A Review of VEGF/VEGFR-Targeted Therapeutics for Recurrent Glioblastoma

Total Page:16

File Type:pdf, Size:1020Kb

A Review of VEGF/VEGFR-Targeted Therapeutics for Recurrent Glioblastoma 414 Original Article A Review of VEGF/VEGFR-Targeted Therapeutics for Recurrent Glioblastoma David A. Reardon, MDa,b; Scott Turner, MDc; Katherine B. Peters, MD, PhDc; Annick Desjardins, MDc; Sridharan Gururangan, MDa,b; John H. Sampson, MD, PhDa; Roger E. McLendon, MDd; James E. Herndon II, PhDe; Lee W. Jones, PhDf; John P. Kirkpatrick, MD, PhDf; Allan H. Friedman, MDa; James J. Vredenburgh, MDc; Darell D. Bigner, MD, PhDd; and Henry S. Friedman, MDa,b; Durham, North Carolina Key Words ability effect of VEGF inhibitors, the Radiologic Assessment in Neu- Glioblastoma, angiogenesis, vascular endothelial growth factor, ro-Oncology (RANO) criteria were recently implemented to bet- malignant glioma ter assess response among patients with glioblastoma. Although bevacizumab improves survival and quality of life, eventual tumor progression is the norm. Better understanding of resistance mech- Abstract anisms to VEGF inhibitors and identification of effective therapy Glioblastoma, the most common primary malignant brain tumor after bevacizumab progression are currently a critical need for pa- among adults, is a highly angiogenic and deadly tumor. Angiogen- tients with glioblastoma. (JNCCN 2011;9:414–427) esis in glioblastoma, driven by hypoxia-dependent and indepen- dent mechanisms, is primarily mediated by vascular endothelial growth factor (VEGF), and generates blood vessels with distinctive features. The outcome for patients with recurrent glioblastoma is poor because of ineffective therapies. However, recent encourag- ing rates of radiographic response and progression-free survival, Malignant gliomas, including the most common sub- and adequate safety, led the FDA to grant accelerated approval of type of glioblastoma, are rapidly growing destructive tu- bevacizumab, a humanized monoclonal antibody against VEGF, for mors that extensively invade locally but rarely metasta- the treatment of recurrent glioblastoma in May 2009. These results size. The current standard of care, including maximum have triggered significant interest in additional antiangiogenic safe resection followed by radiation therapy and temo- agents and therapeutic strategies for patients with both recurrent and newly diagnosed glioblastoma. Given the potent antiperme- zolomide chemotherapy, achieves median progression- free and overall survivals of only 6.9 and 14.7 months, respectively.1 After progression, salvage therapies have historically achieved radiographic response and From the Departments of aSurgery, bPediatrics, cMedicine, 6-month progression-free survival rates of 5% to 15%, d e f Pathology, Cancer Center Biostatistics, and Radiation Oncology, 2–4 The Preston Robert Tisch Brain Tumor Center, Duke University respectively. Several factors contribute to poor treat- Medical Center, Durham, North Carolina. ment response, including frequent de novo and acquired Submitted December 14, 2010; accepted for publication March 7, 2011. resistance, heterogeneity across and within tumors, Drs. Turner, Peters, Desjardins, Gururangan, Sampson, McLendon, complex and redundant intracellular pathways regulat- Herndon, Jones, Allan Friedman, and Bigner, have disclosed that they have no financial interests, arrangements, or affiliations with ing proliferation and survival, and restricted central ner- the manufacturers of any products discussed in their article or their competitors. Dr. Reardon has disclosed that he is a consultant vous system (CNS) delivery because of the blood–brain for and on the speakers’ bureau for Merck & Co., Inc./Schering- barrier and high interstitial peritumoral pressures.5,6 Plough Corporation and Roche/Genentech, Inc. Dr. Kirkpatrick has disclosed that he receives research support from Genentech, Inc. Given this background, recent clinical studies have Dr. Vredenburgh has disclosed that he is a consultant for Roche, shown substantive radiographic responses and improved and is on the advisory board and speakers’ bureau for Genentech, Inc. Dr. Henry Friedman has disclosed that he is on the advisory progression-free survival with bevacizumab, a human- board and speakers’ bureau for Genentech, Inc. Correspondence: David A. Reardon, MD, The Preston Robert Tisch ized monoclonal antibody