . Clean Seas Aquaculture - Aquaculture site Yellowtail Amberjack-Seriola lalandi . A Raptis and Son Pty Ltd Fishery - Ship Owner;Fishery - End Banana Prawn-Fenneropenaeus Processing;Fishery - Exporter merguiensis . Direct Wellbeing Pty Ltd Omega3 - Distributor Japanese Flying Squid-Todarodes pacificus, Argentine Shortfin Squid-Illex argentinus, Jumbo Flying Squid-Dosidicus gigas . Angel Oysters Australia Pty Ltd Aquaculture - Aquaculture site Giant Cupped Oyster-Crassostrea gigas . Tasman Pacific Holding Pty Ltd Omega3 - Producer Anchoveta-Engraulis ringens, Atlantic Chub Mackerel-Scomber colias . Ferngrove Pharmaceuticals Australia Pty Ltd Krill Oil - Distributor Antarctic Krill-Euphausia superba . Australian Southern Bluefin Tuna Industry Aquaculture - Distributor;Aquaculture - Southern Bluefin Tuna-Thunnus maccoyii Association Ltd Exporter;Fishery - Ship Owner;Aquaculture - Aquaculture site . Myti Blue Aquaculture - Processor Blue Mussel-Mytilus galloprovincialis . Australian Fishing Enterprises Pty Ltd (Sarin
    [Show full text]