Lake Khanka International Nature Reserve Lake Khanka
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Tracing Population Movements in Ancient East Asia Through the Linguistics and Archaeology of Textile Production
Evolutionary Human Sciences (2020), 2, e5, page 1 of 20 doi:10.1017/ehs.2020.4 REVIEW Tracing population movements in ancient East Asia through the linguistics and archaeology of textile production Sarah Nelson1, Irina Zhushchikhovskaya2, Tao Li3,4, Mark Hudson3 and Martine Robbeets3* 1Department of Anthropology, University of Denver, Denver, CO, USA, 2Laboratory of Medieval Archaeology, Institute of History, Archaeology and Ethnography of Peoples of Far East, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, Russia, 3Eurasia3angle Research group, Max Planck Institute for the Science of Human History, Jena, Germany and 4Department of Archaeology, Wuhan University, Wuhan, China *Corresponding author. E-mail: [email protected] Abstract Archaeolinguistics, a field which combines language reconstruction and archaeology as a source of infor- mation on human prehistory, has much to offer to deepen our understanding of the Neolithic and Bronze Age in Northeast Asia. So far, integrated comparative analyses of words and tools for textile production are completely lacking for the Northeast Asian Neolithic and Bronze Age. To remedy this situation, here we integrate linguistic and archaeological evidence of textile production, with the aim of shedding light on ancient population movements in Northeast China, the Russian Far East, Korea and Japan. We show that the transition to more sophisticated textile technology in these regions can be associated not only with the adoption of millet agriculture but also with the spread of the languages of the so-called ‘Transeurasian’ family. In this way, our research provides indirect support for the Language/Farming Dispersal Hypothesis, which posits that language expansion from the Neolithic onwards was often associated with agricultural colonization. -
Environmental Evolution of Xingkai (Khanka) Lake Since 200 Ka by OSL Dating of Sand Hills
Article Geology August 2011 Vol.56 No.24: 26042612 doi: 10.1007/s11434-011-4593-x SPECIAL TOPICS: Environmental evolution of Xingkai (Khanka) Lake since 200 ka by OSL dating of sand hills ZHU Yun1,2, SHEN Ji1*, LEI GuoLiang2 & WANG Yong1 1 Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; 2 College of Geographical Sciences, Fujian Normal University, Fujian Key Laboratory of Subtropical Resources and Environment, Fuzhou 350007, China Received February 28, 2011; accepted May 13, 2011 Crossing the Sino-Russian boundary, Xingkai Lake is the largest freshwater lake in Northeast Asia. In addition to the lakeshore, there are four sand hills on the north side of the lake that accumulated during a period of sustainable and stable lacustrine trans- gression and were preserved after depression. Analysis of well-dated stratigraphic sequences based on 18 OSL datings combined with multiple index analysis of six sites in the sand hills revealed that the north shoreline of Xingkai Lake retreated in a stepwise fashion since the middle Pleistocene, and that at least four transgressions (during 193–183 ka, 136–130 ka, 24–15 ka and since 3 ka) and three depressions occurred during this process. The results of this study confirmed that transgressive stages were concur- rent with epochs of climate cooling, whereas the period of regression corresponded to the climatic optima. Transgressions and regressions were primarily caused by variations in the intensity of alluvial accumulation in the Ussuri River Valley and fluctua- tions in regional temperature and humidity that were controlled by climatic change. -
DRAINAGE BASINS of the SEA of OKHOTSK and SEA of JAPAN Chapter 2