targeting vascular endothelial Brain Tumor Center at Duke, Duke University Medical Center, Box growth factor (VEGF),7 among patients with recurrent 3624, Durham, NC 27710. E-mail: [email protected] malignant glioma.8–11 However, initial enthusiasm has © JNCCN–Journal of the National Comprehensive Cancer Network | Volume 9 Number 4 | April 2011 Original Article 415 VEGF Therapy for Glioblastoma been tempered by relatively modest improvements and placenta growth factor [PlGF]). VEGF-A, the in overall survival, difficulties in assessing response best characterized family member, typically localizes after anti-VEGF therapeutics, and an inability to adjacent to perinecrotic regions within glioma pseu- identify effective therapy after bevacizumab failure. dopalisades,29 increases with higher glioma grade,24,30 Nonetheless, initial results have sparked a flurry of and is associated with poor outcome among patients studies attempting to more effectively exploit this with glioblastoma.30,31 VEGF-A isoforms generated therapeutic strategy. This article reviews the de- by alternative splicing can also originate from host velopment, current status, and future challenges of sources, such as invading macrophages and platelets, VEGF-targeting therapeutics for patients with recur- whereas tumor stroma can sequester larger isoforms rent glioblastoma. that are enzymatically cleaved and released.32,33 The VEGF receptor (VEGFR) family includes VEGFR-1 (Flt-1), VEGFR-2 (KDR), VEGFR-3, neuropilin-1 Angiogenesis in Malignant Glioma (NRP-1), and NRP-2, which exhibit different bind- Glioblastoma is among the most angiogenic of ma- ing affinities of the VEGF homologs. VEGFR-1 and lignancies.12 Angiogenic tumor vessels differ mark- VEGFR-2 regulate angiogenesis, whereas VEGFR-3 edly from normal vessels. The dense network of regulates lymphangiogenesis. The NRPs, originally angiogenic vessels in glioblastoma typically display defined as mediators of axonal guidance in the CNS, structural, functional, and biochemical abnormali- also function as VEGFR tyrosine kinase corecep- ties, including large endothelial cell fenestrae, defi- tors.34 VEGF binding to VEGFRs on tumor blood cient basement membrane, decreased pericytes and vessels markedly enhances permeability and acti- smooth muscle cells, haphazard interconnections vates endothelial cell proliferation, survival, and with saccular blind-ended extensions, complex tor- migration.35 Although primarily expressed by tumor tuosity, and dysregulated transport pathways.13–18 endothelium, several solid tumors, including glio- These changes culminate in leaky and unstable blastoma, express VEGFRs, which may function in blood flow, despite increased vessel density, which an autocrine manner to promote tumor growth.36 generates hypoxia, acidosis, and increased interstitial Tumor angiogenesis recruits several bone mar- pressure within the tumor microenvironment.19,20 row–derived proangiogenic cells, including endo- Angiogenesis in glioblastoma is driven by both thelial progenitor cells (EPCs) and pericyte pro- hypoxia-dependent and -independent mechanisms. genitor cells, which support tumor vessels, and Hypoxia, a prevalent feature in malignant glioma, CD45+ “vascular modulatory” myeloid cells. The inactivates prolyl hydroxylases, leading to hypoxia- latter include tumor-associated macrophages and inducible factor-1α (HIF-1α) accumulation. HIF- monocyte precursors expressing CD11b+, Tie-2, 1α dimerizes with constitutively expressed HIF-1β, or VEGFR-1.37–40 Several cytokines chemoattract translocates to the nucleus, and activates several these cells from the bone marrow to the tumor, hypoxia-associated genes, including VEGF.21 Inde- including VEGF, granulocyte-macrophage colony- pendent of hypoxia, glioblastomas commonly exhib- stimulating factor, and stromal-derived factor-1α it dysregulated activation of mitogenic and survival (SDF-1α).41–44 Bone marrow–derived progenitors pathways, including the Ras/mitogen-activated pro- significantly increase with hypoxia45 or after either tein kinase (MAPK) and phosphatidylinositol 3-ki- radiation therapy or cytotoxic chemotherapy.46,47 nase (PI3K)/akt cascades that upregulate VEGF and Furthermore, these cells can “home” to intracranial other proangiogenic factors.22,23 gliomas,48 and their levels are increased in patients Although VEGF is the prominent angiogenic with malignant glioma.42,49 