Integrated Fossil and Molecular Data Reconstruct Bat Echolocation

Total Page:16

File Type:pdf, Size:1020Kb

Integrated Fossil and Molecular Data Reconstruct Bat Echolocation Integrated fossil and molecular data reconstruct bat echolocation Mark S. Springer†‡, Emma C. Teeling†§, Ole Madsen¶, Michael J. Stanhope§ʈ, and Wilfried W. de Jong¶** †Department of Biology, University of California, Riverside, CA 92521; §Queen’s University of Belfast, Biology and Biochemistry, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom; ¶Department of Biochemistry, University of Nijmegen, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands; ʈBioinformatics, SmithKline Beecham Pharmaceuticals, 1250 South Collegeville Road, UP1345, Collegeville, PA 19426; and **Institute for Biodiversity and Ecosystem Dynamics, 1090 GT Amsterdam, The Netherlands Edited by David Pilbeam, Harvard University, Cambridge, MA, and approved March 26, 2001 (received for review November 21, 2000) Molecular and morphological data have important roles in illumi- tulates a sister-group relationship between flying lemurs and bats nating evolutionary history. DNA data often yield well resolved (6). Although some authors have questioned bat monophyly phylogenies for living taxa, but are generally unattainable for based on evidence from the penis and nervous system (7, 8), the fossils. A distinct advantage of morphology is that some types of bulk of morphological data supports bat monophyly (9). Among morphological data may be collected for extinct and extant taxa. living Chiroptera, morphological data provide strong support for Fossils provide a unique window on evolutionary history and may the reciprocal monophyly of megachiropterans (Old World fruit preserve combinations of primitive and derived characters that are bats), all of which lack laryngeal echolocation, and microchi- not found in extant taxa. Given their unique character complexes, ropterans, all of which possess laryngeal echolocation (6, 10, 11). fossils are critical in documenting sequences of character transfor- In a total evidence analysis that combined 180 morphological mation over geologic time and may elucidate otherwise ambigu- and 12 restriction site characters, Simmons (10) obtained 100% ous patterns of evolution that are not revealed by molecular data bootstrap support for the monophyly of extant microbats. alone. Here, we employ a methodological approach that allows for The oldest fossil bats are from early Eocene deposits in Africa, the integration of molecular and paleontological data in decipher- Australia, Europe, and North America. Of the eight currently ing one of the most innovative features in the evolutionary history recognized genera from the early Eocene, four (Icaronycteris, EVOLUTION of mammals—laryngeal echolocation in bats. Molecular data Archaeonycteris, Hassianycteris, Palaeochiropteryx) are known alone, including an expanded data set that includes new sequences from relatively complete skeletons (6). Simmons and Geisler (6) for the A2AB gene, suggest that microbats are paraphyletic but do expanded the data set of Simmons (10) to include 208 characters not resolve whether laryngeal echolocation evolved indepen- (195 morphological); they also added Icaronycteris, Archaeonyc- dently in different microbat lineages or evolved in the common teris, Hassianycteris, and Palaeochiropteryx to this matrix. Based ancestor of bats and was subsequently lost in megabats. When on an extensive set of phylogenetic analyses, they concluded that scaffolds from molecular phylogenies are incorporated into parsi- the Eocene taxa constitute a consecutive series of sister-taxa to mony analyses of morphological characters, including morpholog- a monophyletic crown-group Microchiroptera. Furthermore, the ical characters for the Eocene taxa Icaronycteris, Archaeonycteris, Eocene fossils exhibit anatomical features that suggest the