A Biophysical Profile of the Tristan Da Cunha Archipelago (PDF)

Total Page:16

File Type:pdf, Size:1020Kb

A Biophysical Profile of the Tristan Da Cunha Archipelago (PDF) A biophysical profile of Tristan da Cunha -Sue Scott - 2017 A Biophysical Profile of the Tristan da Cunha Archipelago Sue Scott Commissioned and reviewed by The Pew Charitable Trusts 2017 1 A biophysical profile of Tristan da Cunha -Sue Scott - 2017 Contents 1. Key information on Tristan da Cunha 7 2. Geophysical setting 11 2.1. Isolated islands 11 2.2. Geology and topography 11 2.3. Climate 17 3. The ecology and biodiversity of the marine ecosystems of Tristan da Cunha 21 3.1. The pelagic ecosystem 21 3.1.1. Oceanography and ecosystem productivity 21 3.1.2. Plankton and pelagic life 25 3.1.3. Pelagic fishes 27 3.2. Marine biological surveys 29 3.3. The coastal environment 32 3.3.1. The seabed 32 3.3.2. Tides 34 3.3.3. Seashore 35 3.3.4. Intertidal bedrock and stable boulders 35 3.3.5. Rock pools and channels 39 3.3.6. Boulder beaches 42 3.4. Shallow subtidal to 40m depth 43 3.5. Deeper subtidal 45 3.6. Deep sea 48 3.7. Diversity and biogeography of benthic biota 53 3.7.1. Diversity and biogeography of fish communities 53 3.7.2. Diversity and biogeography of invertebrates 57 3.7.3. Diversity and biogeography of macroalgae 60 4. Marine mammals of Tristan da Cunha 67 4.1. Introduction 67 4.2. Seals (order Carnivora) 68 4.2.1. Eared Seals (family Otariidae) 68 4.2.2 True Seals (family Phocidae) 70 4.2.3. Rare vagrant seals 72 4.3. Cetaceans 72 4.3.1. Baleen Whales (suborder Mysticeti) 73 4.3.2 Toothed Whales (suborder Odontoceti) 75 5. Seabirds of Tristan da Cunha 83 5.1. Introduction 83 5.2. Population size, ecology and distribution of the seabirds of Tristan and Gough 85 5.2.1 Penguins (family Spheniscidae) 85 5.2.2. Albatrosses (Family Diomedeidae) 91 5.2.3. Petrels and Shearwaters (family Procellariidae) 99 5.2.4 Southern storm-petrels (Family Oceanitidae) 120 5.2.5 Skuas (family Stercorariidae) 126 2 A biophysical profile of Tristan da Cunha -Sue Scott - 2017 5.2.6. Gulls, Terns and Noddies (family Laridae) 128 5.2.7. Terrestrial birds 131 6. Exploitation of the marine resources of Tristan da Cunha 143 6.1. Historical exploitation of seals, whales and seabirds 143 6.2. Fishing 146 6.2.1 History of fishing 146 6.2.2. Current fisheries 153 6.2.3. Biology of the Tristan rock lobster Jasus tristani 162 7. Conservation and threats 169 7.1. Current protection measures 169 7.1.1. Designations and boundaries 169 7.1.2. Biodiversity action plans 170 7.1.3. International conventions 172 7.2. Current threats 173 7.2.1. Non-native species 173 7.2.2. Marine incidents and pollution 180 7.2.3. Longline fishing 181 7.2.4. IUU fishing 182 7.2.5. Disturbance 183 7.2.6. Plastics and other seaborne pollution 184 7.3. Future threats 185 7.3.1. Fisheries 185 7.3.2. Coastal development 186 7.3.3. Climate change 187 3 A biophysical profile of Tristan da Cunha -Sue Scott - 2017 Summary Biodiversity and ecology The Tristan archipelago is situated in temperate South Atlantic waters, approximately half way between South Africa and South America, thousands of kilometers from the nearest land. The territory consists of three northern ('top') islands, Tristan, Inaccessible and Nightingale, about 25km apart, together with Gough situated on its own around 350km to the south southeast. The islands are the tops of volcanoes that arose from hotspots beneath the seafloor, and range in age from less than 200,000 years (Tristan) to 18 million years (Nightingale). They are all small, with Tristan the largest at 12km across, and an area of 96km2. The Peak on Tristan rises to 2,060m above sea level, and slopes steeply to the seafloor at 2-3000m within a few km of the coast. The top islands have a warm temperate climate, while Gough is cool temperate. All the islands are exposed and windy, with no sheltered marine habitats. Tristan claims to be the most isolated inhabited island in the world, and has a small community of around 270 islanders, in a single settlement on Tristan. The community is largely self-supporting, with the main sources of income being rock lobster (crayfish) fishing, and the sale of stamps and other souvenirs. Tourism also brings in revenue, but potentially lucrative trade from passing cruise and expedition ships is severely limited by the remote location and often difficult landing conditions; the small harbor