Unit – 6 Heat Treatment Processes

Total Page:16

File Type:pdf, Size:1020Kb

Unit – 6 Heat Treatment Processes UNIT – 6 HEAT TREATMENT PROCESSES 01. Salt bath of liquid carburizing contains ____ a) Sodium cyanide, Sodium carbonate, Benzene chloride b) Hydrogen cyanide, Sodium carbonate, Sodium chloride c) Sodium cyanide, Sodium carbonate, Sodium chloride d) None 02. ______ statements is/are false for heat treatment processes. a) Martempering process is designed to overcome limitations of quenching b) Pearlite is obtained as final phase in martempering processes. c) Water is used as quenching medium in Jominy end quench test d) All the above 03. The process which improves machinability of steel, but lowers the hardness is _____ a) Process annealing b) Normalising c) Full annealing d) Spheroidising 04. Carburising is _______. a) Tempering process b) case hardening process c) Annealing process d) None 05. The process of reheating martensitic stainless steel to reduce its brittleness without any significant loss in its hardness is _______. a) Annealing b) Normalising c) Quenching d) Hardening 06. Insufficient hardness after tempering may be due to _______. a) Tempering temperature too low b) Tempering temperature too high c) Oxidising atmosphere in furnace d) Any of the above 07. Spheroidise annealing used to produce speroidal or globular form of ____ from plates of cementite in steel. a) Cementite b) Austenite c) Pearlite d) Ferrite 08. The process of involving the heating of steel above the upper critical temperature and then cooled in furnace is known as _______. a) Annealing b) Normalising c) Tempering d) Hardening 09. A steel is heated at about 875°C where the structure consists of only austenite. It is then cooled suddenly at a temperature of about 250° to 525°. This process of heat treatment is known as a) Annealing b) Normalising c) Martempering d) Austempering 10. Application of batch furnaces are ______. a) Tool making b) In Maintenance shop c) Both a & b d) None 11. Semi-muffle furnace is a type of ______. a) Gas fire furnace b) Oil & Gas fire furnace c) Electric fire furnace d) None 12. Surface of a steel component becomes hard due to phase transformation austenite to martensite in _____ a) Carbonitriding b) Flame hardening c) Both a & b d) None 13. _____ furnace protects the steel from oxidation. a) Full muffle b) Direct fired c) Oil or gas fired d) Semi muffle MEM - Unit 6 Viren Bhirdi - BSIET Page 1 of 7 14. If a sample of steel shows excessive hardness after tempering, the probable cause could be a) Excessive proportion of alloying elements b) Insufficient holding time during tempering c) High temperature during tempering d) Change in volume during cooling 15. _____ property is affected by heat treatment. a) Hardness b) strength c) ductility d) All 16. Nitriding process is carried out in ______. a) Muffle furnace b) Electric furnace c) Gas furnace d) All 17. _____ heat treatment process is used for medium carbon steel. a) Box annealing b) Process annealing c) Bright annealing d) Full annealing 18. _____ are heat treatment processes. a) Annealing b) Normalising c) Tempering d) All 19. Killed steel is ______. a) Steel which has been shaped on a power hammer b) Steel which is deoxidized in the ladle with silicon & aluminum c) Steel with more than normal percentage of carbon d) Steel that has lost its properties due to excessive alloying 20. Austenitic stainless steel contain chromium & nickel in amounts required to assure that even at room temperatures, the steels retain their crystalline structures which are _____ a) HCP b) Diamond cubic c) FCC d) Partly amorphous 21. Flame hardening involves _____ a) heating the surface above the transformation range b) quenching after heating c) minimum case depth 1 mm d) All the above 22. In a hardening process, the hypo eutectoid steel is a) Heated from 30° - 50° above the upper critical temp & then cooled in still air b) Heated from 30° - 50° above the upper critical temp & then cooled slowly in furnace c) Heated from 30° - 50° above the upper critical temp & then cooled suddenly d) Heated below or close to the lower critical temp & then cooled slowly 23. _____ temp range represents the tempering temp for C 30 steel. a) 100° – 150° b) 550° – 660° c) 860° – 890° d) 1400° - 1450° 24. Rapid cooling of austenite results in transformation to a) Pearlite b) Banite c) Martensite d) Ferrite 25. When the steel is normalized, it’s _______. a) Yield point increases b) Ductility decreases c) Ultimate tensile strength increases d) All of these 26. The main objectives of heat treatment is/are ______ a) To relieve internal stresses b) To refine grain structure c) To improve machinability d) All 27. Annealing is done _____. a) To harden the surface b) for surface smoothness c) for relieving stresses d) to improve microstructure for good surface finish MEM - Unit 6 Viren Bhirdi - BSIET Page 2 of 7 28. ______ is the last phase obtained after completing heat treatment cycle in patenting process a) Bainite b) Martensite c) Pearlite d) None 29. Advantage of liquid carburizing ______ a) salt bath offer rapid & uniform heating b) Low distortion c) Negligible surface distortion d) All 30. Cracks of vertical nature & dark coloured fissures in a sample of hardened steel indicates that a) steel contains excessive alloying elements b) steel has been burned c) steel has been properly hardened d) hardness accordance with the carbon percentage 31. The temperature range of the solid carburizing in degree celsius ____ a) 750 – 850 b) 721 – 800 c) 925 – 950 d) 550 – 650 32. Soaking time _____ with increase in section thickness and the amount of alloying elements a) decreases b) remains same c) increases d) none 33. In normalizing, one of the following statements is not correct. a) it relieves internal stresses b) it produces a uniform structure c) the rate of cooling is moderately high d) the rate of cooling is slow 34. Solid carburizing is also called as ______. a) Open carburizing b) Hidden carburizing c) Quick C d) Pack C 35. The process of decomposition martensite structure, by heating martensitic steel below its critical temperature is called as _____ a) Austenitizing b) Quenching c) Tempering d) None 36. Annealing of steel is done to impart which one of the following property on steel? a) Hardness b) toughness c) ductility d) brittleness 37. Quenching operation is usually followed by ______. a) Annealing b) Normalising c) Tempering d) None 38. Steel can be hardened quickly by the process of ______. a) Induction hardening b) Cyaniding c) Nitriding d) Carburising 39. The hardness of steel increases if it contains _____. a) Pearlite b) Ferrite c) Cementite d) Martensite 40. Austenite in steel is transformed into “fine pearlite structure” by ______. a) Annealing b) Normalising c) Tempering d) Hardening 41. During heat treatment, the formation of thick layer of scale on the surface of steel articles is mainly due to a) Excessive hardness b) Oxidation c) Reduction d) Coarse grain structure 42. In flame hardening oxy-acetylene flame is used. a) True b) False 43. _____ can be used as fuel in open hearth furnace. a) Liquid fuels b) coke oven gas c) producer gas d) any of the above MEM - Unit 6 Viren Bhirdi - BSIET Page 3 of 7 44. Induction hardening is basically ______. a) carburizing process b) surface hardening process c) core hardening process d) None of these 45. One of the following is not the purpose of full annealing a) Refine grains b) induces softness c) remove strain and stresses d) produces hardest material 46. _____ furnace is used for steel only. a) Cupola b) Open hearth c) Indirect arc furnace d) All 47. One of the following structure is least hard. a) Pearlite b) Martensite c) Austenite d) Sorbite 48. Case depth of gas carburizing is up to ______ a) 0.2-0.5 mm b) 0.4-0.6 mm c) 0.7-0.8 mm d) 0.9-1.0 mm 49. A modified quenching procedure used to minimize distortion & cracking that may develop during uneven cooling the heat treated material is _____ a) Austempering b) Martempering c) Tempering d) All 50. Insufficient hardness after tempering may be due to ______ a) Tempering temp too low b) Tempering temp too high c) oxidizing atmosphere in the furnace d) any of the above 51. Full muffle type furnaces protect the steel from oxidation by ____ a) circulating the gases around the chamber containing steel b) circulating the gases in the chamber containing steel c) Both a & b d) None of these 52. ______°C temperature range represents the tempering temperature for C30 steel. a) 100-150 b) 550-660 c) 860-890 d) 1400-1450 53. Annealing of steel is done to impart which one of the following property on steel? a) Hardness b) Toughness c) Ductility d) Brittleness 54. During hardening soft spots can be avoided by ______. a) using a more effective cooling medium b) protecting against decarburization in heating c) obtaining a more homogeneous structure employing annealing or normalizing before hardening d) All the above 55. _____ is/are heat treatment processes. a) Annealing b) Normalising c) Tempering d) All 56. Defect in steel due to heat treatment ______. a) Black fracture b) Warping c) Soft spot d) All 57. In normalising process, the hypo-eutectiod steel is heated from 30° C to 50° C above the upper critical temperature and then cooled in still air. a) True b) False 58. The alloying element which can replace tungsten in high speed steels is ____ a) nickel b) vanadium c) cobalt d) molybdenum MEM - Unit 6 Viren Bhirdi - BSIET Page 4 of 7 59. In induction hardening ____ is high.