Hassianycteris, and Palaeochiropteryx, the resulting trees suggest occurrence of laryngeal echolocation in these taxa. Simmons and that laryngeal echolocation evolved in the common ancestor of fossil and extant bats and was subsequently lost in megabats. Geisler (6) thus concluded that laryngeal echolocation evolved Molecular dating suggests that crown-group bats last shared a only once in the evolutionary history of Chiroptera. common ancestor 52 to 54 million years ago. Molecular data validate the conclusion that the order Chi- roptera is monophyletic (12, 13). There are also unexpected results from molecular studies. First, bats are not closely related oth molecular and morphological data have important roles to other archontans (14–17). Rather, bats are members of the Bin elucidating evolutionary history and phylogeny. Advan- clade Laurasiatheria (16, 18), which also includes eulipotyphlan tages of molecular data include the large number of characters insectivores, pangolins, carnivores, perissodactyls, and cetartio- that are available (1) as well as sophisticated models of sequence dactyls. This implies that putative synapomorphies of Volitantia evolution that may be used in phylogenetic analyses (2). How- are instead homoplasic features in Chiroptera and Dermoptera. ever, in most instances it has not been possible to obtain DNA Molecular data also challenge microbat monophyly and instead sequences for fossil taxa. In contrast, certain types of morpho- suggest that microbats are paraphyletic, with rhinolophoids more logical data may be collected for both fossil and extant taxa. closely related to megabats than to other microbats (15, 19, 20). Fossils provide a unique window on evolutionary history and New sequence data presented below provide increased support often preserve combinations of primitive and derived characters for this hypothesis. Microbat paraphyly implies that complex that are not found in extant taxa (3). Given their unique laryngeal echolocation either evolved independently in rhinolo- character complexes, fossils are critical in documenting se- quences of character transformation over geologic time (4). phoids and other microbats or evolved in the ancestor of Morphological evidence from fossils may reveal patterns of Chiroptera with subsequent loss in megabats. Given these com- evolution that are not apparent from molecular phylogenies peting hypotheses, which are equally parsimonious in the context alone. Below, we illustrate a methodological approach that of molecular phylogenies that have only included living taxa, we allows for the integration of molecular and paleontological data in deciphering one of the most innovative features in This paper was submitted directly (Track II) to the PNAS office. the evolutionary history of mammals—laryngeal echolocation Abbreviations: ML, maximum likelihood; MP, maximum parsimony; ts͞tv, transition to in bats. transversion ratio. Interfamilial relationships among bats, as well as relationships Data deposition: The sequences reported in this paper have been deposited in the GenBank of the order Chiroptera to other eutherian orders, have been database (accession nos. AF337537–AF337543). investigated with both morphological and molecular data. Mor- ‡To whom reprint requests should be addressed. E-mail: [email protected]. phological data suggest that bats are in the superordinal group The publication costs of this article were defrayed in part by page charge payment. This Archonta (5), which also includes primates, tree shrews, and article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. flying lemurs. Within Archonta, the Volitantia hypothesis pos- §1734 solely to indicate this fact. www.pnas.org͞cgi͞doi͞10.1073͞pnas.111551998 PNAS ͉ May 22, 2001 ͉ vol. 98 ͉ no. 11 ͉ 6241–6246 Downloaded by guest on September 24, 2021 investigated the origin and evolutionary history of laryngeal echolocation in