is often unusable because of swell. Wildlife conservation and scientific research is increasingly bringing funded projects to the islands, employing both outside biologists and islanders. There are no other islands in the temperate south Atlantic to act as stepping stones, so life that has colonized the islands is a collection of chance arrivals of spores and seeds borne on the wind, on ocean currents or carried by birds, while much of the shallow-water benthic marine life probably arrived on drifting kelp and other marine debris. In common with other small, isolated islands, biodiversity is generally low, but varies with group; sponges and seaweeds are relatively diverse, while echinoderms and mollusks are very impoverished. Subsequent evolution in isolation has resulted in a high proportion of endemics in some plant and animal groups. The 'top' islands of Tristan, Inaccessible and Nightingale lie on the north edge of the Subtropical Convergence (STC), where the warm waters of the South Atlantic gyre meet colder waters to the south. Seawater temperatures at the top islands average 14°C in winter and 19°C in summer. Gough, some 350km to the south southeast, is around 3°C colder year-round than the top islands, and is consequently more subantarctic in nature. In shallow water down to at least 40m, forests of giant and pale kelp thrive, forming a highly productive habitat for smaller seaweeds, abundant fish and numerous invertebrates including the Tristan rock lobster, the basis for an MSC certified fishery. Little is known of life in deeper water around the islands. While Tristan itself has been much changed over the years through clearing of natural vegetation, harvesting of mammals and birds, agriculture and introduction of alien species, the uninhabited islands still support an abundance of wildlife. They are of global importance for breeding seabirds, endemic land birds, and Subantarctic Fur Seals, and home to many endemic plants and invertebrates. Gough and Inaccessible islands together comprise a World Heritage Site, with boundaries out to the 12nm territorial limit. The islands are home to entire, or a large proportion of, the world breeding populations of Spectacled Petrels, Tristan Albatross, Atlantic Yellownosed Albatross and Northern Rockhopper Penguins, as well as seven endemic land birds. The islands also appear to be a stronghold for Shepherd's Beaked Whales, an otherwise little known whale species, and a nursery area for Southern Right Whales, although these are much reduced from former numbers by hunting. At least another nine cetacean species are regular visitors. 4 A biophysical profile of Tristan da Cunha -Sue Scott - 2017 Sensitivity As with many isolated islands, the Tristan islands are particularly vulnerable to the effects of invasive introduced species. House Mice on Gough are having a devastating effect on Tristan Albatross and Atlantic Petrel populations, by eating chicks and eggs, and their eradication is a priority. Rats on Tristan are similarly preventing the recovery of petrels, following the cessation of harvesting by humans. Inaccessible and Nightingale islands so far remain free of mice and rats, but are highly vulnerable to their introduction from Tristan, where both are present, and from shipwrecks. Invasive plants including New Zealand Flax and Procumbent Pearlwort are threatening natural vegetation, and introduced invertebrates have become agricultural pests on Tristan. In the marine environment, the South American Silver Bream (porgy), a fish introduced with a stranded oil rig in 2006, is now abundant around Tristan; its effect on native fish and rock lobster populations is as yet unknown. As well as historical impacts and ongoing mortality from introduced rodents, foraging seabirds are at risk from activities a long way from the islands, and outside territorial waters. Longlining in particular still kills many albatrosses, though simple deterrents have greatly reduced the mortality in more responsible fisheries in recent years. As evidenced by the stranding of an oil rig in 2006 and the wreck of the bulk carrier Oliva in 2011, the islands are at risk from marine incidents, and subsequent impacts from spilt oil and cargo, as well as introduced species. This risk has increased in recent years with more ships passing near the islands en route from South America to the Far East. Some means of flagging the islands as a sensitive