60 DRAINAGE BASINS OF THE SEA OF OKHOTSK AND SEA OF JAPAN Chapter 2 SEA OF OKHOTSK AND SEA OF JAPAN 61 62 AMUR RIVER BASIN 66 LAKE XINGKAI/KHANKA 66 TUMEN RIVER BASIN Chapter 2 62 SEA OF OKHOTSK AND SEA OF JAPAN This chapter deals with major transboundary rivers discharging into the Sea of Okhotsk and the Sea of Japan and their major transboundary tributaries. It also includes lakes located within the basins of these seas. TRANSBOUNDARY WATERS IN THE BASINS OF THE SEA OF OKHOTSK AND THE SEA OF JAPAN1 Basin/sub-basin(s) Total area (km2) Recipient Riparian countries Lakes in the basin Amur 1,855,000 Sea of Okhotsk CN, MN, RU … - Argun 164,000 Amur CN, RU … - Ussuri 193,000 Amur CN, RU Lake Khanka Sujfun 18,300 Sea of Japan CN, RU … Tumen 33,800 Sea of Japan CN, KP, RU … 1 The assessment of water bodies in italics was not included in the present publication. 1 AMUR RIVER BASIN o 55 110o 120o 130o 140o SEA OF Zeya OKHOTSK R U S S I A N Reservoir F E mur D un A E mg Z A e R Ulan Ude Chita y ilka a A a Sh r od T u Ing m n A u I Onon g ya r re A Bu O n e N N Khabarovsk Ulaanbaatar Qiqihar i MONGOLIA a r u u gh s n s o U CHIN A S Lake Khanka N Harbin 45o Sapporo A Suj fu Jilin n Changchun SEA O F P n e JA PA N m Vladivostok A Tu Kilometres Shenyang 0 200 400 600 The boundaries and names shown and the designations used on this map Ch’ongjin J do not imply official endorsement or acceptance by the United Nations. -
Wildfowl at Risk, 1992
Wildfowl at Risk, 1992 ANDY J. GREEN Brief accounts are given of the status and causes of decline of 50 species and subspecies of wildfowl (.Anseriformes) that are known to be threatened with extinction. A number of changes are made to the earlier list presented in this journal by Kear & Williams (1978), and each taxon is assigned a provisional category of threat in line with recent proposals for the re-evaluation o f IUCN categories made by Mace & Lande (1991). This is a short review of the Anseriform to the list. Information on the status of species and subspecies (families Anatidae wildfowl has been greatly enhanced by the and Anhimidae) that are currently consid expansion of the mid-winter censuses ered “threatened” with extinction. It gives organised by IWRB and Asian Wetland summaries of the current understanding of Bureau, which now cover large parts of the status of and threats to each taxon, Europe, Asia, Africa and South America. and is based on a more detailed and con The Asian Waterfowl Census (van der Ven tinuing review of these taxa that was initi 1987, 1988, Scott & Rose 1989, Perennou et ated in 1990 on behalf of The Wildfowl & al. 1990, Perennou & Mundkur 1991) has Wetlands Trust. These activities are now produced particularly useful data on a conducted under the umbrella of the new large number of threatened taxa, and is Threatened Waterfowl Research Group of often referred to below. In the past 13 the International Waterfowl & Wetlands years, successful conservation action has Research Bureau (IWRB) which produces a brought a few taxa out of danger, while the biannual newsletter circulated to over 300 advance of wetland destruction, deforesta people across the world working on threat tion and intense hunting pressure has ened wildfowl. -
Lake Status Records from China: Data Base Documentation
Lake status records from China: Data Base Documentation G. Yu 1,2, S.P. Harrison 1, and B. Xue 2 1 Max Planck Institute for Biogeochemistry, Postfach 10 01 64, D-07701 Jena, Germany 2 Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences. Nanjing 210008, China MPI-BGC Tech Rep 4: Yu, Harrison and Xue, 2001 ii MPI-BGC Tech Rep 4: Yu, Harrison and Xue, 2001 Table of Contents Table of Contents ............................................................................................................ iii 1. Introduction ...............................................................................................................1 1.1. Lakes as Indicators of Past Climate Changes........................................................1 1.2. Chinese Lakes as Indicators of Asian Monsoonal Climate Changes ....................1 1.3. Previous Work on Palaeohydrological Changes in China.....................................3 1.4. Data and Methods .................................................................................................6 1.4.1. The Data Set..................................................................................................6 1.4.2. Sources of Evidence for Changes in Lake Status..........................................7 1.4.3. Standardisation: Lake Status Coding ..........................................................11 1.4.4. Chronology and Dating Control..................................................................11 1.5. Structure of this Report .......................................................................................13 -
