Phylogeny, Morphology and the Role of Hybridization As
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A REVISION of TRISETUM Victor L. Finot,' Paul M
A REVISION OF TRISETUM Victor L. Finot,' Paul M. Peterson,3 (POACEAE: POOIDEAE: Fernando 0 Zuloaga,* Robert J. v sorene, and Oscar Mattnei AVENINAE) IN SOUTH AMERICA1 ABSTRACT A taxonomic treatment of Trisetum Pers. for South America, is given. Eighteen species and six varieties of Trisetum are recognized in South America. Chile (14 species, 3 varieties) and Argentina (12 species, 5 varieties) have the greatest number of taxa in the genus. Two varieties, T. barbinode var. sclerophyllum and T longiglume var. glabratum, are endemic to Argentina, whereas T. mattheii and T nancaguense are known only from Chile. Trisetum andinum is endemic to Ecuador, T. macbridei is endemic to Peru, and T. foliosum is endemic to Venezuela. A total of four species are found in Ecuador and Peru, and there are two species in Venezuela and Colombia. The following new species are described and illustrated: Trisetum mattheii Finot and T nancaguense Finot, from Chile, and T pyramidatum Louis- Marie ex Finot, from Chile and Argentina. The following two new combinations are made: T barbinode var. sclerophyllum (Hack, ex Stuck.) Finot and T. spicatum var. cumingii (Nees ex Steud.) Finot. A key for distinguishing the species and varieties of Trisetum in South America is given. The names Koeleria cumingii Nees ex Steud., Trisetum sect. Anaulacoa Louis-Marie, Trisetum sect. Aulacoa Louis-Marie, Trisetum subg. Heterolytrum Louis-Marie, Trisetum subg. Isolytrum Louis-Marie, Trisetum subsect. Koeleriformia Louis-Marie, Trisetum subsect. Sphenopholidea Louis-Marie, Trisetum ma- lacophyllum Steud., Trisetum variabile E. Desv., and Trisetum variabile var. virescens E. Desv. are lectotypified. Key words: Aveninae, Gramineae, Poaceae, Pooideae, Trisetum. -
Appendix 1: Maps and Plans Appendix184 Map 1: Conservation Categories for the Nominated Property
Appendix 1: Maps and Plans Appendix184 Map 1: Conservation Categories for the Nominated Property. Los Alerces National Park, Argentina 185 Map 2: Andean-North Patagonian Biosphere Reserve: Context for the Nominated Proprty. Los Alerces National Park, Argentina 186 Map 3: Vegetation of the Valdivian Ecoregion 187 Map 4: Vegetation Communities in Los Alerces National Park 188 Map 5: Strict Nature and Wildlife Reserve 189 Map 6: Usage Zoning, Los Alerces National Park 190 Map 7: Human Settlements and Infrastructure 191 Appendix 2: Species Lists Ap9n192 Appendix 2.1 List of Plant Species Recorded at PNLA 193 Appendix 2.2: List of Animal Species: Mammals 212 Appendix 2.3: List of Animal Species: Birds 214 Appendix 2.4: List of Animal Species: Reptiles 219 Appendix 2.5: List of Animal Species: Amphibians 220 Appendix 2.6: List of Animal Species: Fish 221 Appendix 2.7: List of Animal Species and Threat Status 222 Appendix 3: Law No. 19,292 Append228 Appendix 4: PNLA Management Plan Approval and Contents Appendi242 Appendix 5: Participative Process for Writing the Nomination Form Appendi252 Synthesis 252 Management Plan UpdateWorkshop 253 Annex A: Interview Guide 256 Annex B: Meetings and Interviews Held 257 Annex C: Self-Administered Survey 261 Annex D: ExternalWorkshop Participants 262 Annex E: Promotional Leaflet 264 Annex F: Interview Results Summary 267 Annex G: Survey Results Summary 272 Annex H: Esquel Declaration of Interest 274 Annex I: Trevelin Declaration of Interest 276 Annex J: Chubut Tourism Secretariat Declaration of Interest 278 -
Conserving Europe's Threatened Plants
Conserving Europe’s threatened plants Progress towards Target 8 of the Global Strategy for Plant Conservation Conserving Europe’s threatened plants Progress towards Target 8 of the Global Strategy for Plant Conservation By Suzanne Sharrock and Meirion Jones May 2009 Recommended citation: Sharrock, S. and Jones, M., 2009. Conserving Europe’s threatened plants: Progress towards Target 8 of the Global Strategy for Plant Conservation Botanic Gardens Conservation International, Richmond, UK ISBN 978-1-905164-30-1 Published by Botanic Gardens Conservation International Descanso House, 199 Kew Road, Richmond, Surrey, TW9 3BW, UK Design: John