Hydrol. Earth Syst. Sci., 19, 1293–1306, 2015 www.hydrol-earth-syst-sci.net/19/1293/2015/ doi:10.5194/hess-19-1293-2015 © Author(s) 2015. CC Attribution 3.0 License. Modeling suspended sediment sources and transport in the Ishikari River basin, Japan, using SPARROW W. L. Duan1,2, B. He1, K. Takara2, P. P. Luo3,4, D. Nover5, and M. C. Hu2 1Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China 2Disaster Prevention Research Institute, Kyoto University, Kyoto, Japan 3Institute of Hydraulic Structure Engineering and Water Environment, College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, Zhejiang, China 4Institute for the Advanced Study of Sustainability, United Nations University, Shibuya, Tokyo, Japan 5AAAS Science and Technology Policy Fellow, US Environmental Protection Agency, Global Change Research Group, Washington, D.C., 20010, USA Correspondence to: W. L. Duan (
[email protected]), B. He (
[email protected]), and P. P. Luo (
[email protected]) Received: 13 September 2014 – Published in Hydrol. Earth Syst. Sci. Discuss.: 6 October 2014 Revised: – – Accepted: 15 February 2015 – Published: 6 March 2015 Abstract. It is important to understand the mechanisms that that 35 % comes from agricultural lands, 23 % from forested control the fate and transport of suspended sediment (SS) lands, 23 % from developing lands, and 19 % from stream in rivers, because high suspended sediment loads have sig- channels. The results of this study improve our understand- nificant impacts on riverine hydroecology. In this study, ing of sediment production and transportation in the Ishikari the SPARROW (SPAtially Referenced Regression on Wa- River basin in general, which will benefit both the scien- tershed Attributes) watershed model was applied to esti- tific and management communities in safeguarding water re- mate the sources and transport of SS in surface waters sources.