microbats by using an integrated approach that used both molecular phylogenies and morphological data for living and extinct taxa. Molecular phylogenies were used to construct a backbone phylogenetic constraint, or scaffold, for a subset of extant bat families͞subfamilies for which DNA phy- logenies are available (see Methods). Parsimony analyses with the morphological data set of Simmons and Geisler (6), in conjunction with the molecular scaffolds, provide support for the hypothesis that laryngeal echolocation evolved in the common ancestor of Chiroptera and was subsequently lost in megabats. Methods New sequences for Ϸ1.3 kb of the A2AB gene were amplified and sequenced as described (16, 21) for Megaderma lyra (Gen- Bank accession no. AF337537), Hipposideros commersoni (AF337538), Pteropus rayneri (AF337539), Myotis daubentoni (AF337540), Tonatia bidens (AF337541), Tadarida brasiliensis (AF337542), and Taphozous sp. (AF337543). Additional A2AB sequences were obtained from GenBank for one megabat (Cynopterus sphinx; AJ251181) and the outgroups Rattus norve- gicus (M32061), Homo sapiens (M34041), Felis catus (AJ251174), and Cynocephalus variegatus (AJ251182). The outgroups in- Fig. 1. Maximum likelihood phylogram (HKY85 model with a ⌫ distribution cluded one laurasiatherian (Felis) and two archontans (Homo, of rates) based on the 9427-bp data set (Ϫln likelihood ϭ 48718.269). Scale bar Cynocephalus) based on alternate views that bats are either corresponds to 5% sequence divergence. ML bootstrap support values are members of Laurasiatheria or Archonta. The A2AB sequences shown adjacent to or above branches. Support values with other methods of analysis are given in Table 1. were aligned by using CLUSTAL W (22). Phylogenetic analyses were performed for A2AB sequences alone as well as for a concatenation of sequences that included published sequences two pairs of sister taxa in
Recommended publications
  • Microchiroptera: Mystacinidae) from Australia, with a Revised Diagnosis of the Genus
    New Miocene Icarops material (Microchiroptera: Mystacinidae) from Australia, with a revised diagnosis of the genus SUZANNE HAND, MICHAEL ARCHER & HENK GODTHELP HAND, S.l., ARCHER, M. & GODTHELP, H., 2001:12:20. New Miocene lcarops material (Microchiroptera: Mystacinidae) from Australia, with a revised diagnosis of the genus. Memoirs of the Association of Australasian Palaeontologists 25,139-146. ISSN 0810-8889 New fossil material referable to Icarops paradox Hand et al., 1998 is described from the early Miocene Judith's Horizontalis Site in the Riversleigh World Heritage Property of northwestern Queensland. Fused dentaries contain the partial lower dentition of I. paradox. The diagnosis of the genus Icarops is revised. The new material confirms the identity of Icarops species as mystacinids and enablesre-examination of interrelationships between extinct and extant members of this Gondwanan bat family. S.J: Hand, M. Archer* & H. Godthelp, School of Biological Science, University of New South Wales,New South Wales, 2052; * also Australian Museum, 6-8 College St, Sydney, New South Wales,2000. Received ]4 December 2000 Keywords: Mystacinidae, Icarops, Mystacina, bat, lower dentition, Miocene, Riversleigh THE FIRST pre-Pleistocene record for the QMF refers to specimens held in the fossil Mystacinidae and first record of this bat family collections of the QueenslandMuseum, Brisbane. from outside New Zealand were reported by Hand et al. ( 1998) from Miocene sedimentsin Australia. SYSTEMAllC PALAEONTOLOGY Three species of the new mystacinid genus Icarops were described: Icarops breviceps from OrderCIllROPTERAB1wnenbach, 1779 the middle Miocene Bullock Creek deposit of the SuborderMICROCIllROPTERA Dobson, 1875 Northern Territory; I. aenae from the early SuperfamilyNocmIoNoIDEA Van Va1en, Miocene Wayne's Wok deposit, D Site Plateau, 1979 Riversleigh, northwestern Queensland; and I.