area, and one to be avoided by commercial shipping, is required. Climate change could cause profound changes in the Tristan marine environment. Giant kelp, a keystone species in shallow water around all the islands, is already at the upper limit of its temperature tolerance at the top islands. Even slight warming of seawater here could result in large-scale disappearance of giant kelp, with knock-on effects on the numerous organisms occupying the kelp forests, including the rock lobsters on which the Tristan economy depends. IUU fishing is a real threat in a situation where policing such remote islands is difficult, and in a fishery with such a small total target area, any IUU fishing is significant. Reduction or collapse of the fishery could create pressure to exploit other marine resources. Other services provided by the fishing company, particularly transport of people and goods to and from Cape Town, is also very important to islanders.
Recommended publications
  • This Keyword List Contains Indian Ocean Place Names of Coral Reefs, Islands, Bays and Other Geographic Features in a Hierarchical Structure
    CoRIS Place Keyword Thesaurus by Ocean - 8/9/2016 Indian Ocean This keyword list contains Indian Ocean place names of coral reefs, islands, bays and other geographic features in a hierarchical structure. For example, the first name on the list - Bird Islet - is part of the Addu Atoll, which is in the Indian Ocean. The leading label - OCEAN BASIN - indicates this list is organized according to ocean, sea, and geographic names rather than country place names. The list is sorted alphabetically. The same names are available from “Place Keywords by Country/Territory - Indian Ocean” but sorted by country and territory name. Each place name is followed by a unique identifier enclosed in parentheses. The identifier is made up of the latitude and longitude in whole degrees of the place location, followed by a four digit number. The number is used to uniquely identify multiple places that are located at the same latitude and longitude. For example, the first place name “Bird Islet” has a unique identifier of “00S073E0013”. From that we see that Bird Islet is located at 00 degrees south (S) and 073 degrees east (E). It is place number 0013 at that latitude and longitude. (Note: some long lines wrapped, placing the unique identifier on the following line.) This is a reformatted version of a list that was obtained from ReefBase. OCEAN BASIN > Indian Ocean OCEAN BASIN > Indian Ocean > Addu Atoll > Bird Islet (00S073E0013) OCEAN BASIN > Indian Ocean > Addu Atoll > Bushy Islet (00S073E0014) OCEAN BASIN > Indian Ocean > Addu Atoll > Fedu Island (00S073E0008)
    [Show full text]
  • Intertidal and Subtidal Benthic Seaweed Diversity of South Georgia
    Intertidal and Subtidal Benthic Seaweed Diversity of South Georgia Report for the South Georgia Heritage Trust Survey September 2011 Shallow Marine Survey Group E Wells1, P Brewin and P Brickle 1 Wells Marine, Norfolk, UK Executive Summary South Georgia is a highly isolated island with its marine life influenced by the circumpolar currents. The local seaweed communities have been researched sporadically over the last two centuries with most species collections and records documented for a limited number of sites within easy access. Despite the harsh conditions of the shallow marine environment of South Georgia a unique and diverse array of algal flora has become well established resulting in a high level of endemism. Current levels of seaweed species diversity were achieved along the north coast of South Georgia surveying 15 sites in 19 locations including both intertidal and subtidal habitats. In total 72 species were recorded, 8 Chlorophyta, 19 Phaeophyta and 45 Rhodophyta. Of these species 24 were new records for South Georgia, one of which may even be a new record for the Antarctic/sub-Antarctic. Historic seaweed studies recorded 103 species with a new total for the island of 127 seaweed species. Additional records of seaweed to the area included both endemic and cosmopolitan species. At this stage it is unknown as to the origin of such species, whether they have been present on South Georgia for long periods of time or if they are indeed recent additions to the seaweed flora. It may be speculated that many have failed to be recorded due to the nature of South Georgia, its sheer isolation and inaccessible coastline.