Antiangiogenic therapy factor, glioblastoma tumors frequently express other can decrease circulating EPC levels in C6 murine proangiogenic factors, such as platelet-derived growth glioma subcutaneous xenografts,50 whereas SDF-1α factor (PDGF), fibroblast growth factor (FGF),24 in- inhibition can diminish recruitment and infiltra- tegrins, hepatocyte growth factor/scatter factor,25 tion of monocyte precursors.45,51 angiopoietins,26 ephrins,27 and interleukin-8.28 The Growing evidence links tumor angiogenesis with VEGF gene family includes 6 secreted glycoproteins cancer stem cell biology. Tumors derived from glioma (VEGF-A, VEGF-B, VEGF-C, VEGF-D, VEGF-E, stem cells are more angiogenic and have higher ves- © JNCCN–Journal of the National Comprehensive Cancer Network | Volume 9 Number 4 | April 2011 416 Original Article Reardon et al. sel densities than those derived from nonglioma stem subsequent studies confirm that anti-VEGF
Recommended publications
  • Patents Related to EPH Receptors and Ligands
    NEWS & ANALYSIS discuss EPH receptor–ephrin signalling Patents related to EPH receptors and its role in disorders such as tumour and ligands growth and progression, nerve injury and inflammation, and highlight therapeutic EPH receptors are a family of receptor approaches that are currently under tyrosine kinases that, together with their investigation. Here in TABLE 1 we highlight ligands, are involved in cell positioning, patent applications published in the past tissue and organ patterning as well as the 3 years related to EPH receptors and ligands. control of cell survival. In their Review Data were researched using the Espacenet on page 39, Lackman and colleagues database. Table 1 | Recent patent applications related to EPH receptors and ligands Nature Reviews | Drug Discovery Publication Applicants Subject numbers NZ 581397 AstraZeneca Pyrimidine compounds that inhibit EPH receptors and are useful for treating cancer HK 1108702 Sanford-Burnham Peptides that selectively bind to EPH type-B receptors (EPHBs); useful for tumour imaging and the Institute treatment of neoplastic disease, neurological disease and vascular disease US 2013091591 California Institute of During angiogenesis, arterial cells express ephrin B2, and its receptor EPHB4 is expressed on venous Technology cells; this distinction can be used in methods to alter angiogenesis and to assess the effect of drugs WO 2013052710 Expression Pathology Selected reaction monitoring mass spectrometry-based and multiple reaction monitoring mass spectrometry-based assays for quantifying
    [Show full text]
  • A Tyrosine Kinase Expression Signature Predicts the Post-Operative Clinical Outcome in Triple Negative Breast Cancers
    cancers Article A Tyrosine Kinase Expression Signature Predicts the Post-Operative Clinical Outcome in Triple Negative Breast Cancers Alexandre de Nonneville 1, Pascal Finetti 2 , José Adelaide 2, Éric Lambaudie 3, Patrice Viens 1, Anthony Gonçalves 1 , Daniel Birnbaum 2, Emilie Mamessier 2 and François Bertucci 1,2,* 1 Department of Medical Oncology, Institut Paoli-Calmettes, Aix-Marseille Univ, CRCM, CNRS, INSERM, 13000 Marseille, France 2 Laboratory of Predictive Oncology, Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, Inserm UMR1068, CNRS UMR725, Aix-Marseille Université, 13000 Marseille, France 3 Department of Surgical Oncology, Institut Paoli-Calmettes, Aix-Marseille Univ, CNRS, INSERM, CRCM, 13000 Marseille, France * Correspondence: [email protected]; Tel.: +33-4-91-22-35-37; Fax: +33-4-91-22-36-70 Received: 15 July 2019; Accepted: 9 August 2019; Published: 13 August 2019 Abstract: Triple negative breast cancer (TNBC) represent 15% of breast cancers. Histoclinical features and marketed prognostic gene expression signatures (GES) failed to identify good- and poor-prognosis patients. Tyrosine kinases (TK) represent potential prognostic and/or therapeutic targets for TNBC. We sought to define a prognostic TK GES in a large series of TNBC. mRNA expression and histoclinical data of 6379 early BCs were collected from 16 datasets. We searched for a TK-based GES associated with disease-free survival (DFS) and tested its robustness in an independent validation set. A total of 1226 samples were TNBC. In the learning set of samples (N = 825), we identified a 13-TK GES associated with DFS. This GES was associated with cell proliferation and immune response.