    [Show full text]
  • The World at the Time of Messel: Conference Volume
    T. Lehmann & S.F.K. Schaal (eds) The World at the Time of Messel - Conference Volume Time at the The World The World at the Time of Messel: Puzzles in Palaeobiology, Palaeoenvironment and the History of Early Primates 22nd International Senckenberg Conference 2011 Frankfurt am Main, 15th - 19th November 2011 ISBN 978-3-929907-86-5 Conference Volume SENCKENBERG Gesellschaft für Naturforschung THOMAS LEHMANN & STEPHAN F.K. SCHAAL (eds) The World at the Time of Messel: Puzzles in Palaeobiology, Palaeoenvironment, and the History of Early Primates 22nd International Senckenberg Conference Frankfurt am Main, 15th – 19th November 2011 Conference Volume Senckenberg Gesellschaft für Naturforschung IMPRINT The World at the Time of Messel: Puzzles in Palaeobiology, Palaeoenvironment, and the History of Early Primates 22nd International Senckenberg Conference 15th – 19th November 2011, Frankfurt am Main, Germany Conference Volume Publisher PROF. DR. DR. H.C. VOLKER MOSBRUGGER Senckenberg Gesellschaft für Naturforschung Senckenberganlage 25, 60325 Frankfurt am Main, Germany Editors DR. THOMAS LEHMANN & DR. STEPHAN F.K. SCHAAL Senckenberg Research Institute and Natural History Museum Frankfurt Senckenberganlage 25, 60325 Frankfurt am Main, Germany [email protected]; [email protected] Language editors JOSEPH E.B. HOGAN & DR. KRISTER T. SMITH Layout JULIANE EBERHARDT & ANIKA VOGEL Cover Illustration EVELINE JUNQUEIRA Print Rhein-Main-Geschäftsdrucke, Hofheim-Wallau, Germany Citation LEHMANN, T. & SCHAAL, S.F.K. (eds) (2011). The World at the Time of Messel: Puzzles in Palaeobiology, Palaeoenvironment, and the History of Early Primates. 22nd International Senckenberg Conference. 15th – 19th November 2011, Frankfurt am Main. Conference Volume. Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main. pp. 203.
    [Show full text]
  • Special Publications Museum of Texas Tech University Number 63 18 September 2014
    Special Publications Museum of Texas Tech University Number 63 18 September 2014 List of Recent Land Mammals of Mexico, 2014 José Ramírez-Pulido, Noé González-Ruiz, Alfred L. Gardner, and Joaquín Arroyo-Cabrales.0 Front cover: Image of the cover of Nova Plantarvm, Animalivm et Mineralivm Mexicanorvm Historia, by Francisci Hernández et al. (1651), which included the first list of the mammals found in Mexico. Cover image courtesy of the John Carter Brown Library at Brown University. SPECIAL PUBLICATIONS Museum of Texas Tech University Number 63 List of Recent Land Mammals of Mexico, 2014 JOSÉ RAMÍREZ-PULIDO, NOÉ GONZÁLEZ-RUIZ, ALFRED L. GARDNER, AND JOAQUÍN ARROYO-CABRALES Layout and Design: Lisa Bradley Cover Design: Image courtesy of the John Carter Brown Library at Brown University Production Editor: Lisa Bradley Copyright 2014, Museum of Texas Tech University This publication is available free of charge in PDF format from the website of the Natural Sciences Research Laboratory, Museum of Texas Tech University (nsrl.ttu.edu). The authors and the Museum of Texas Tech University hereby grant permission to interested parties to download or print this publication for personal or educational (not for profit) use. Re-publication of any part of this paper in other works is not permitted without prior written permission of the Museum of Texas Tech University. This book was set in Times New Roman and printed on acid-free paper that meets the guidelines for per- manence and durability of the Committee on Production Guidelines for Book Longevity of the Council on Library Resources. Printed: 18 September 2014 Library of Congress Cataloging-in-Publication Data Special Publications of the Museum of Texas Tech University, Number 63 Series Editor: Robert J.