    [Show full text]
  • Conservation Problems on Tristan Da Cunha Byj
    28 Oryx Conservation Problems on Tristan da Cunha ByJ. H. Flint The author spent two years, 1963-65, as schoolmaster on Tristan da Cunha, during which he spent four weeks on Nightingale Island. On the main island he found that bird stocks were being depleted and the islanders taking too many eggs and young; on Nightingale, however, where there are over two million pairs of great shearwaters, the harvest of these birds could be greater. Inaccessible Island, which like Nightingale, is without cats, dogs or rats, should be declared a wildlife sanctuary. Tl^HEN the first permanent settlers came to Tristan da Cunha in " the early years of the nineteenth century they found an island rich in bird and sea mammal life. "The mountains are covered with Albatross Mellahs Petrels Seahens, etc.," wrote Jonathan Lambert in 1811, and Midshipman Greene, who stayed on the island in 1816, recorded in his diary "Sea Elephants herding together in immense numbers." Today the picture is greatly changed. A century and a half of human habitation has drastically reduced the larger, edible species, and the accidental introduction of rats from a shipwreck in 1882 accelerated the birds' decline on the main island. Wood-cutting, grazing by domestic stock and, more recently, fumes from the volcano have destroyed much of the natural vegetation near the settlement, and two bird subspecies, a bunting and a flightless moorhen, have become extinct on the main island. Curiously, one is liable to see more birds on the day of arrival than in several weeks ashore. When I first saw Tristan from the decks of M.V.
    [Show full text]
  • Final Report
    Overseas Countries and Territories: Environmental Profiles FINAL REPORT PART 2 – DETAILED REPORT SECTION E – SOUTH ATLANTIC REGION Consortium January 201 5 EuropeAid/127054/C/SER/multi Request n° 2013/325768 DISCLAIMER This report has been prepared with the financial assistance of the European Commission. The views expressed herein are those of the consultants and therefore in no way reflect the official opinion of the European Commission Authors of the Report Contractor’s name and address José de Bettencourt Safège Consortium Helena Imminga-Berends Gulledelle 92 B-1200 Brussels - BELGIUM Project manager Camille Vassart on behalf of Prospect C&S Please consider the environment before printing this document Page 2 / 115 ABBREVIATIONS AND ACRONYMS ACAP Agreement on the Conservation of Albatrosses and Petrels ACOR Association Française pour les Récifs Coralliens ACP Africa Caribbean and the Pacific ACS Association of Caribbean States AEPS Arctic Environmental Protection Strategy AFD French Development Agency AMAP Arctic Monitoring and Assessment Programme AMOC Atlantic Meridional Overturning Circulation AOSIS Alliance of Small Island States APEC Asia–Pacific Economic Cooperation BAS British Antarctic Survey BEST EU Voluntary Scheme for Biodiversity and Ecosystem Services in Territories of European Overseas BRGM Bureau de Recherches Géologiques et Minières CAFF Conservation of Arctic Flora and Fauna CANARI Caribbean Natural Resources Institute CARICOM Caribbean Community CARIFORUM Caribbean Forum CBD Convention on Biological Diversity CCAMLR
    [Show full text]