The Threatened and Near-Threatened Birds of Northern Ussuriland, South-East Russia, and the Role of the Bikin River Basin in Their Conservation KONSTANTIN E
Bird Conservation International (1998) 8:141-171. © BirdLife International 1998 The threatened and near-threatened birds of northern Ussuriland, south-east Russia, and the role of the Bikin River basin in their conservation KONSTANTIN E. MIKHAILOV and YURY B. SHIBNEV Summary Fieldwork on the distribution, habitat preferences and status of birds was conducted in the Bikin River basin, northern Ussuriland, south-east Russia, during May-July 1992,1993, 1995,1996 and 1997. The results of this survey combined with data collected during 1960- 1990, show the area to be of high conservation priority and one of the most important for the conservation of Blakiston's Fish Owl Ketupa blakistoni, Chinese Merganser Mergus squamatus, Mandarin Duck Aix galericulata and Hooded Crane Grus monacha. This paper reports on all of the 13 threatened and near-threatened breeding species of northern Ussuriland, with special emphasis on their occurrence and status in the Bikin area. Three more species, included in the Red Data Book of Russia, are also briefly discussed. Maps show the distribution of the breeding sites of the species discussed. The establishment of a nature reserve in the lower Bikin area is suggested as the only way to conserve the virgin Manchurian-type habitats (wetlands and forests), and all 10 species of special conservation concern. Monitoring of the local populations of Blakiston's Fish Owl, Chinese Merganser and Mandarin Duck in the middle Bikin is required. Introduction No other geographical region of Russia has as rich a biodiversity as Ussuriland which includes the territory of Primorski Administrative Region and the most southern part of Khabarovsk Administrative Region. -
Detailed Species Accounts from The
Threatened Birds of Asia: The BirdLife International Red Data Book Editors N. J. COLLAR (Editor-in-chief), A. V. ANDREEV, S. CHAN, M. J. CROSBY, S. SUBRAMANYA and J. A. TOBIAS Maps by RUDYANTO and M. J. CROSBY Principal compilers and data contributors ■ BANGLADESH P. Thompson ■ BHUTAN R. Pradhan; C. Inskipp, T. Inskipp ■ CAMBODIA Sun Hean; C. M. Poole ■ CHINA ■ MAINLAND CHINA Zheng Guangmei; Ding Changqing, Gao Wei, Gao Yuren, Li Fulai, Liu Naifa, Ma Zhijun, the late Tan Yaokuang, Wang Qishan, Xu Weishu, Yang Lan, Yu Zhiwei, Zhang Zhengwang. ■ HONG KONG Hong Kong Bird Watching Society (BirdLife Affiliate); H. F. Cheung; F. N. Y. Lock, C. K. W. Ma, Y. T. Yu. ■ TAIWAN Wild Bird Federation of Taiwan (BirdLife Partner); L. Liu Severinghaus; Chang Chin-lung, Chiang Ming-liang, Fang Woei-horng, Ho Yi-hsian, Hwang Kwang-yin, Lin Wei-yuan, Lin Wen-horn, Lo Hung-ren, Sha Chian-chung, Yau Cheng-teh. ■ INDIA Bombay Natural History Society (BirdLife Partner Designate) and Sálim Ali Centre for Ornithology and Natural History; L. Vijayan and V. S. Vijayan; S. Balachandran, R. Bhargava, P. C. Bhattacharjee, S. Bhupathy, A. Chaudhury, P. Gole, S. A. Hussain, R. Kaul, U. Lachungpa, R. Naroji, S. Pandey, A. Pittie, V. Prakash, A. Rahmani, P. Saikia, R. Sankaran, P. Singh, R. Sugathan, Zafar-ul Islam ■ INDONESIA BirdLife International Indonesia Country Programme; Ria Saryanthi; D. Agista, S. van Balen, Y. Cahyadin, R. F. A. Grimmett, F. R. Lambert, M. Poulsen, Rudyanto, I. Setiawan, C. Trainor ■ JAPAN Wild Bird Society of Japan (BirdLife Partner); Y. Fujimaki; Y. Kanai, H. -
Detailed Species Accounts from The