    [Show full text]
  • Functional Analysis of Somatic Mutations Affecting Receptor Tyrosine Kinase Family in Metastatic Colorectal Cancer
    Author Manuscript Published OnlineFirst on March 29, 2019; DOI: 10.1158/1535-7163.MCT-18-0582 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Functional analysis of somatic mutations affecting receptor tyrosine kinase family in metastatic colorectal cancer Leslie Duplaquet1, Martin Figeac2, Frédéric Leprêtre2, Charline Frandemiche3,4, Céline Villenet2, Shéhérazade Sebda2, Nasrin Sarafan-Vasseur5, Mélanie Bénozène1, Audrey Vinchent1, Gautier Goormachtigh1, Laurence Wicquart6, Nathalie Rousseau3, Ludivine Beaussire5, Stéphanie Truant7, Pierre Michel8, Jean-Christophe Sabourin9, Françoise Galateau-Sallé10, Marie-Christine Copin1,6, Gérard Zalcman11, Yvan De Launoit1, Véronique Fafeur1 and David Tulasne1 1 Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8161 - M3T – Mechanisms of Tumorigenesis and Target Therapies, F-59000 Lille, France. 2 Univ. Lille, Plateau de génomique fonctionnelle et structurale, CHU Lille, F-59000 Lille, France 3 TCBN - Tumorothèque Caen Basse-Normandie, F-14000 Caen, France. 4 Réseau Régional de Cancérologie – OncoBasseNormandie – F14000 Caen – France. 5 Normandie Univ, UNIROUEN, Inserm U1245, IRON group, Rouen University Hospital, Normandy Centre for Genomic and Personalized Medicine, F-76000 Rouen, France. 6 Tumorothèque du C2RC de Lille, F-59037 Lille, France. 7 Department of Digestive Surgery and Transplantation, CHU Lille, Univ Lille, 2 Avenue Oscar Lambret, 59037, Lille Cedex, France. 8 Department of hepato-gastroenterology, Rouen University Hospital, Normandie Univ, UNIROUEN, Inserm U1245, IRON group, F-76000 Rouen, France. 9 Department of Pathology, Normandy University, INSERM 1245, Rouen University Hospital, F 76 000 Rouen, France. 10 Department of Pathology, MESOPATH-MESOBANK, Centre León Bérard, Lyon, France. 11 Thoracic Oncology Department, CIC1425/CLIP2 Paris-Nord, Hôpital Bichat-Claude Bernard, Paris, France.