Recommended publications
  • Progress the Business and Technology of Heat Treating ® May/June 2008 • Volume 8, Number 3
    An ASM International® HEATPublication TREATING PROGRESS THE BUSINESS AND TECHNOLOGY OF HEAT TREATING ® www.asminternational.org MAY/JUNE 2008 • VOLUME 8, NUMBER 3 HEAT TREATMENT OF LANDING GEAR HEAT TREAT SIMULATION MICROWAVE HEATING SM Aircraft landing gear, such as on this U.S. Navy FA18 fighter jet, must perform under severe loading conditions and in many different environments. HEAT TREATMENT OF LANDING GEAR The heat treatment of rguably, landing gear has Alloys Used perhaps the most stringent The alloys used for landing gear landing gear is a complex requirements for perform- have remained relatively constant operation requiring ance. They must perform over the past several decades. Alloys A under severe loading con- like 300M and HP9-4-30, as well as the precise control of time, ditions and in many different envi- newer alloys AF-1410 and AerMet ronments. They have complex shapes 100, are in use today on commercial temperature, and carbon and thick sections. and military aircraft. Newer alloys like control. Understanding the Alloys used in these applications Ferrium S53, a high-strength stainless must have high strengths between steel alloy, have been proposed for interaction of quenching, 260 to 300 ksi (1,792 to 2,068 MPa) landing gear applications. The typical racking, and distortion and excellent fracture toughness (up chemical compositions of these alloys to100 ksi in.1/2, or 110 MPa×m0.5). are listed in Table 1. contributes to reduced To achieve these design and per- The alloy 300M (Timken Co., distortion and residual formance goals, heat treatments Canton, Ohio; www.timken.com) is have been developed to extract the a low-alloy, vacuum-melted steel of stress.
    [Show full text]
  • Effects of Carburization Time and Temperature on the Mechanical Properties of Carburized Mild Steel, Using Activated Carbon As Carburizer
    Materials Research, Vol. 12, No. 4, 483-487, 2009 © 2009 Effects of Carburization Time and Temperature on the Mechanical Properties of Carburized Mild Steel, Using Activated Carbon as Carburizer Fatai Olufemi Aramidea,*, Simeon Ademola Ibitoyeb, Isiaka Oluwole Oladelea, Joseph Olatunde Borodea aMetallurgical and Materials Engineering Department, Federal University of Technology, Akure, Ondo State, Nigeria bMaterials Science and Engineering Department, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria Received: July 31, 2009; Revised: September 25, 2009 Due to the complexity of controlling parameters in carburization, there has been relatively little work on process variables during the surface hardening process. This work focuses on the effects of the carburizing temperature and time on the mechanical properties of mild steel carburized with activated carbon, at 850, 900 and 950 °C, soaked at the carburizing temperature for 15 and 30 minutes, quenched in oil, tempered at 550 °C and held for 60 minutes. Prior carburization process, standard test samples were prepared from the as received specimen for tensile and impact tests. After carburization process, the test samples were subjected to the standard test and from the data obtained, ultimate tensile strength, engineering strain, impact strength, Youngs’ moduli were calculated. The case and core hardness of the carburized tempered samples were measured. It was observed that the mechanical properties of mild steels were found to be strongly influenced by the process of carburization, carburizing temperature and soaking time at carburizing temperature. It was concluded that the optimum combination of mechanical properties is achieved at the carburizing temperature of 900 °C followed by oil quenching and tempering at 550 °C.