Morgan, [email protected] Acknowledgements The work of establishing a consolidated list of threatened Photo credits European plants was first initiated by Hugh Synge who developed the original database on which this report is based. All images are credited to BGCI with the exceptions of: We are most grateful to Hugh for providing this database to page 5, Nikos Krigas; page 8. Christophe Libert; page 10, BGCI and advising on further development of the list. The Pawel Kos; page 12 (upper), Nikos Krigas; page 14: James exacting task of inputting data from national Red Lists was Hitchmough; page 16 (lower), Jože Bavcon; page 17 (upper), carried out by Chris Cockel and without his dedicated work, the Nkos Krigas; page 20 (upper), Anca Sarbu; page 21, Nikos list would not have been completed. Thank you for your efforts Krigas; page 22 (upper) Simon Williams; page 22 (lower), RBG Chris. We are grateful to all the members of the European Kew; page 23 (upper), Jo Packet; page 23 (lower), Sandrine Botanic Gardens Consortium and other colleagues from Europe Godefroid; page 24 (upper) Jože Bavcon; page 24 (lower), Frank who provided essential advice, guidance and supplementary Scumacher; page 25 (upper) Michael Burkart; page 25, (lower) information on the species included in the database. -
Native Plant Diversity and Composition Across a Pinus Radiata D.Don Plantation Landscape in South-Central Chile—The Impact Of
Article Native Plant Diversity and Composition Across a Pinus radiata D.Don Plantation Landscape in South-Central Chile—The Impact of Plantation Age, Logging Roads and Alien Species Steffi Heinrichs 1,*, Aníbal Pauchard 2,3 and Peter Schall 1 1 Department Silviculture and Forest Ecology of the Temperate Zones, University of Goettingen, 37077 Göttingen, Germany; [email protected] 2 Facultad de Ciencias Forestales, Universidad de Concepción, Concepción 3349001, Chile; [email protected] 3 Institute of Ecology and Biodiversity (IEB), Santiago 8320000, Chile * Correspondence: [email protected]; Tel.: +49-551-395-974 Received: 18 July 2018; Accepted: 12 September 2018; Published: 14 September 2018 Abstract: Alien tree plantations are expanding globally with potential negative effects for native biodiversity. We investigated plant species diversity and composition in a Pinus radiata landscape in south-central Chile, a biodiversity hotspot, by sampling understory vegetation in different plantation age classes, along forest roads and in natural forest remnants in order to find effective conservation measures for native biodiversity. Plantations, including different age classes and roadsides, maintained high native species richness at the landscape scale but supported a completely different community composition than natural forests. Thus, natural forest remnants must be conserved as plantations cannot replace them. Certain natural forest species occurred frequently in mature plantations and can represent starting points for retaining natural elements in plantations. Generalist native and alien species benefited from plantation management, mainly in young plantations and along roadsides. Stand maturation and a closed canopy, though, reduced alien species occurrences within plantations. Along roads, shade-tolerant aliens should be monitored and removed as they can potentially invade natural forests. -
Southern Gulf, Queensland
Biodiversity Summary for NRM Regions Species List What is the summary for and where does it come from? This list has been produced by the Department of Sustainability, Environment, Water, Population and Communities (SEWPC) for the Natural Resource Management Spatial Information System. The list was produced using the AustralianAustralian Natural Natural Heritage Heritage Assessment Assessment Tool Tool (ANHAT), which analyses data from a range of plant and animal surveys and collections from across Australia to automatically generate a report for each NRM region. Data sources (Appendix 2) include national and state herbaria, museums, state governments, CSIRO, Birds Australia and a range of surveys conducted by or for DEWHA. For each family of plant and animal covered by ANHAT (Appendix 1), this document gives the number of species in the country and how many of them are