    [Show full text]
  • Ephrin-A Binding and Epha Receptor Expression Delineate the Matrix Compartment of the Striatum
    The Journal of Neuroscience, June 15, 1999, 19(12):4962–4971 Ephrin-A Binding and EphA Receptor Expression Delineate the Matrix Compartment of the Striatum L. Scott Janis, Robert M. Cassidy, and Lawrence F. Kromer Department of Cell Biology and Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC 20007 The striatum integrates limbic and neocortical inputs to regulate matrix neurons. In situ hybridization for EphA RTKs reveals that sensorimotor and psychomotor behaviors. This function is de- the two different ligand binding patterns strictly match pendent on the segregation of striatal projection neurons into the mRNA expression patterns of EphA4 and EphA7. anatomical and functional components, such as the striosome Ligand–receptor binding assays indicate that ephrin-A1 and and matrix compartments. In the present study the association ephrin-A4 selectively bind EphA4 but not EphA7 in the lysates of ephrin-A cell surface ligands and EphA receptor tyrosine of striatal tissue. Conversely, ephrin-A2, ephrin-A3, and kinases (RTKs) with the organization of these compartments ephrin-A5 bind EphA7 but not EphA4. These observations im- was determined in postnatal rats. Ephrin-A1 and ephrin-A4 plicate selective interactions between ephrin-A molecules and selectively bind to EphA receptors on neurons restricted to the EphA RTKs as potential mechanisms for regulating the com- matrix compartment. Binding is absent from the striosomes, partmental organization of the striatum. which were identified by m-opioid
    [Show full text]
  • Acquired Resistance to Dasatinib in Lung Cancer Cell Lines Conferred by DDR2 Gatekeeper Mutation and NF1 Loss
    Published OnlineFirst December 2, 2013; DOI: 10.1158/1535-7163.MCT-13-0817 Molecular Cancer Cancer Biology and Signal Transduction Therapeutics Acquired Resistance to Dasatinib in Lung Cancer Cell Lines Conferred by DDR2 Gatekeeper Mutation and NF1 Loss Ellen M. Beauchamp1, Brittany A. Woods1,7, Austin M. Dulak1, Li Tan3, Chunxiao Xu1, Nathanael S. Gray2, Adam J. Bass1,6, Kwok-kin Wong1,4, Matthew Meyerson1,5,6, and Peter S. Hammerman1,6 Abstract The treatment of non–small cell lung cancer has evolved dramatically over the past decade with the adoption of widespread use of effective targeted therapies in patients with distinct molecular alterations. In lung squamous cell carcinoma (lung SqCC), recent studies have suggested that DDR2 mutations are a biomarker for therapeutic response to dasatinib and clinical trials are underway testing this hypothesis. Although targeted therapeutics are typically quite effective as initial therapy for patients with lung cancer, nearly all patients develop resistance with long-term exposure to targeted drugs. Here, we use DDR2-dependent lung cancer cell lines to model acquired resistance to dasatinib therapy. We perform targeted exome sequencing to identify two distinct mechanisms of acquired resistance: acquisition of the T654I gatekeeper mutation in DDR2 and loss of NF1. We show that NF1 loss activates a bypass pathway, which confers ERK dependency downstream of RAS activation. These results indicate that acquired resistance to dasatinib can occur via both second-site mutations in DDR2 and by activation of bypass pathways. These data may help to anticipate mechanisms of resistance that may be identified in upcoming clinical trials of anti-DDR2 therapy in lung cancer and suggest strategies to overcome resistance.
    [Show full text]
  • Global DNA Methylation Profiling Reveals Silencing of a Secreted Form
    Oncogene (2007) 26, 4243–4252 & 2007 Nature Publishing Group All rights reserved 0950-9232/07 $30.00 www.nature.com/onc ORIGINAL ARTICLE Global DNA methylation profiling reveals silencing of a secreted form of Epha7in mouse and human germinal center B-cell lymphomas DW Dawson1, JS Hong1, RR Shen1, SW French1, JJ Troke1, Y-Z Wu2, S-S Chen2, D Gui1, M Regelson3, Y Marahrens3, HC Morse III4, J Said1, C Plass2 and MA Teitell1,5 1Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; 2Molecular Virology, Immunology and Medical Genetics, Division of Human Cancer Genetics, The Ohio State University, Columbus, OH, USA; 3Department of Human Genetics, The David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; 4Laboratory of Immunopathology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, MD, USA and 5Molecular Biology Institute, Institute for Stem Cell Biology and Medicine, California NanoSystems Institute, Institute for Cell Mimetic Studies and Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA Most human lymphomas originate from transformed Introduction germinal center (GC) B lymphocytes. While activating mutations and translocations of MYC, BCL2 and BCL6 The TCL1 oncoprotein augments AKT activation and promote specific GC lymphoma subtypes, other genetic downstream signaling to promote cell proliferation and and epigenetic modifications that contribute to malignant survival (Teitell, 2005). Dysregulated expression of progression in the GC remain poorly defined. Recently, TCL1 is a frequent molecular alteration in non-Hodgkin aberrant expression of the TCL1 proto-oncogene was lymphomas (NHLs) that arise by transformation of identified in major GC lymphoma subtypes.