    [Show full text]
  • Crucible A2 Data Sheet
    CRUCIBLE DATA SHEET Airkool (AISI A2) is an air-hardening medium alloy tool steel ® Issue #1 which is heat treatable to HRC 60-62. It has wear resistance AIRKOOL intermediate between the oil hardening tool steels (O1) and (AISI A2) the high carbon chromium tool steels (D2). Because it offers a combination of good toughness along with moderate Carbon 1.00% wear resistance, it has been widely used for many years in Manganese 0.85% variety of cold work applications which require fairly high abrasion resistance but where the higher carbon/ high Chromium 5.25% chromium steels are prone to chipping and cracking. Molybdenum 1.10% Airkool is quite easily machined in the annealed condition Vanadium 0.25% and, like other air-hardening tool steels, exhibits minimal distortion on hardening, making it an excellent choice for dies of complicated design. Physical Properties Elastic Modulus 30 X 106 psi (207 GPa) Density 0.284 lbs./in3 (7.86 g/cm3) Thermal Conductivity Tool Steel Comparagraph BTU/hr-ft-°F W/m-°K cal/cm-s-°C at 200°F (95°C) 15 26 0.062 Coefficient of Thermal Expansion ° ° Toughness in/in/ F mm/mm/ C ° ° -6 -6 Wear Resistance 70-500 F (20-260 C) 5.91 X10 (10.6 X10 ) 70-800°F (20-425°C) 7.19 X10-6 (12.9 X10-6) 70-1000°F (20-540°C) 7.76 X10-6 (14.0 X10-6) 70-1200°F (20-650°C) 7.91 X10-6 (14.2 X10-6) Relative Values Mechanical Properties Heat Treatment(1) Impact Wear Austenitizing Toughness(2) Resistance(3) Temperature HRC ft.-lb.
    [Show full text]
  • Study the Microstructure and Mechanical Properties of High
    Engineering and Technology Journal Vol. 37, Part A. No. 04, 2019 DOI: http://dx.doi.org/10.30684/etj.37.4A.1 Ali H. Ataiwi Study the Microstructure and Mechanical University of Technology, Materials Engineering Properties of High Chromium White Cast Department, Baghdad, Iraq. Iron (HCWCI) under Different Martempering [email protected] Quenching Mediums. Zainab A. Betti University of Technology, Materials Engineering Abstract This study aims to find the effect of hydroxide mixture as a quenching Department, Baghdad, Iraq medium in martempering heat treatment on microstructure and mechanical properties of high chromium white cast iron. This mixture is cheaper and more available than the ordinary nitrate mixture in Iraqi markets. High chromium white cast iron is used in mining, crushing and cement plants as mill liners and Received on: 14/01/2019 it is subjected to extreme conditions of wear and impact that cause failure, Accepted on: 27/02/2019 reduction in life and raise the cost of repairing. Hence it is important to Published online: 25/04/2019 improve its mechanical properties. In this study, two types of quenching mediums were used:(50% NaOH: 50% KOH ) mixture and (50% NaNO3 + 50 % KNO3) mixture. The specimens were austenitized at 950°C for 1 hr then the first group was quenched in nitrate mixture, and the other was quenched in hydroxide mixture both at about 350°C for (1/2, 2,4,6,8) hr. The results showed an increase in hardness and decrease in toughness for both mixtures, and the higher hardness value was found for both of the mixtures at martempering temperature 350°C for 4hr quenching time.