found in the region. It also identifies species listed as Vulnerable, Critically Endangered, Endangered or Conservation Dependent under the EPBC Act. A biodiversity summary for this region is also available. For more information please see: www.environment.gov.au/heritage/anhat/index.html Limitations • ANHAT currently contains information on the distribution of over 30,000 Australian taxa. This includes all mammals, birds, reptiles, frogs and fish, 137 families of vascular plants (over 15,000 species) and a range of invertebrate groups. Groups notnot yet yet covered covered in inANHAT ANHAT are notnot included included in in the the list. list. • The data used come from authoritative sources, but they are not perfect. All species names have been confirmed as valid species names, but it is not possible to confirm all species locations. -
Revisión Taxonómica Del Género Molineriella Rouy (Gramineae: Poeae: Airinae) En La Península Ibérica
Acta Botanica Malacitana1~P J.Cebrino Cruz & C. Romero-Zarco. Revisión taxonómica del género Molineriella Artículo203 '2,KWWSG[GRLRUJDEPYL&DEHFHUD $UWtFXOR Revisión taxonómica del género Molineriella Rouy (Gramineae: Poeae: Airinae) en la Península Ibérica Jesús Cebrino Cruz & Carlos Romero-Zarco 'HSDUWDPHQWR GH %LRORJtD 9HJHWDO \ (FRORJtD )DFXOWDG GH %LRORJtD 8QLYHUVLGDG GH 6HYLOOD & 3URIHVRU *DUFtD *RQ]iOH]VQ6HYLOOD(VSDxD Correspondencia Resumen C. Romero-Zarco e-mail: [email protected] Se presenta una revisión del género Molineriella Rouy sobre la base del Recibido: 11 septiembre 2017 estudio morfológico de 1.300 ejemplares de herbario. Se trata de un género Aceptado: 26 octubre 2017 PHGLWHUUiQHRTXHWLHQHVXPi[LPDULTXH]DHVSHFtÀFDHQOD3HQtQVXOD,EpULFD Publicado on-line: diciembre 2017 \SDUDHOTXHVHKDQUHFRQRFLGRDTXtWUHVHVSHFLHVSDUDODVFXDOHVVHDSRUWDQ descripciones y mapas de distribución en el área de estudio. Se han designado un neotipo para Aira laevis Brot. y sendos lectotipos para Periballia minuta subsp. australis3DXQHUR\Molineria minuta var. baetica Willk. Se ha descrito como nueva Molineriella laevis var. submutica Cebrino & Romero Zarco. Palabras clave: *UDPLQHDH3RHDH$LULQDH MolineriellaPeriballia3HQtQVXOD ,EpULFD7D[RQRPtD7LSLÀFDFLyQ Abstract Taxonomic revision of the genus Molineriella Rouy (Gramineae: Poeae: Airinae) in the Iberian Península We present the revision of the genus Molineriella Rouy based on a PRUSKRORJLFDOVWXG\RIKHUEDULXPVSHFLPHQV,WLVD0HGLWHUUDQHDQJHQXV ZLWKLWVPD[LPXPVSHFLHVULFKQHVVLQWKH,EHULDQ3HQLQVXOD7KUHHVSHFLHVDUH UHFRJQL]HG -
Poaceae, Pooideae) Del Centro-Oeste De España *
CONTRIBUCIÓN AL CONOCIMIENTO DE LA ANATOMÍA FOLIAR DE LAS A VENEAE (POACEAE, POOIDEAE) DEL CENTRO-OESTE DE ESPAÑA * por J. LÓPEZ & J. A. DEVESA ** Resumen LÓPEZ, J. & J. A. DEVESA (1991). Contribución al conocimiento de la anatomía foliar de las Aveneae (Poaceae, Pooideae) del centro-oeste de España. Anales Jard. Bol. Madrid 48(2): 171-187. Se estudia la anatomía foliar de 29 táxones de la tribu A veneae (Poaceae) presentes en la flora española y se discuten algunas peculiaridades de interés en la sistemática del grupo. Palabras clave: Poaceae, Aveneae, Pooideae, anatomía foliar, España. Abstract LOPEZ, J. & J. A. DEVESA (1991). Contribution to our knowledge of the foliar anatomy of the Aveneae (Poaceae, Pooideae) of central-western Spain. Anales Jard. Bot. Madrid 48(2): 171-187 (in Spanish). The anatomical characteristics of leaves in 29 taxa of Aveneae (Poaceae) from Spain were studied and their systematic relevance discussed. Key words: Poaceae, Aveneae, Pooideae, leaf anatomy, Spain. INTRODUCCIÓN La familia Poaceae es de distribución cosmopolita y comprende alrededor de 10.000 especies (DAHLGREN & al., 1985), que se consideran actualmente dividi- das en cinco subfamilias (Pooideae, Bambusoideae, Arundinoideae, Chloridoi- deae y Panicoideae) — en cuya delimitación resultan de extraordinaria importan- cia las características anatómicas (ELLIS, 1987) — o en solo dos (Bambusoideae y Pooideae; TZVELEV, 1989). El valor de los caracteres anatómicos en la sistemática del grupo ha sido desta- cado por muy diversos autores (PRAT, 1932, 1936, 1960; BROWN, 1958; METCAL- FE, 1960; ELLIS, 1976,1979; RENVOIZE, 1982-1987) desde que AVDULOV (1931) revalorizó la importancia de los mismos frente a los relativos a la flor e inflores- cencia, tradicionalmente empleados. -