    [Show full text]
  • Open Full Page
    Published OnlineFirst March 29, 2012; DOI: 10.1158/0008-5472.CAN-11-3015 Cancer Integrated Systems and Technologies Research Phosphoproteomics Identifies Driver Tyrosine Kinases in Sarcoma Cell Lines and Tumors Yun Bai1, Jiannong Li1, Bin Fang5, Arthur Edwards1, Guolin Zhang1, Marilyn Bui2, Steven Eschrich4, Soner Altiok2, John Koomen3,5, and Eric B. Haura1 Abstract Driver tyrosine kinase mutations are rare in sarcomas, and patterns of tyrosine phosphorylation are poorly understood. To better understand the signaling pathways active in sarcoma, we examined global tyrosine phosphorylation in sarcoma cell lines and human tumor samples. Anti-phosphotyrosine antibodies were used to purify tyrosine phosphorylated peptides, which were then identified by liquid chromatography and tandem mass spectrometry. The findings were validated with RNA interference, rescue, and small-molecule tyrosine kinase inhibitors. We identified 1,936 unique tyrosine phosphorylated peptides, corresponding to 844 unique phos- photyrosine proteins. In sarcoma cells alone, peptides corresponding to 39 tyrosine kinases were found. Four of 10 cell lines showed dependence on tyrosine kinases for growth and/or survival, including platelet-derived growth factor receptor (PDGFR)a, MET, insulin receptor/insulin-like growth factor receptor signaling, and SRC family kinase signaling. Rhabdomyosarcoma samples showed overexpression of PDGFRa in 13% of examined cases, and sarcomas showed abundant tyrosine phosphorylation and expression of a number of tyrosine phosphorylated tyrosine kinases, including DDR2, EphB4, TYR2, AXL, SRC, LYN, and FAK. Together, our findings suggest that integrating global phosphoproteomics with functional analyses with kinase inhibitors can identify drivers of sarcoma growth and survival. Cancer Res; 72(10); 2501–11. Ó2012 AACR. Introduction subtypes. Furthermore, many sarcomas harbor balanced Sarcomas are rare and diverse malignancies that arise from translocations that result in unique fusion proteins that have mesenchymal derived connective tissues.
    [Show full text]
  • EPH/Ephrin Profile and EPHB2 Expression Predicts Patient Survival in Breast Cancer
    www.impactjournals.com/oncotarget/ Oncotarget, Vol. 7, No. 16 EPH/ephrin profile and EPHB2 expression predicts patient survival in breast cancer Anna-Maria Husa1,2, Željana Magić1, Malin Larsson3, Tommy Fornander4, Gizeh Pérez-Tenorio1 1Department of Clinical and Experimental Medicine, Division of Oncology, Linköping University, Linköping, Sweden 2Current address: CCRI, Children’s Cancer Research Institute, St. Anna Kinderkrebsforschung e.V., Vienna, Austria 3Bioinformatics Infrastructure for Life Sciences (BILS) and Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden 4Department of Oncology, Karolinska University Hospital and Karolinska Institute, Stockholm, Sweden Correspondence to: Gizeh Pérez-Tenorio, e-mail: [email protected] Keywords: EPHB2, EPH family, TaqMan array, gene expression, protein expression Received: July 03, 2015 Accepted: January 23, 2016 Published: February 8, 2016 ABSTRACT The EPH and ephrins function as both receptor and ligands and the output on their complex signaling is currently investigated in cancer. Previous work shows that some EPH family members have clinical value in breast cancer, suggesting that this family could be a source of novel clinical targets. Here we quantified the mRNA expression levels of EPH receptors and their ligands, ephrins, in 65 node positive breast cancer samples by RT-PCR with TaqMan® Micro Fluidics Cards Microarray. Upon hierarchical clustering of the mRNA expression levels, we identified a subgroup of patients with high expression, and poor clinical outcome. EPHA2, EPHA4, EFNB1, EFNB2, EPHB2 and EPHB6 were significantly correlated with the cluster groups and particularly EPHB2 was an independent prognostic factor in multivariate analysis and in four public databases. The EPHB2 protein expression was also analyzed by immunohistochemistry in paraffin embedded material (cohort 2).