    [Show full text]
  • Cold Rolled Steel Coils Arcelormittal Europe
    ENVIRONMENTAL PRODUCT DECLARATION as per ISO 14025 and EN 15804 Owner of the Declaration ArcelorMittal Europe - Flat Products Programme holder Institut Bauen und Umwelt e.V. (IBU) Publisher Institut Bauen und Umwelt e.V. (IBU) Declaration number EPD-ARC-20200027-CBD1-EN ECO EPD Ref. No. ECO-00001269 Issue date 10/07/2020 Valid to 09/07/2025 Cold Rolled Steel Coils ArcelorMittal Europe www.ibu-epd.com | https://epd-online.com Umwelt Produktdeklaration Name des Herstellers – Name des Produkts General Information ArcelorMittal Europe Cold Rolled Steel Coils Programme holder Owner of the declaration IBU – Institut Bauen und Umwelt e.V. ArcelorMittal Europe – Flat Products Panoramastr. 1 24-26 Boulevard d’Avranches 10178 Berlin L-1160 Luxembourg Germany Luxembourg Declaration number Declared product / declared unit EPD-ARC-20200027-CBD1-EN The declaration applies to 1 ton of cold rolled steel coil. This declaration is based on the product Scope: category rules: The Life Cycle Assessment is based on data collected Structural steels, 07.2014 from the ArcelorMittal plants producing Cold Rolled (PCR checked and approved by the SVR) Coils, representing 95 % of the annual production from 2015. Issue date 10/07/2020 The owner of the declaration shall be liable for the underlying information and evidence; the IBU shall not Valid to be liable with respect to manufacturer information, life cycle assessment data and evidences. 09/07/2025 Verification The standard EN 15804 serves as the core PCR Independent verification of the declaration and data according to ISO 14025:2010 Dipl. Ing. Hans Peters internally x externally (chairman of Institut Bauen und Umwelt e.V.) Dr.
    [Show full text]
  • Effect of Heat Treatment (Ferritizing) on Chemical Composition, Microstructure, Physical Properties and Corrosion Behaviour of Spheroidal Ductile Cast Iron
    Asian Journal of Chemistry Vol. 19, No. 6 (2007), 4665-4673 Effect of Heat Treatment (Ferritizing) on Chemical Composition, Microstructure, Physical Properties and Corrosion Behaviour of Spheroidal Ductile Cast Iron A.R. ISMAEEL*, S.S. ABDEL REHIM† and A.E. ABDOU‡ Department of Chemistry, Faculty of Science, Garyounis University, Benghazi, Libya E-mail: [email protected] Two steps ferritizing technique was applied on ductile cast iron samples by austenitizing at 900ºC, air cooling to produce pearlite, ferritizing by reheating samples for different times at 700ºC and air cooling to room temperature. Chemical analysis and microstructure showed that as ferritizing time increased, an increase of percentage of ferrite, decrease of pearlite, with corresponding decrease in cementite and increase of free carbon in the form of spheroidal graphite. These changes explain the changes of physical (mechanical) properties repre- sented in the increase of percentage elongation, decrease of tensile strength and decrease in brinle hardness. Weight loss corrosion test technique was followed for investigation of corrosion rate of heat treated samples in 0.1 N H2SO4 solution, which show decrease in corrosion rate with increased ferritizing time. This was explained due to decrease of cathodic sites represented in cementite forming pearlitic lamella. The exception was in the early step of ferritizing, where the corrosion rate increased due to formation of secondary graphite acting as effec- tive cathodic sites. Key Words: Ferritizing, Pearlite, Austenitizing, Microstructure, Cementite, Spheroidal graphite, Cathodic, Corrosion, Secondary graphite. INTRODUCTION Ductile (nodular or spherulitic graphite) cast iron in which a part or all of the carbon is present in the form of a tiny spherical balls, of average 33 to 37 µm1-4.