Threatened Birds of Asia: The BirdLife International Red Data Book Editors N. J. COLLAR (Editor-in-chief), A. V. ANDREEV, S. CHAN, M. J. CROSBY, S. SUBRAMANYA and J. A. TOBIAS Maps by RUDYANTO and M. J. CROSBY Principal compilers and data contributors ■ BANGLADESH P. Thompson ■ BHUTAN R. Pradhan; C. Inskipp, T. Inskipp ■ CAMBODIA Sun Hean; C. M. Poole ■ CHINA ■ MAINLAND CHINA Zheng Guangmei; Ding Changqing, Gao Wei, Gao Yuren, Li Fulai, Liu Naifa, Ma Zhijun, the late Tan Yaokuang, Wang Qishan, Xu Weishu, Yang Lan, Yu Zhiwei, Zhang Zhengwang. ■ HONG KONG Hong Kong Bird Watching Society (BirdLife Affiliate); H. F. Cheung; F. N. Y. Lock, C. K. W. Ma, Y. T. Yu. ■ TAIWAN Wild Bird Federation of Taiwan (BirdLife Partner); L. Liu Severinghaus; Chang Chin-lung, Chiang Ming-liang, Fang Woei-horng, Ho Yi-hsian, Hwang Kwang-yin, Lin Wei-yuan, Lin Wen-horn, Lo Hung-ren, Sha Chian-chung, Yau Cheng-teh. ■ INDIA Bombay Natural History Society (BirdLife Partner Designate) and Sálim Ali Centre for Ornithology and Natural History; L. Vijayan and V. S. Vijayan; S. Balachandran, R. Bhargava, P. C. Bhattacharjee, S. Bhupathy, A. Chaudhury, P. Gole, S. A. Hussain, R. Kaul, U. Lachungpa, R. Naroji, S. Pandey, A. Pittie, V. Prakash, A. Rahmani, P. Saikia, R. Sankaran, P. Singh, R. Sugathan, Zafar-ul Islam ■ INDONESIA BirdLife International Indonesia Country Programme; Ria Saryanthi; D. Agista, S. van Balen, Y. Cahyadin, R. F. A. Grimmett, F. R. Lambert, M. Poulsen, Rudyanto, I. Setiawan, C. Trainor ■ JAPAN Wild Bird Society of Japan (BirdLife Partner); Y. Fujimaki; Y. Kanai, H. -
Sino-Russian Transboundary Waters: a Legal Perspective on Cooperation
Sino---Russian-Russian Transboundary Waters: A Legal Perspective on Cooperation Sergei Vinogradov Patricia Wouters STOCKHOLM PAPER December 2013 Sino-Russian Transboundary Waters: A Legal Perspective on Cooperation Sergei Vinogradov Patricia Wouters Institute for Security and Development Policy Västra Finnbodavägen 2, 131 30 Stockholm-Nacka, Sweden www.isdp.eu Sino-Russian Transboundary Waters: A Legal Perspective on Cooperation is a Stockholm Paper published by the Institute for Security and Development Policy. The Stockholm Papers Series is an Occasional Paper series addressing topical and timely issues in international affairs. The Institute is based in Stockholm, Sweden, and cooperates closely with research centers worldwide. The Institute is firmly established as a leading research and policy center, serving a large and diverse community of analysts, scholars, policy-watchers, business leaders, and journalists. It is at the forefront of research on issues of conflict, security, and development. Through its applied research, publica- tions, research cooperation, public lectures, and seminars, it functions as a fo- cal point for academic, policy, and public discussion. The opinions and conclusions expressed are those of the authors and do not necessarily reflect the views of the Institute for Security and Development Pol- icy or its sponsors. © Institute for Security and Development Policy, 2013 ISBN: 978-91-86635-71-8 Cover photo: The Argun River running along the Chinese and Russian border, http://tupian.baike.com/a4_50_25_01200000000481120167252214222_jpg.html Printed in Singapore Distributed in Europe by: Institute for Security and Development Policy Västra Finnbodavägen 2, 131 30 Stockholm-Nacka, Sweden Tel. +46-841056953; Fax. +46-86403370 Email: [email protected] Distributed in North America by: The Central Asia-Caucasus Institute Paul H. -
Freshwater Aquatic Biomes GREENWOOD GUIDES to BIOMES of the WORLD
Freshwater Aquatic Biomes GREENWOOD GUIDES TO BIOMES OF THE WORLD Introduction to Biomes Susan L. Woodward Tropical Forest Biomes Barbara A. Holzman Temperate Forest Biomes Bernd H. Kuennecke Grassland Biomes Susan L. Woodward Desert Biomes Joyce A. Quinn Arctic and Alpine Biomes Joyce A. Quinn Freshwater Aquatic Biomes Richard A. Roth Marine Biomes Susan L. Woodward Freshwater Aquatic BIOMES Richard A. Roth Greenwood Guides to Biomes of the World Susan L. Woodward, General Editor GREENWOOD PRESS Westport, Connecticut • London Library of Congress Cataloging-in-Publication Data Roth, Richard A., 1950– Freshwater aquatic biomes / Richard A. Roth. p. cm.