    [Show full text]
  • Protein Tyrosine Kinases: Their Roles and Their Targeting in Leukemia
    cancers Review Protein Tyrosine Kinases: Their Roles and Their Targeting in Leukemia Kalpana K. Bhanumathy 1,*, Amrutha Balagopal 1, Frederick S. Vizeacoumar 2 , Franco J. Vizeacoumar 1,3, Andrew Freywald 2 and Vincenzo Giambra 4,* 1 Division of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; [email protected] (A.B.); [email protected] (F.J.V.) 2 Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; [email protected] (F.S.V.); [email protected] (A.F.) 3 Cancer Research Department, Saskatchewan Cancer Agency, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada 4 Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, FG, Italy * Correspondence: [email protected] (K.K.B.); [email protected] (V.G.); Tel.: +1-(306)-716-7456 (K.K.B.); +39-0882-416574 (V.G.) Simple Summary: Protein phosphorylation is a key regulatory mechanism that controls a wide variety of cellular responses. This process is catalysed by the members of the protein kinase su- perfamily that are classified into two main families based on their ability to phosphorylate either tyrosine or serine and threonine residues in their substrates. Massive research efforts have been invested in dissecting the functions of tyrosine kinases, revealing their importance in the initiation and progression of human malignancies. Based on these investigations, numerous tyrosine kinase inhibitors have been included in clinical protocols and proved to be effective in targeted therapies for various haematological malignancies.
    [Show full text]
  • ALL1 Fusion Proteins Induce Deregulation of Epha7 and ERK Phosphorylation in Human Acute Leukemias
    ALL1 fusion proteins induce deregulation of EphA7 and ERK phosphorylation in human acute leukemias Hiroshi Nakanishi*, Tatsuya Nakamura*, Eli Canaani†, and Carlo M. Croce*‡ *Department of Molecular Virology, Immunology, and Medical Genetics and Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210; and †Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel Edited by Janet D. Rowley, University of Chicago Medical Center, Chicago, IL, and approved July 25, 2007 (received for review April 6, 2007) Erythropoietin-producing hepatoma-amplified sequence (Eph) re- studies revealed deregulation of some of the Eph/ephrin genes in ceptor tyrosine kinases and their cell-surface-bound ligands, the human malignancies, including up-regulation of ephrin-A1 or -B2 ephrins, function as a unique signaling system triggered by cell- in melanoma (2, 3), up-regulation of EphB2 in stomach cancer to-cell interaction and have been shown to mediate neurodevel- (4) and in breast cancer (5), and up-regulation of EphA2 in opmental processes. In addition, recent studies showed deregula- prostate (6), breast (7), and esophageal cancers (8), some of tion of some of Eph/ephrin genes in human malignancies, which were shown to be associated with tumor invasion or tumor suggesting the involvement of this signaling pathway in tumori- metastasis and therefore associated with poor prognosis. Con- genesis. The ALL1 (also termed MLL) gene on human chromosome versely, mutational inactivation of EphB2 was detected in pros- 11q23 was isolated by virtue of its involvement in recurrent tate (9) and colon cancers (10), suggesting tumor suppressor chromosome translocations associated with acute leukemias with function of this Eph receptor in the relevant tumors.