    [Show full text]
  • Heat Treating of Aluminum Alloys
    ASM Handbook, Volume 4: Heat Treating Copyright © 1991 ASM International® ASM Handbook Committee, p 841-879 All rights reserved. DOI: 10.1361/asmhba0001205 www.asminternational.org Heat Treating of Aluminum Alloys HEAT TREATING in its broadest sense, • Aluminum-copper-magnesium systems The mechanism of strengthening from refers to any of the heating and cooling (magnesium intensifies precipitation) precipitation involves the formation of co- operations that are performed for the pur- • Aluminum-magnesium-silicon systems herent clusters of solute atoms (that is, the pose of changing the mechanical properties, with strengthening from Mg2Si solute atoms have collected into a cluster the metallurgical structure, or the residual • Aluminum-zinc-magnesium systems with but still have the same crystal structure as stress state of a metal product. When the strengthening from MgZn2 the solvent phase). This causes a great deal term is applied to aluminum alloys, howev- • Aluminum-zinc-magnesium-copper sys- of strain because of mismatch in size be- er, its use frequently is restricted to the tems tween the solvent and solute atoms. Conse- specific operations' employed to increase quently, the presence of the precipitate par- strength and hardness of the precipitation- The general requirement for precipitation ticles, and even more importantly the strain hardenable wrought and cast alloys. These strengthening of supersaturated solid solu- fields in the matrix surrounding the coher- usually are referred to as the "heat-treat- tions involves the formation of finely dis- ent particles, provide higher strength by able" alloys to distinguish them from those persed precipitates during aging heat treat- obstructing and retarding the movement of alloys in which no significant strengthening ments (which may include either natural aging dislocations.
    [Show full text]
  • Laboratory Furnaces and Dryers
    CATALOG Laboratory furnaces and dryers Art of heating TABLE OF CONTENTS Our business partners 4 LAC – who we are 5 How to select a furnace 6 Choosing a furnace according to batch processing technology 8 Furnaces for temperatures 120 – 850 °C S – Dryers up to 200 and 300 °C 10 PP – Tempering furnace up to 450, 650 or 850 °C 12 Furnaces for temperatures 650 – 1340 °C PKR - Gas-tight chamber furnace up to 950 and 1100 °C 14 PKRC - Gas-tight chamber furnace with air circulation up to 950 and 1100 °C 16 LZ – Ashing furnace up to 1100 °C 18 LE – Economy laboratory furnace up to 1100 °C 20 L – Universal laboratory furnace up to 1200 °C 22 LMH – Horizontal muffle furnace up to 1200 °C 24 LMV – Vertical muffle furnace up to 1200 °C 26 LG - Gravimetric furnace up to 1200 °C 28 PKE - Hardening furnace up to 1280 °C 30 LT – Tube furnace up to 1300 °C 32 LSP – Five-zone gradient furnace up to 1300 °C 34 LH - Laboratory furnace up to 1340 °C 36 Furnaces for temperatures 1200 – 1800 °C LHS – Laboratory furnace with silit rods for up to 1400 and 1500 °C 38 VP – High-temperature furnace for up to 1600, 1700 and 1800 °C 40 Custom-made furnaces for special applications CHTZ - Small workplace for chemical heat treatment of non-ferrous materials up to 950 °C 42 SKM - Hardening work-station laboratory table up to 1340 °C 43 LH 30 atyp - Hardening furnace up to 1200 °C 44 L 09 atyp - Bottom-loading laboratory chamber furnace up to 1200 °C 45 PKE 25 atyp - Hardening chamber furnace with protective gas supply container up to 1200 °C 46 LT 50 atyp - Tube furnace with programmable servo-drive up to 1300 °C 47 LT 150 and LT 300 atyp - Activating tube furnace with glass retort up to 450 °C 47 LT 90 atyp - Tube furnace for mechanical testing of materials up to 1100 °C 47 Measurement and regulation 48 What (not) to choose – description of accessories 50 OUR PARTNERS 100 NEJLEPŠÍCH ČESKÝCH FIREM ROKU 2015 4 LAC – WHO WE ARE LAC – Who We Are We have over 240 employees and have produced more than 13,000 furnaces and dryers.