    [Show full text]
  • Cynopterus Minutus, Minute Fruit Bat
    The IUCN Red List of Threatened Species™ ISSN 2307-8235 (online) IUCN 2019: T136423A21985433 Scope: Global Language: English Cynopterus minutus, Minute Fruit Bat Assessment by: Ruedas, L. & Suyanto, A. View on www.iucnredlist.org Citation: Ruedas, L. & Suyanto, A. 2019. Cynopterus minutus. The IUCN Red List of Threatened Species 2019: e.T136423A21985433. https://dx.doi.org/10.2305/IUCN.UK.2019- 3.RLTS.T136423A21985433.en Copyright: © 2019 International Union for Conservation of Nature and Natural Resources Reproduction of this publication for educational or other non-commercial purposes is authorized without prior written permission from the copyright holder provided the source is fully acknowledged. Reproduction of this publication for resale, reposting or other commercial purposes is prohibited without prior written permission from the copyright holder. For further details see Terms of Use. The IUCN Red List of Threatened Species™ is produced and managed by the IUCN Global Species Programme, the IUCN Species Survival Commission (SSC) and The IUCN Red List Partnership. The IUCN Red List Partners are: Arizona State University; BirdLife International; Botanic Gardens Conservation International; Conservation International; NatureServe; Royal Botanic Gardens, Kew; Sapienza University of Rome; Texas A&M University; and Zoological Society of London. If you see any errors or have any questions or suggestions on what is shown in this document, please provide us with feedback so that we can correct or extend the information provided. THE IUCN RED LIST OF THREATENED SPECIES™ Taxonomy Kingdom Phylum Class Order Family Animalia Chordata Mammalia Chiroptera Pteropodidae Taxon Name: Cynopterus minutus Miller, 1906 Common Name(s): • English: Minute Fruit Bat Taxonomic Notes: This may be a species complex.
    [Show full text]
  • Inferring Echolocation in Ancient Bats Arising From: N
    NATURE | Vol 466 | 19 August 2010 BRIEF COMMUNICATIONS ARISING Inferring echolocation in ancient bats Arising from: N. Veselka et al. Nature 463, 939–942 (2010) Laryngeal echolocation, used by most living bats to form images of O. finneyi falls outside the size range seen in living echolocating bats their surroundings and to detect and capture flying prey1,2, is con- and is similar to the proportionally smaller cochleae of bats that lack sidered to be a key innovation for the evolutionary success of bats2,3, laryngeal echolocation4,8, suggesting that it did not echolocate. and palaeontologists have long sought osteological correlates of echolocation that can be used to infer the behaviour of fossil bats4–7. Veselka et al.8 argued that the most reliable trait indicating echoloca- tion capabilities in bats is an articulation between the stylohyal bone (part of the hyoid apparatus that supports the throat and larynx) and a the tympanic bone, which forms the floor of the middle ear. They examined the oldest and most primitive known bat, Onychonycteris finneyi (early Eocene, USA4), and argued that it showed evidence of this stylohyal–tympanic articulation, from which they concluded that O. finneyi may have been capable of echolocation. We disagree with their interpretation of key fossil data and instead argue that O. finneyi was probably not an echolocating bat. The holotype of O. finneyi shows the cranial end of the left stylohyal resting on the tympanic bone (Fig. 1c–e). However, the stylohyal on the right side is in a different position, the tip of the stylohyal extends beyond the tympanic on both sides of the skull, and both tympanics are crushed.
    [Show full text]
  • BIO 313 ANIMAL ECOLOGY Corrected
    NATIONAL OPEN UNIVERSITY OF NIGERIA SCHOOL OF SCIENCE AND TECHNOLOGY COURSE CODE: BIO 314 COURSE TITLE: ANIMAL ECOLOGY 1 BIO 314: ANIMAL ECOLOGY Team Writers: Dr O.A. Olajuyigbe Department of Biology Adeyemi Colledge of Education, P.M.B. 520, Ondo, Ondo State Nigeria. Miss F.C. Olakolu Nigerian Institute for Oceanography and Marine Research, No 3 Wilmot Point Road, Bar-beach Bus-stop, Victoria Island, Lagos, Nigeria. Mrs H.O. Omogoriola Nigerian Institute for Oceanography and Marine Research, No 3 Wilmot Point Road, Bar-beach Bus-stop, Victoria Island, Lagos, Nigeria. EDITOR: Mrs Ajetomobi School of Agricultural Sciences Lagos State Polytechnic Ikorodu, Lagos 2 BIO 313 COURSE GUIDE Introduction Animal Ecology (313) is a first semester course. It is a two credit unit elective course which all students offering Bachelor of Science (BSc) in Biology can take. Animal ecology is an important area of study for scientists. It is the study of animals and how they related to each other as well as their environment. It can also be defined as the scientific study of interactions that determine the distribution and abundance of organisms. Since this is a course in animal ecology, we will focus on animals, which we will define fairly generally as organisms that can move around during some stages of their life and that must feed on other organisms or their products. There are various forms of animal ecology. This includes: • Behavioral ecology, the study of the behavior of the animals with relation to their environment and others • Population ecology, the study of the effects on the population of these animals • Marine ecology is the scientific study of marine-life habitat, populations, and interactions among organisms and the surrounding environment including their abiotic (non-living physical and chemical factors that affect the ability of organisms to survive and reproduce) and biotic factors (living things or the materials that directly or indirectly affect an organism in its environment).