  • Informe Final FIP Reineta N 2013-21 22-12-2015
    1 UNIVERSIDAD DE CONCEPCION FACULTAD DE CIENCIAS NATURALES Y OCEANOGRAFICAS DEPARTAMENTO DE OCEANOGRAFIA INFORME FINAL PROYECTO DEL FONDO DE INVESTIGACION PESQUERA “ORIGEN NATAL Y DISTRIBUCION GEOGRAFICA DE REINETA EN CHILE” FIP N° 2013-21 PROPONENTE: DEPARTAMENTO DE OCEANOGRAFIA UNIVERSIDAD DE CONCEPCION REQUIRENTE: FONDO DE INVESTIGACIÓN PESQUERA CONCEPCION, DICIEMBRE 2015 2 JEFE DE PROYECTO Ricardo Galleguillos González AUTORES Sandra Ferrada Fuentes Cristian B. Canales-Aguirre Victoria Herrera Yáñez Marcelo E. Oliva M. Edwin J. Niklitschek Pamela Toledo C. Elson Leal F. Claudio Carrasco Milton J. Pedraza COLABORADORES Daniela Lazo Felix P. Leiva Yessica Robles Luis A. Ñacari E. Cristóbal Garcés Alicia Gallardo G. Christian Ibieta F. Cristian Vargas A. Jessica Gonzalez A. Jorge Sáteler G. Julio Uribe A. Patricio Galvez G. CONCEPCION, DICIEMBRE 2015 3 Índice Resumen ejecutivo ............................................................................................................................................. 9 1. Antecedentes generales ............................................................................................................................... 15 2. Objetivos ....................................................................................................................................................... 19 2.1 Objetivo general .................................................................................................................................... 19 2.2 Objetivos específicos ...........................................................................................................................
    [Show full text]
  • Red-Footed Booby Helper at Great Frigatebird Nests
    264 SHORT COMMUNICATIONS NECTS MEANS ECTS MEANS ICATE SAMPLE SIZE S.D. SAMPLE SIZE 70 IN DAYS FIGURE 2. Culmen length against age of Brown FIGURE 1. Weight against age of Brown Noddy Noddy chicks on Manana Island, Hawaii in 1972. chicks on Manana Island, Hawaii in 1972. about the thirty-fifth day; apparently Brown Noddies on Christmas Island grow more rapidly than those on 5.26 g/day (SD = 1.18 g/day), and chick growth rate Manana. More data are required for a refined analysis and fledging age were negatively correlated (r = of intraspecific variation in growth rates of Brown -0.490, N = 19, P < 0.05). Noddy young. Seventeen of the chicks were weighed both at the This paper is based upon my doctoral dissertation age of fledging and from 3 to 12 days later; there was submitted to the University of Hawaii. I thank An- no significant recession in weight after fledging (t = drew J. Berger for guidance and criticism. The 1.17, P > 0.2), as suggested for certain terns (e.g., Hawaii State Division of Fish and Game kindly LeCroy and LeCroy 1974, Bird-Banding 45:326). granted me permission to work on Manana. This Dorward and Ashmole (1963, Ibis 103b: 447) mea- study was supported by the Department of Zoology sured growth in weight and culmen length of Brown of the University of Hawaii, by an NSF Graduate Noddies on Ascension Island in the Atlantic; scatter Fellowship, and by a Mount Holyoke College Faculty diagrams of their data indicate growth functions very Grant.