    [Show full text]
  • The Junction-Associated Protein AF-6 Interacts and Clusters with Specific
    The Junction-associated Protein AF-6 Interacts and Clusters with Specific Eph Receptor Tyrosine Kinases at Specialized Sites of Cell–Cell Contact in the Brain Michael Buchert,* Stefan Schneider,* Virginia Meskenaite,§ Mark T. Adams,* Eli Canaani,¶ Thomas Baechi,‡ Karin Moelling,* and Christopher M. Hovens* *Institut für Medizinische Virologie and ‡Elektronenmikroskopisches Zentrallabor, Universität Zürich; §Institut für Neuroinformatik, Universität Zürich/Eidgenössische Technische Hochschule, CH-8028 Zürich, Switzerland; and ¶Weizmann Institute for Science, Rehovot 76100, Israel Abstract. The AF-6/afadin protein, which contains a Eph receptors at postsynaptic membrane sites of exci- single PDZ domain, forms a peripheral component of tatory synapses in the hippocampus. Furthermore, cell membranes at specialized sites of cell–cell junc- AF-6 is a substrate for a subgroup of Eph receptors and tions. To identify potential receptor-binding targets of phosphorylation of AF-6 is dependent on a functional AF-6 we screened the PDZ domain of AF-6 against a kinase domain of the receptor. The physical interaction range of COOH-terminal peptides selected from recep- of endogenous AF-6 with Eph receptors is demon- tors having potential PDZ domain-binding termini. The strated by coimmunoprecipitation from whole rat brain PDZ domain of AF-6 interacts with a subset of mem- lysates. AF-6 is a candidate for mediating the clustering bers of the Eph subfamily of RTKs via its COOH ter- of Eph receptors at postsynaptic specializations in the minus both in vitro and in vivo. Cotransfection of a adult rat brain. green fluorescent protein-tagged AF-6 fusion protein with full-length Eph receptors into heterologous cells Key words: postsynaptic clustering • PDZ domains • induces a clustering of the Eph receptors and AF-6 at receptor tyrosine kinases • neuron physiology • Ras- sites of cell–cell contact.
    [Show full text]
  • Eph Receptor Signalling: from Catalytic to Non-Catalytic Functions
    Oncogene (2019) 38:6567–6584 https://doi.org/10.1038/s41388-019-0931-2 REVIEW ARTICLE Eph receptor signalling: from catalytic to non-catalytic functions 1,2 1,2 3 1,2 1,2 Lung-Yu Liang ● Onisha Patel ● Peter W. Janes ● James M. Murphy ● Isabelle S. Lucet Received: 20 March 2019 / Revised: 23 July 2019 / Accepted: 24 July 2019 / Published online: 12 August 2019 © The Author(s) 2019. This article is published with open access Abstract Eph receptors, the largest subfamily of receptor tyrosine kinases, are linked with proliferative disease, such as cancer, as a result of their deregulated expression or mutation. Unlike other tyrosine kinases that have been clinically targeted, the development of therapeutics against Eph receptors remains at a relatively early stage. The major reason is the limited understanding on the Eph receptor regulatory mechanisms at a molecular level. The complexity in understanding Eph signalling in cells arises due to following reasons: (1) Eph receptors comprise 14 members, two of which are pseudokinases, EphA10 and EphB6, with relatively uncharacterised function; (2) activation of Eph receptors results in dimerisation, oligomerisation and formation of clustered signalling centres at the plasma membrane, which can comprise different combinations of Eph receptors, leading to diverse downstream signalling outputs; (3) the non-catalytic functions of Eph receptors have been overlooked. This review provides a structural perspective of the intricate molecular mechanisms that 1234567890();,: 1234567890();,: drive Eph receptor signalling, and investigates the contribution of intra- and inter-molecular interactions between Eph receptors intracellular domains and their major binding partners. We focus on the non-catalytic functions of Eph receptors with relevance to cancer, which are further substantiated by exploring the role of the two pseudokinase Eph receptors, EphA10 and EphB6.
    [Show full text]