—(Greenwood guides to biomes of the world) Includes bibliographical references and index. ISBN 978-0-313-33840-3 (set : alk. paper)—ISBN 978-0-313-34000-0 (vol. : alk. paper) 1. Freshwater ecology. I. Title. QH541.5.F7R68 2009 577.6—dc22 2008027511 British Library Cataloguing in Publication Data is available. Copyright C 2009 by Richard A. Roth All rights reserved. No portion of this book may be reproduced, by any process or technique, without the express written consent of the publisher. Library of Congress Catalog Card Number: 2008027511 ISBN: 978-0-313-34000-0 (vol.) 978-0-313-33840-3 (set) First published in 2009 Greenwood Press, 88 Post Road West, Westport, CT 06881 An imprint of Greenwood Publishing Group, Inc. www.greenwood.com Printed in the United States of America The paper used in this book complies with the Permanent Paper Standard issued by the National Information Standards Organization (Z39.48–1984). 10987654321 Contents Preface vii How to Use This Book ix The Use of Scientific Names xi Chapter 1. -
Amur Fish: Wealth and Crisis
Amur Fish: Wealth and Crisis ББК 28.693.32 Н 74 Amur Fish: Wealth and Crisis ISBN 5-98137-006-8 Authors: German Novomodny, Petr Sharov, Sergei Zolotukhin Translators: Sibyl Diver, Petr Sharov Editors: Xanthippe Augerot, Dave Martin, Petr Sharov Maps: Petr Sharov Photographs: German Novomodny, Sergei Zolotukhin Cover photographs: Petr Sharov, Igor Uchuev Design: Aleksey Ognev, Vladislav Sereda Reviewed by: Nikolai Romanov, Anatoly Semenchenko Published in 2004 by WWF RFE, Vladivostok, Russia Printed by: Publishing house Apelsin Co. Ltd. Any full or partial reproduction of this publication must include the title and give credit to the above-mentioned publisher as the copyright holder. No photographs from this publication may be reproduced without prior authorization from WWF Russia or authors of the photographs. © WWF, 2004 All rights reserved Distributed for free, no selling allowed Contents Introduction....................................................................................................................................... 5 Amur Fish Diversity and Research History ............................................................................. 6 Species Listed In Red Data Book of Russia ......................................................................... 13 Yellowcheek ................................................................................................................................... 13 Black Carp (Amur) ...................................................................................................................... -
SCIENCE CHINA China's Lakes at Present: Number, Area and Spatial
SCIENCE CHINA Earth Sciences • RESEARCH PAPER • February 2011 Vol.54 No.2: 283–289 doi: 10.1007/s11430-010-4052-6 China’s lakes at present: Number, area and spatial distribution MA RongHua1*, YANG GuiShan1, DUAN HongTao1, JIANG JiaHu1, WANG SuMin1, FENG XueZhi2, LI AiNong3, KONG FanXiang1, XUE Bin1, WU JingLu1 & LI ShiJie1 1 State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; 2 Department of Geographic Information Science, Nanjing University, Nanjing 210093, China; 3 Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China Received April 7, 2010; accepted July 13, 2010; published online October 16, 2010 Based on 11004 satellite images from CBERS CCD and Landsat TM/ETM, changes in the spatial characteristics of all lakes in China were determined following pre-established interpretation rules. This dataset was supported by 6843 digital raster images (1:100000 and 1:50000), a countrywide digital vector dataset (1:250000), and historical literature. Comparative data were cor- rected for seasonal variations using precipitation data. There are presently 2693 natural lakes in China with an area greater than 1.0 km2, excluding reservoirs. These lakes are distributed in 28 provinces, autonomous regions and municipalities and have a total area of 81414.6 km2, accounting for ~0.9% of China’s total land area. In the past 30 years, the number of newly formed and newly discovered lakes with an area greater than 1.0 km2 is 60 and 131, respectively. Conversely, 243 lakes have disap- peared in this time period.