    [Show full text]
  • Pterodromarefs V1-5.Pdf
    Index The general order of species follows the International Ornithological Congress’ World Bird List. A few differences occur with regard to the number and treatment of subspecies where some are treated as full species. Version Version 1.5 (5 May 2011). Cover With thanks to Kieran Fahy and Dick Coombes for the cover images. Species Page No. Atlantic Petrel [Pterodroma incerta] 5 Barau's Petrel [Pterodroma baraui] 17 Bermuda Petrel [Pterodroma cahow] 11 Black-capped Petrel [Pterodroma hasitata] 12 Black-winged Petrel [Pterodroma nigripennis] 18 Bonin Petrel [Pterodroma hypoleuca] 19 Chatham Islands Petrel [Pterodroma axillaris] 19 Collared Petrel [Pterodroma brevipes] 20 Cook's Petrel [Pterodroma cookii] 20 De Filippi's Petrel [Pterodroma defilippiana] 20 Desertas Petrel [Pterodroma deserta] 11 Fea's Petrel [Pterodroma feae] 8 Galapágos Petrel [Pterodroma phaeopygia] 17 Gould's Petrel [Pterodroma leucoptera] 19 Great-winged Petrel [Pterodroma macroptera] 3 Grey-faced Petrel [Pterodroma gouldi] 4 Hawaiian Petrel [Pterodroma sandwichensis] 17 Henderson Petrel [Pterodroma atrata] 16 Herald Petrel [Pterodroma heraldica] 14 Jamaica Petrel [Pterodroma caribbaea] 13 Juan Fernandez Petrel [Pterodroma externa] 13 Kermadec Petrel [Pterodroma neglecta] 14 Magenta Petrel [Pterodroma magentae] 6 Mottled Petrel [Pterodroma inexpectata] 18 Murphy's Petrel [Pterodroma ultima] 6 Phoenix Petrel [Pterodroma alba] 16 Providence Petrel [Pterodroma solandri] 5 Pycroft's Petrel [Pterodroma pycrofti] 21 Soft-plumaged Petrel [Pterodroma mollis] 7 Stejneger's Petrel [Pterodroma longirostris] 21 Trindade Petrel [Pterodroma arminjoniana] 15 Vanuatu Petrel [Pterodroma occulta] 13 White-headed Petrel [Pterodroma lessonii] 4 White-necked Petrel [Pterodroma cervicalis] 18 Zino's Petrel [Pterodroma madeira] 9 1 General Bailey, S.F. et al 1989. Dark Pterodroma petrels in the North Pacific: identification, status, and North American occurrence.
    [Show full text]
  • Iucn Summary Gough Island (United Kingdom) 2
    WORLD HERITAGE NOMINATION - IUCN SUMMARY GOUGH ISLAND (UNITED KINGDOM) Summary prepared by IUCN/WCMC (March 1995) based on the original nomination supplied by the Government of the United Kingdom. This original and all documents in support of this nomination will be available for consultation at the meetings of the Bureau and the Committee. 1. LOCATION Located southeast of Tristan da Cunha Island in the south Atlantic Ocean, midway between Africa and South America. 2. JURIDICAL DATA The island and surrounding territorial waters were designated a wildlife area in 1976 under the Tristan da Cunha Conservation Ordinance. 3. IDENTIFICATION The island of Gough (6500ha) represents the eroded core of a Late Tertiary volcano. The east side of the island is dissected by a series of deep steep-sided valleys, which are separated by narrow serrated ridges. Along the west side of the island, rounded slopes extend from the central plateau to the western sea cliffs. Many offshore stacks and rocks are present, mostly within 100m of the main island. Vegetation comprises tussock grass around the coast and wet heath with moss and feldmark, and bog and swamp communities at higher elevations. Knowledge of the flora is incomplete but consists of some 35 native flowering plant and 28 native fern species. Over 30 of Gough's vascular plant taxa are endemic to the Tristan de Cunha islands. A total of 146 bryophytes have been recorded, eight of which are endemic, together with 20 fungi and 24 lichens. Invertebrate fauna also remains poorly known, but comprises 100 species, eight of which are endemic.