    [Show full text]
  • Origin and Beyond
    EVOLUTION ORIGIN ANDBEYOND Gould, who alerted him to the fact the Galapagos finches ORIGIN AND BEYOND were distinct but closely related species. Darwin investigated ALFRED RUSSEL WALLACE (1823–1913) the breeding and artificial selection of domesticated animals, and learned about species, time, and the fossil record from despite the inspiration and wealth of data he had gathered during his years aboard the Alfred Russel Wallace was a school teacher and naturalist who gave up teaching the anatomist Richard Owen, who had worked on many of to earn his living as a professional collector of exotic plants and animals from beagle, darwin took many years to formulate his theory and ready it for publication – Darwin’s vertebrate specimens and, in 1842, had “invented” the tropics. He collected extensively in South America, and from 1854 in the so long, in fact, that he was almost beaten to publication. nevertheless, when it dinosaurs as a separate category of reptiles. islands of the Malay archipelago. From these experiences, Wallace realized By 1842, Darwin’s evolutionary ideas were sufficiently emerged, darwin’s work had a profound effect. that species exist in variant advanced for him to produce a 35-page sketch and, by forms and that changes in 1844, a 250-page synthesis, a copy of which he sent in 1847 the environment could lead During a long life, Charles After his five-year round the world voyage, Darwin arrived Darwin saw himself largely as a geologist, and published to the botanist, Joseph Dalton Hooker. This trusted friend to the loss of any ill-adapted Darwin wrote numerous back at the family home in Shrewsbury on 5 October 1836.
    [Show full text]
  • Chiroptera: Pteropodidae)
    Chapter 6 Phylogenetic Relationships of Harpyionycterine Megabats (Chiroptera: Pteropodidae) NORBERTO P. GIANNINI1,2, FRANCISCA CUNHA ALMEIDA1,3, AND NANCY B. SIMMONS1 ABSTRACT After almost 70 years of stability following publication of Andersen’s (1912) monograph on the group, the systematics of megachiropteran bats (Chiroptera: Pteropodidae) was thrown into flux with the advent of molecular phylogenetics in the 1980s—a state where it has remained ever since. One particularly problematic group has been the Austromalayan Harpyionycterinae, currently thought to include Dobsonia and Harpyionycteris, and probably also Aproteles.Inthis contribution we revisit the systematics of harpyionycterines. We examine historical hypotheses of relationships including the suggestion by O. Thomas (1896) that the rousettine Boneia bidens may be related to Harpyionycteris, and report the results of a series of phylogenetic analyses based on new as well as previously published sequence data from the genes RAG1, RAG2, vWF, c-mos, cytb, 12S, tVal, 16S,andND2. Despite a striking lack of morphological synapomorphies, results of our combined analyses indicate that Boneia groups with Aproteles, Dobsonia, and Harpyionycteris in a well-supported, expanded Harpyionycterinae. While monophyly of this group is well supported, topological changes within this clade across analyses of different data partitions indicate conflicting phylogenetic signals in the mitochondrial partition. The position of the harpyionycterine clade within the megachiropteran tree remains somewhat uncertain. Nevertheless, biogeographic patterns (vicariance-dispersal events) within Harpyionycterinae appear clear and can be directly linked to major biogeographic boundaries of the Austromalayan region. The new phylogeny of Harpionycterinae also provides a new framework for interpreting aspects of dental evolution in pteropodids (e.g., reduction in the incisor dentition) and allows prediction of roosting habits for Harpyionycteris, whose habits are unknown.