    [Show full text]
  • Materials Technology – Placement
    MATERIAL TECHNOLOGY 01. An eutectoid steel consists of A. Wholly pearlite B. Pearlite and ferrite C. Wholly austenite D. Pearlite and cementite ANSWER: A 02. Iron-carbon alloys containing 1.7 to 4.3% carbon are known as A. Eutectic cast irons B. Hypo-eutectic cast irons C. Hyper-eutectic cast irons D. Eutectoid cast irons ANSWER: B 03. The hardness of steel increases if it contains A. Pearlite B. Ferrite C. Cementite D. Martensite ANSWER: C 04. Pearlite is a combination of A. Ferrite and cementite B. Ferrite and austenite C. Ferrite and iron graphite D. Pearlite and ferrite ANSWER: A 05. Austenite is a combination of A. Ferrite and cementite B. Cementite and gamma iron C. Ferrite and austenite D. Pearlite and ferrite ANSWER: B 06. Maximum percentage of carbon in ferrite is A. 0.025% B. 0.06% C. 0.1% D. 0.25% ANSWER: A 07. Maximum percentage of carbon in austenite is A. 0.025% B. 0.8% 1 C. 1.25% D. 1.7% ANSWER: D 08. Pure iron is the structure of A. Ferrite B. Pearlite C. Austenite D. Ferrite and pearlite ANSWER: A 09. Austenite phase in Iron-Carbon equilibrium diagram _______ A. Is face centered cubic structure B. Has magnetic phase C. Exists below 727o C D. Has body centered cubic structure ANSWER: A 10. What is the crystal structure of Alpha-ferrite? A. Body centered cubic structure B. Face centered cubic structure C. Orthorhombic crystal structure D. Tetragonal crystal structure ANSWER: A 11. In Iron-Carbon equilibrium diagram, at which temperature cementite changes fromferromagnetic to paramagnetic character? A.
    [Show full text]
  • HISTORY of METALLURGY 2Nd Edition
    A HISTORY OF METALLURGY 2nd Edition A HISTORY OF METALLURGY Second Edition R. F. Tylecote MANEY FOR THE INSTITUTE OF MATERIALS Book B0789 First published in paperback in 2002 by Maney Publishing 1 Carlton House Terrace London SW1Y 5DB for the Institute of Materials First published in 1976 Reprinted in 1979 2nd edn published 1992 © The Institute of Materials 1992 All rights reserved ISBN 1-902653-79-3 Printed and bound in the UK by Antony Rowe Ltd v Contents Preface to the Second Edition vii Foreword viii Acknowledgements ix Introduction xi 1 Metals and ores in the Neolithic period 1 2 The technique and development of early copper smelting 7 3 The Early Bronze Age 18 4 The Full Bronze Age 35 5 The Early Iron Age 47 6 The Roman Iron Age 62 7 The Migration and medieval period 75 8 Post-medieval metallurgy 95 9 The Industrial Revolution; AD 1720-1850 122 10 More recent times; AD 1850-1950 164 11 The contributions of the scientists 177 Appendixes: 188 Technical Glossary 188 Note on units of weight, stress, and hardness 190 Table of elements 190 Approximate date of start of metal ages 191 Chinese chronology 191 Journals consulted and abbreviations 191 Principal works consulted 193 Maps 1-6 194-198 Subject and name index 199 vii Preface to the Second Edition The first edition was published in 1976 and an enormous increase in the general interest in the subject of archeometallurgy has taken place since then. Much of this relates to the early phases and has been discussed in Proceedings of International Conferences.