    [Show full text]
  • Range Expansion of the Whitenose Shark, Nasolamia Velox, and Migratory Movements to the Oceanic Revillagigedo Archipelago
    Journal of the Marine Biological Association of the United Kingdom, page 1 of 5. # Marine Biological Association of the United Kingdom, 2017 doi:10.1017/S0025315417000108 Range expansion of the whitenose shark, Nasolamia velox, and migratory movements to the oceanic Revillagigedo Archipelago (west Mexico) frida lara-lizardi1,2, mauricio hoyos-padilla2,3, james t. ketchum2,4 and felipe galva’ n-magan~a1 1Instituto Polite´cnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. IPN s/n. C.P. 23096. La Paz, B.C.S, Mexico, 2Pelagios-Kakunja´ A. C. 1540 Sinaloa, C.P. 23070, La Paz, B.C.S., Mexico, 3Fins Attached, 19675 Still Glen Way, Colorado Springs, CO 80908, USA, 4Centro de Investigaciones Biolo´gicas del Noroeste, Playa Palo de Santa Rita Sur, 23096 La Paz, B.C.S, Mexico Current literature considers that Nasolamia velox has a limited distribution along the coastline of the Eastern Pacific with sporadic sightings in the Galapagos Archipelago. This study provides evidence of the occurrence of this species at the Revillagigedo Archipelago (18899′186′′N 112808′44′′W), Mexico, using acoustic telemetry and videos taken from 2014 to 2016. We report here movements from a coastal location (National Park Cabo Pulmo) to a group of oceanic islands (Revillagigedo Archipelago) by one single individual, supporting the idea of the potential connectivity of sharks between the Gulf of California and the Revillagigedo Archipelago. This report extends the known distribution of N. velox to 400 km off the mainland coast of the Americas, thereby increasing the knowledge of the distribution of a species commonly reported in fishery landings of the Eastern Pacific.
    [Show full text]
  • Henderson Island Expedition June 2019 Henderson Island Expedition June 2019
    Henderson Island Expedition June 2019 Henderson Island Expedition June 2019 Overview Overarching objectives of the expedition: A) Study the plastic pollution on Henderson Island and raise awareness of the waste in the context of the global problem of ocean plastics; B) Study and raise awareness of the Henderson marine environment – promoting the Pitcairn Island Marine Reserve and the benefits of large, fully protected marine protected areas. A 2015 analysis (published in 2017) found that one of the Pitcairn archipelago’s four islands, Henderson, has >18 tonnes of plastic on its beaches: “the highest density of plastic debris recorded anywhere in the world”. The 38km2 island has >38 million pieces of plastic upon its shores. Conservative estimates suggest that 3,500-13,500 new plastic items wash up on Henderson each day. One of its beaches, the 2 km long East Beach, is polluted by 30 million plastic items. The 2015 work served as a reminder that the long-term protection of large areas of ocean needs to be partnered by science and messaging capable of changing attitudes towards the way we live, consume, and discard on land. The Pitcairn Island Council has sanctioned an expedition to Henderson in June 2019 which provides an opportunity for key Pitcairn and ocean stakeholders to effectively communicate the source, scale, range and impacts of ocean debris on Henderson and the Pacific Ocean through on-site science, art and media. The initiative also provides the team an opportunity to study and showcase the beauty and ambition of the Pitcairn Island Marine Reserve Henderson Island Expedition June 2019 MEXICO Timings PACIFIC OCEAN 1 02/06 Arrive at Tahiti Team briefing Tahiti 2 04/06 PERU Depart Tahiti 07:30 a.m.