    [Show full text]
  • Figs1 ML Tree.Pdf
    100 Megaderma lyra Rhinopoma hardwickei 71 100 Rhinolophus creaghi 100 Rhinolophus ferrumequinum 100 Hipposideros armiger Hipposideros commersoni 99 Megaerops ecaudatus 85 Megaerops niphanae 100 Megaerops kusnotoi 100 Cynopterus sphinx 98 Cynopterus horsfieldii 69 Cynopterus brachyotis 94 50 Ptenochirus minor 86 Ptenochirus wetmorei Ptenochirus jagori Dyacopterus spadiceus 99 Sphaerias blanfordi 99 97 Balionycteris maculata 100 Aethalops alecto 99 Aethalops aequalis Thoopterus nigrescens 97 Alionycteris paucidentata 33 99 Haplonycteris fischeri 29 Otopteropus cartilagonodus Latidens salimalii 43 88 Penthetor lucasi Chironax melanocephalus 90 Syconycteris australis 100 Macroglossus minimus 34 Macroglossus sobrinus 92 Boneia bidens 100 Harpyionycteris whiteheadi 69 Harpyionycteris celebensis Aproteles bulmerae 51 Dobsonia minor 100 100 80 Dobsonia inermis Dobsonia praedatrix 99 96 14 Dobsonia viridis Dobsonia peronii 47 Dobsonia pannietensis 56 Dobsonia moluccensis 29 Dobsonia anderseni 100 Scotonycteris zenkeri 100 Casinycteris ophiodon 87 Casinycteris campomaanensis Casinycteris argynnis 99 100 Eonycteris spelaea 100 Eonycteris major Eonycteris robusta 100 100 Rousettus amplexicaudatus 94 Rousettus spinalatus 99 Rousettus leschenaultii 100 Rousettus aegyptiacus 77 Rousettus madagascariensis 87 Rousettus obliviosus Stenonycteris lanosus 100 Megaloglossus woermanni 100 91 Megaloglossus azagnyi 22 Myonycteris angolensis 100 87 Myonycteris torquata 61 Myonycteris brachycephala 33 41 Myonycteris leptodon Myonycteris relicta 68 Plerotes anchietae
    [Show full text]
  • The Anatomy of the Hyoid Region of Molossus Molossus and Its Implication in Systematics
    Illinois Wesleyan University Digital Commons @ IWU John Wesley Powell Student Research Conference 1991, 2nd Annual JWP Conference Apr 27th, 12:00 PM - 4:30 PM The Anatomy of the Hyoid Region of Molossus Molossus and its Implication in Systematics Natawadee Prasertphon Illinois Wesleyan University Thomas Griffiths,aculty F Advisor Illinois Wesleyan University Follow this and additional works at: https://digitalcommons.iwu.edu/jwprc Prasertphon, Natawadee and Griffiths, acultyF Advisor, Thomas, "The Anatomy of the Hyoid Region of Molossus Molossus and its Implication in Systematics" (1991). John Wesley Powell Student Research Conference. 14. https://digitalcommons.iwu.edu/jwprc/1991/posters/14 This is protected by copyright and/or related rights. It has been brought to you by Digital Commons @ IWU with permission from the rights-holder(s). You are free to use this material in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This material has been accepted for inclusion by faculty at Illinois Wesleyan University. For more information, please contact [email protected]. ©Copyright is owned by the author of this document. THE ANATOMY OF THE HYOID REGION OF MOLOSSUS MOLOSSUS AND ITS IMPliCATION IN SYSTEMATICS Natawadee Prasertphon, Dept. of Biology, IWU, Thomas Griffiths* The hyoid musculature and hyoid apparatus of a bat, Molossus molossus (Chiroptera: Molossidae) is dissected and described. A comparison is made with the hyoid structures of bats of the genera Rhinopoma, Emballonura, Nycteris, Megaderma, Rhinoiophus, Pteronotus, Phyllostomus, and Ep tesicus, which were previously described by my sponsor Griffiths and associates.