Data Standards Version 2.8 July 5
Euro+Med Data Standards Version 2.8. July 5th, 2002 EURO+MED PLANTBASE PREPARATION OF THE INITIAL CHECKLIST: DATA STANDARDS VERSION 2.8 JULY 5TH, 2002 This document replaces Version 2.7, dated May 16th, 2002 Compiled for the Euro+Med PlantBase Editorial Committee by: Euro+Med PlantBase Secretariat, Centre for Plant Diversity and Systematics, School of Plant Sciences, The University of Reading, Whiteknights, Reading RG6 6AS United Kingdom Tel: +44 (0)118 9318160 Fax: +44 (0)118 975 3676 E-mail: [email protected] 1 Euro+Med Data Standards Version 2.8. July 5th, 2002 Modifications made in Version 2.0 (24/11/00) 1. Section 2.4 as been corrected to note that geography should be added for hybrids as well as species and subspecies. 2. Section 3 (Standard Floras) has been modified to reflect the presently accepted list. This may be subject to further modification as the project proceeds. 3. Section 4 (Family Blocks) – genera have been listed where this clarifies the circumscription of blocks. 4. Section 5 (Accented Characters) – now included in the document with examples. 5. Section 6 (Geographical Standard) – Macedonia (Mc) is now listed as Former Yugoslav Republic of Macedonia. Modification made in Version 2.1 (10/01/01) Page 26: Liliaceae in Block 21 has been corrected to Lilaeaceae. Modifications made in Version 2.2 (4/5/01) Geographical Standards. Changes made as discussed at Palermo General meeting (Executive Committee): Treatment of Belgium and Luxembourg as separate areas Shetland not Zetland Moldova not Moldavia Czech Republic -
Evolution of Grasses and Grasslands in South America
TAXON 24(I): 53-66. FEBRUARY 1975 EVOLUTION OF GRASSESAND GRASSLANDS IN SOUTH AMERICA Arturo Burkart* Summary This is a discussion of the South American grasslands from the standpoint of their evolution and composition. The tribes are considered in relation to climate, and grasses are classified as mega-, meso-, or microthermic with respect to their temperature requirements. The principal grassland regions are three: (A) Tropical and Subtropical, which include the Llanos of the Orinoco River system and the Campos Cerrados of Central Brazil; (B) Temperate, including the Pampa of Argentina and the Campos of Uruguay; and (C) Cold Country Grasslands, which are the Steppes of the high Andes and Patagonia, and also the Pairamos of Colombia and Ecuador. Some attention is given to the floristic composition of each of these regions. The subject of endemism is dealt with, as well as the problem of disjunct distribution. Included is a discussion of changes brought about by agriculture and ranching in historic times, and what may be expected in the future. INTRODUCTION The Gramineae, with about 6oo genera and some 6ooo species, is one of the largest families of flowering plants. It is a truly cosmopolitan group, and remarkable because of the capacity of its members to form the domi- nant vegetation over large areas of the earth's surface. The terms steppes, savannas, prairies, pusztas, campos or pampas all refer to vegetation types in which grasses are dominant. To quote Ronald Good (1953; p. 53) "Pride of place must certainly go to the Gramineae . ., the great family ... Not only do the grasses reach to the furthest land in the north and to the borders of Antarctica in the south, but their degree of distribution is usually particularly complete and continuous. -
Plant Diseases Regulations 1989
Western Australia Plant Diseases Regulations 1989 STATUS OF THIS DOCUMENT This document is from an electronic database of legislation maintained by the Parliamentary Counsel’s Office of Western Australia. DISCLAIMER No warranty is given as to the accuracy or completeness of this document. The State of Western Australia and its agents and employees disclaim liability, whether in negligence or otherwise, for any loss or damage resulting from reliance on the accuracy or completeness of this document. REPRINT AND CONSOLIDATION NUMBERING The reprint number (in the footer of each page of the document) shows how many times the Act has been reprinted. For example, numbering a reprint