    [Show full text]
  • An Introduction to Nitriding
    01_Nitriding.qxd 9/30/03 9:58 AM Page 1 © 2003 ASM International. All Rights Reserved. www.asminternational.org Practical Nitriding and Ferritic Nitrocarburizing (#06950G) CHAPTER 1 An Introduction to Nitriding THE NITRIDING PROCESS, first developed in the early 1900s, con- tinues to play an important role in many industrial applications. Along with the derivative nitrocarburizing process, nitriding often is used in the manufacture of aircraft, bearings, automotive components, textile machin- ery, and turbine generation systems. Though wrapped in a bit of “alchemi- cal mystery,” it remains the simplest of the case hardening techniques. The secret of the nitriding process is that it does not require a phase change from ferrite to austenite, nor does it require a further change from austenite to martensite. In other words, the steel remains in the ferrite phase (or cementite, depending on alloy composition) during the complete proce- dure. This means that the molecular structure of the ferrite (body-centered cubic, or bcc, lattice) does not change its configuration or grow into the face-centered cubic (fcc) lattice characteristic of austenite, as occurs in more conventional methods such as carburizing. Furthermore, because only free cooling takes place, rather than rapid cooling or quenching, no subsequent transformation from austenite to martensite occurs. Again, there is no molecular size change and, more importantly, no dimensional change, only slight growth due to the volumetric change of the steel sur- face caused by the nitrogen diffusion. What can (and does) produce distor- tion are the induced surface stresses being released by the heat of the process, causing movement in the form of twisting and bending.
    [Show full text]
  • Crucible Steel Site
    C~240:i ~.- tiXiUtlBJ IUrfS N70 If-tC· ,.),~ ..d-IN..~'.w~~.,f. LVNQi .................... L; t lAYI IflO ,- (. l~ ~l. FC'; ~~., ~ ( 'I'biiM ~ • Dul'kIn"- Jr •• 1fitora.y loJ' 'lAJ.AtLff JOHN r LYNCH ac IAAfO&'d ,laoe II J. S. C. •..,dc. JIIIW Jen~ 623-514) t.- 240.3 -9.9, 't7IUl:OA COURt' or .. JUSn C2IlUtC:DY DIV18JOIr ... uarsOll comrrr DOCiCItt 110. - JU&A.Ic VA.LLIT em ., COMC.tIII pubUo oorporation. .. ftAlwrlrr. ~' , -ft- gyu, ACtION CSISPIe\ lIT CAOCJIILa 'TD1. ClDalOU-TIOIr or Aaal~, 'aLDlJIQ M:lIUQJ. 1000 Iouth Pourt.b 'u••t Hard.on, -.v ".ne)'. 110 OOqlOnUon. hav1nog .ita principal oftice In the City ot . ... n, 'Oo\IAt)' Of ".u.. and 't.ate ot .WO .leney, .ar- ~.tl ... 1. ,ulAtUt u • body oorporate and politic. OJ'Nted• • tate ot Mew ".ney. 2. .1dlltUt• La .,.._te4 with tull pow.r and authority' and .u ch&rved with the duty ~ prevent the pollution ot the ..... ic tift%' aDd ita t.ributad ••• &Ad baa full power and au- thority to a •• which aU. power. &Ad duU •• are defined, ~te4 aDd hIpoaed aDder the la~ of the State of • ..., Jeruy. 1 '. = ;--.,· ... ; ..... 0 't'~~~ TIERRA-B-015617 . r .: a••• t forth In the Aevb.d Statute. of 11.-.oJ.uoy, 1937. '1'iUe . 58, Chapter 14, .a .uppl_ented and "'nded. '\. 3. Plaintiff further ahowl! that pur.uant to the powwr. and authority "..ted 1n it, W'Ider and by v1rtue of tho .tatute aforeaa14, the plAintiff. aet..1..n9W'Ider contract with certain -anicipalitl •• withln the ..... le valley S~rai. eo..LI.ionor.' C DbU'lct ••• def1Ae4 by 1IIv.
    [Show full text]