    [Show full text]
  • New Zealand Fishes a Field Guide to Common Species Caught by Bottom, Midwater, and Surface Fishing Cover Photos: Top – Kingfish (Seriola Lalandi), Malcolm Francis
    New Zealand fishes A field guide to common species caught by bottom, midwater, and surface fishing Cover photos: Top – Kingfish (Seriola lalandi), Malcolm Francis. Top left – Snapper (Chrysophrys auratus), Malcolm Francis. Centre – Catch of hoki (Macruronus novaezelandiae), Neil Bagley (NIWA). Bottom left – Jack mackerel (Trachurus sp.), Malcolm Francis. Bottom – Orange roughy (Hoplostethus atlanticus), NIWA. New Zealand fishes A field guide to common species caught by bottom, midwater, and surface fishing New Zealand Aquatic Environment and Biodiversity Report No: 208 Prepared for Fisheries New Zealand by P. J. McMillan M. P. Francis G. D. James L. J. Paul P. Marriott E. J. Mackay B. A. Wood D. W. Stevens L. H. Griggs S. J. Baird C. D. Roberts‡ A. L. Stewart‡ C. D. Struthers‡ J. E. Robbins NIWA, Private Bag 14901, Wellington 6241 ‡ Museum of New Zealand Te Papa Tongarewa, PO Box 467, Wellington, 6011Wellington ISSN 1176-9440 (print) ISSN 1179-6480 (online) ISBN 978-1-98-859425-5 (print) ISBN 978-1-98-859426-2 (online) 2019 Disclaimer While every effort was made to ensure the information in this publication is accurate, Fisheries New Zealand does not accept any responsibility or liability for error of fact, omission, interpretation or opinion that may be present, nor for the consequences of any decisions based on this information. Requests for further copies should be directed to: Publications Logistics Officer Ministry for Primary Industries PO Box 2526 WELLINGTON 6140 Email: [email protected] Telephone: 0800 00 83 33 Facsimile: 04-894 0300 This publication is also available on the Ministry for Primary Industries website at http://www.mpi.govt.nz/news-and-resources/publications/ A higher resolution (larger) PDF of this guide is also available by application to: [email protected] Citation: McMillan, P.J.; Francis, M.P.; James, G.D.; Paul, L.J.; Marriott, P.; Mackay, E.; Wood, B.A.; Stevens, D.W.; Griggs, L.H.; Baird, S.J.; Roberts, C.D.; Stewart, A.L.; Struthers, C.D.; Robbins, J.E.
    [Show full text]
  • The Marine Fauna of New Zealand: the Molluscan Genera Cymatona and Fusitriton (Gastropoda, Family Cymatiidae)
    ISSN 0083-7903, 65 (Print) ISSN 2538-1016; 65 (Online) The Marine Fauna of New Zealand: The Molluscan Genera Cymatona and Fusitriton (Gastropoda, Family Cymatiidae) by A. G. BEU New Zealand Oceanographic Institute Memoir 65 1978 NEW ZEALAND DEPARTMENT OF SCIENTIFIC AND INDUSTRIAL RESEARCH The Marine Fauna of New Zealand: The Molluscan Genera Cymatona and Fusitriton (Gastropoda, Family Cymatiidae) by A. G. BEU New Zealand Geological Survey, DSIR, Lower Hutt New Zealand Oceanographic Institute Memoir 65 This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ Citation according to ''World List of Scientific Periodicals" (4th edn.): Mem. N.Z. oceanogr. Inst. 65 Received for publication September 1973 © Crown Copyright 1978 This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ CONTENTS Page Abstract . � 5 INTRODUCTION 5 4AXONOMY 10 Family CYMATIIDAE 10 Genus Cymatona 10 Cymatona kampyla 10 Cymatona kampyla kampyla 12 Cymatona kampyla tomlini . 18 Cymatona kampyla jobbernsi 18 Genus Fusitriton 18 Fusitriton cancellatus 22 Fusitriton cancellatus retiolus 22 Fusitriton cance/latus laudandus 23 ECOLOGY . 25 Benthic sampling programme of N.Z. Oceanographic Institute 25 Sampling methods 25 Distribution anomalies 25 Distribution 26 Distribution with depth 26 Distribution with latitude 27 Distribution with sediment type 27 Ecological conclusions 33 Dispersal times and routes of Fusitriton, and their effect on Cymatona 34 Dispersal and distribution 34 Ecological displacement of Cymatona kampyla kampyla 35 ACKNOWLEDGMENTS 36 REFERENCES 36 APPENDIX 1: Station List 38 APPENDIX 2: Dimensions of Cymatona 41 APPENDIX 3: Dimensions of Fusitriton 42 INDEX 44 This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.
    [Show full text]