    [Show full text]
  • Bat Count 2003
    BAT COUNT 2003 Working to promote the long term, sustainable conservation of globally threatened flying foxes in the Philippines, by developing baseline population information, increasing public awareness, and training students and protected area managers in field monitoring techniques. 1 A Terminal Report Submitted by Tammy Mildenstein1, Apolinario B. Cariño2, and Samuel Stier1 1Fish and Wildlife Biology, University of Montana, USA 2Silliman University and Mt. Talinis – Twin Lakes Federation of People’s Organizations, Diputado Extension, Sibulan, Negros Oriental, Philippines Photo by: Juan Pablo Moreiras 2 EXECUTIVE SUMMARY Large flying foxes in insular Southeast Asia are the most threatened of the Old World fruit bats due to deforestation, unregulated hunting, and little conservation commitment from local governments. Despite the fact they are globally endangered and play essential ecological roles in forest regeneration as seed dispersers and pollinators, there have been only a few studies on these bats that provide information useful to their conservation management. Our project aims to promote the conservation of large flying foxes in the Philippines by providing protected area managers with the training and the baseline information necessary to design and implement a long-term management plan for flying foxes. We focused our efforts on the globally endangered Philippine endemics, Acerodon jubatus and Acerodon leucotis, and the bats that commonly roost with them, Pteropus hypomelanus, P. vampyrus lanensis, and P. pumilus which are thought to be declining in the Philippines. Local participation is an integral part of our project. We conducted the first national training workshop on flying fox population counts and conservation at the Subic Bay area.
    [Show full text]
  • 103 the EVOLUTION of BATSI Leigh Van Valen Department Of
    103 THE EVOLUTIONOF BATSI Leigh Van Valen Department of Biology University of Chicago 1103 East 57th Street Chicago, Illinois 60637 Received August 30, 1978; June 8, L979 Abstract: I devel-op the first explicitly Justified phylogeny of the known farnil-les of bats, usj.ng all available characters. This phylogeny permits the adaptive evolution of the order to be outlined. Two main clades emerge within the Microchiroptera and are cal-led new infraorders, Vespertilionia and Phyllostomatia. In each infraorder there is a series of grades of progressively stronger fi-ight, and there is a radiation of diet within the Phyllostomatia. Parallel evolution is extensive. Most grades stlll exist, presumably by a poorly understood partitioning of the resource space. The Megachiroptera nay have originated in the l-ate Ollgocene or early Miocene from surviving mernbers of the Eochiroptera (new suborder). The Kerivoul,ldae, Myzopodidae, Thyropteridae, and Furlpterldae are placed in the Natalidae, and the lcaronycterididae in the PaLaeochiropterygidae. The features of an ancestral bat are predicted. Bat origins are poorly known but may be found in Paleocene members of the Adapisoricidae. ,r** Bats constitute the second largest order of marnmalsand have a readily decipherable adaptive history, at least compared with the Rodentia and Insectivora. Nevertheless, there is no treatment of this adaptive hlstory nor even a general phyl-ogeny, which must form its foundation. I noticed this l-ack when revising a course on the paleobiology of mauunalsand undertook to remedy it. Although I sttll lack much familiarity with bats, the resul-t may be of more general interest. ORIGIN OF BATS One may hypothesize ttrat bats dld originate, but it is harder to go beyond this.
    [Show full text]