as “Reprint 3” would mean that the reprint was the 3rd reprint since the Act was passed. A consolidation described as “Consolidation 3a” would be the result of updating Reprint 3 for the first time to reflect the amendments since the date as at which Reprint 3 was prepared. Reprint and consolidation numbering was implemented as from 1 January 2003. COPYRIGHT Copyright in this document is reserved to the Crown in right of the State of Western Australia. Reproduction except in accordance with copyright law is prohibited. THE TEXT OF THE LEGISLATION FOLLOWS Western Australia Plant Diseases Regulations 1989 CONTENTS Part 1 — Preliminary 1. Citation 1 2. Commencement 1 3. Interpretation 1 Part 2 — Entry requirements 3A. Quality assurance system 3 3B. Bringing plants into the State 3 4. Potential carriers — conditions for entry 3 4A. Potential carriers — entry for experimental purposes 4 4B. Potential carriers — entry for processing or export 4 5. Entry of propagating material 5 6. -
Interpretation Manual of European Union Habitats - EUR27 Is a Scientific Reference Document
INTERPRETATION MANUAL OF EUROPEAN UNION HABITATS EUR 27 July 2007 EUROPEAN COMMISSION DG ENVIRONMENT Nature and biodiversity The Interpretation Manual of European Union Habitats - EUR27 is a scientific reference document. It is based on the version for EUR15, which was adopted by the Habitats Committee on 4. October 1999 and consolidated with the new and amended habitat types for the 10 accession countries as adopted by the Habitats Committee on 14 March 2002 with additional changes for the accession of Bulgaria and Romania as adopted by the Habitats Committee on 13 April 2007 and for marine habitats to follow the descriptions given in “Guidelines for the establishment of the Natura 2000 network in the marine environment. Application of the Habitats and Birds Directives” published in May 2007 by the Commission services. A small amendment to Habitat type 91D0 was adopted by the Habitats Committee in its meeting on 14th October 2003. TABLE OF CONTENTS WHY THIS MANUAL? 3 HISTORICAL REVIEW 3 THE MANUAL 4 THE EUR15 VERSION 5 THE EUR25 VERSION 5 THE EUR27 VERSION 6 EXPLANATORY NOTES 7 COASTAL AND HALOPHYTIC HABITATS 8 OPEN SEA AND TIDAL AREAS 8 SEA CLIFFS AND SHINGLE OR STONY BEACHES 17 ATLANTIC AND CONTINENTAL SALT MARSHES AND SALT MEADOWS 20 MEDITERRANEAN AND THERMO-ATLANTIC SALTMARSHES AND SALT MEADOWS 22 SALT AND GYPSUM INLAND STEPPES 24 BOREAL BALTIC ARCHIPELAGO, COASTAL AND LANDUPHEAVAL AREAS 26 COASTAL SAND DUNES AND INLAND DUNES 29 SEA DUNES OF THE ATLANTIC, NORTH SEA AND BALTIC COASTS 29 SEA DUNES OF THE MEDITERRANEAN COAST 35 INLAND -
Phylogeny, Morphology and the Role of Hybridization As Driving Force Of
bioRxiv preprint doi: https://doi.org/10.1101/707588; this version posted July 18, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Phylogeny, morphology and the role of hybridization as driving force of evolution in 2 grass tribes Aveneae and Poeae (Poaceae) 3 4 Natalia Tkach,1 Julia Schneider,1 Elke Döring,1 Alexandra Wölk,1 Anne Hochbach,1 Jana 5 Nissen,1 Grit Winterfeld,1 Solveig Meyer,1 Jennifer Gabriel,1,2 Matthias H. Hoffmann3 & 6 Martin Röser1 7 8 1 Martin Luther University Halle-Wittenberg, Institute of Biology, Geobotany and Botanical 9 Garden, Dept. of Systematic Botany, Neuwerk 21, 06108 Halle, Germany 10 2 Present address: German Centre for Integrative Biodiversity Research (iDiv), Deutscher 11 Platz 5e, 04103 Leipzig, Germany 12 3 Martin Luther University Halle-Wittenberg, Institute of Biology, Geobotany and Botanical 13 Garden, Am Kirchtor 3, 06108 Halle, Germany 14 15 Addresses for correspondence: Martin Röser, [email protected]; Natalia 16 Tkach, [email protected] 17 18 ABSTRACT 19 To investigate the evolutionary diversification and morphological evolution of grass 20 supertribe Poodae (subfam. Pooideae, Poaceae) we conducted a comprehensive molecular 21 phylogenetic analysis including representatives from most of their accepted genera. We 22 focused on generating a DNA sequence dataset of plastid matK gene–3'trnK exon and trnL– 23 trnF regions and nuclear ribosomal ITS1–5.8S gene–ITS2 and ETS that was taxonomically 24 overlapping as completely as possible (altogether 257 species).