Wildfowl at Risk, 1992

Total Page:16

File Type:pdf, Size:1020Kb

Wildfowl at Risk, 1992 Wildfowl at Risk, 1992 ANDY J. GREEN Brief accounts are given of the status and causes of decline of 50 species and subspecies of wildfowl (.Anseriformes) that are known to be threatened with extinction. A number of changes are made to the earlier list presented in this journal by Kear & Williams (1978), and each taxon is assigned a provisional category of threat in line with recent proposals for the re-evaluation o f IUCN categories made by Mace & Lande (1991). This is a short review of the Anseriform to the list. Information on the status of species and subspecies (families Anatidae wildfowl has been greatly enhanced by the and Anhimidae) that are currently consid­ expansion of the mid-winter censuses ered “threatened” with extinction. It gives organised by IWRB and Asian Wetland summaries of the current understanding of Bureau, which now cover large parts of the status of and threats to each taxon, Europe, Asia, Africa and South America. and is based on a more detailed and con­ The Asian Waterfowl Census (van der Ven tinuing review of these taxa that was initi­ 1987, 1988, Scott & Rose 1989, Perennou et ated in 1990 on behalf of The Wildfowl & al. 1990, Perennou & Mundkur 1991) has Wetlands Trust. These activities are now produced particularly useful data on a conducted under the umbrella of the new large number of threatened taxa, and is Threatened Waterfowl Research Group of often referred to below. In the past 13 the International Waterfowl & Wetlands years, successful conservation action has Research Bureau (IWRB) which produces a brought a few taxa out of danger, while the biannual newsletter circulated to over 300 advance of wetland destruction, deforesta­ people across the world working on threat­ tion and intense hunting pressure has ened wildfowl. This follows on from earlier brought additional taxa into danger. work by Dr Janet Kear (formerly Chair of Lists of threatened wildfowl are the Endangered Waterfowl Group) and inevitably compiled partly on a subjective Gwyn Williams who published earlier basis. The IUCN categories themselves are reviews of threatened wildfowl in this jour­ subjective (with the exception of nal (Kear & William s 1978, Kear 1979) that EXTINCT) and are inevitably applied in dif­ contain much historical information that is ferent ways by different workers in differ­ not repeated here. The list of taxa present­ ent continents. This in turn means that a ed here differs considerably from the earli­ global list ends up with a strong regional er list of Kear & Williams (1978) for a num­ bias that may explain some apparent dis­ ber of reasons. It also differs considerably crepancies in the current IUCN list. For from the current IUCN list (WCMC 1990) example, New Zealand and Madagascar which does not contain wildfowl threat­ both hold a number of highly endangered ened only at the subspecific level. bird species, and by comparison the Blue As research into wildfowl taxonomy has Duck Hymenolaimus malacorhynchos and progressed and knowledge of the distribu­ M eller’s Duck Anas melleri may seem tion and population size of wildfowl taxa “safe”. Yet they both have declining popu­ has improved, it has become clear that lations of only a few thousand and deserve some taxa on the earlier list of Kear & listing before the Lesser White-fronted Williams are not significantly “threatened”, Goose Anser erythropus (currently listed as or cannot genuinely be considered to be a Rare) which is thought to have a popula­ separate taxon. Equally, improved moni­ tion of over 100,000. toring has identified additional taxa that The list presented includes an attempt to are in rapid decline and have low popula­ re-evaluate “threatened” status in a more tion sizes, and these taxa have been added objective manner in line with current 160 W ildfowl 43 (1992): 160-184 W ildfow l at Risk 161 moves to reevaluate IUCN categories them­ that of Livezey used by Madge & Burn selves. New categories proposed by Mace (1988) and includes a number of sub­ & Lande (1991) depend primarily on the species whose validity is in question and probability that a taxon will go extinct. The which are not listed in some taxonomies information needed to calculate this prob­ such as that of Sibley & Monroe (1990). ability accurately is not available, and so a number of alternative criteria are offered that depend on population size, population Status Reviews of Threatened Taxa fragmentation and current or projected rates of decline or catastrophes. In this Northern Screamer Chauna chavaría review, the current IUCN category (WCMC IUCN K/V 1990) is listed for each taxon. T he cate­ gories are E (ENDANGERED), V (VULNERA­ This species is restricted to lowland BLE), R (RARE), I (INDETERMINATE), K marshes in northern Colombia and north­ (INSUFFICIENTLY KNOWN) and K* (CUR­ western Venezuela. It is declining in some RENTLY UNDER REVIEW). These existing areas due to habitat loss from develop­ categories are followed by provisional new ment, but remains common in some locali­ Mace-Lande style categories assigned ties (Collar & Andrew 1988) such as the using the following criteria. These are a Ciénagas de Juan Manuel and adjacent modification of those offered by Mace & areas (Scott & Carbonell 1986). In Colom­ Lande (1991), necessary due to a lack of bia, the lower Magdalena, Sinu and Atrato quantitative data on actual or projected valleys were the major areas occupied rates of decline: (Hilty & Brown 1986). Total population probably exceeds 10,000 (N.J. Collar in litt. V = VULNERABLE. Population of 2500 to 1992). 10,000 with current or projected causes of decline OR population of 10,000 to 100,000 West-Indian Whistling Duck in rapid and widespread decline. Dendrocygna arborea IUCN R/E E = ENDANGERED. Population of 250 to This species has been recorded widely in 2500. the Caribbean from the Bahamas, Cuba, Haiti, Dominican Republic, Jamaica, Cay­ C = CRITICAL. Population of under 250. man Islands, Puerto Rico, Virgin Islands and Leeward Islands. It is still widespread, H = Taxon threatened by increasing but populations in Cuba, Jamaica, Domini­ hybridisation with an introduced species. can Republic, Haiti, Puerto Rico, Cayman Islands are all declining due to widespread These categories are assigned on the wetland destruction, logging and indis­ basis of the most pessimistic view within criminate and uncontrolled hunting (King the bounds of current knowledge. For 1978-79, M. Van Liefde pers, comm., N. example, if a population is estimated at Varty pers, comm., A. Sutton in litt.). 200-2000, it is assumed to be 200 and if The total population may be no more rates of decline are not known, they are than several thousand and the present assumed to be rapid. These new cate­ Jamaican population is likely to be under gories were originally assigned during the 1000 (N. Varty pers. com m .). It is found course of a review of the waterfowl to locally in good numbers in Cuba, a “large establish priorities for captive breeding population” is found on Barbuda and there and other programmes conducted in has been a recovery of numbers on the association with the Captive Breeding east coast of Puerto Rico (Collar & Andrew Specialist Group of IUCN (Ellis-Joseph, 1988). A population in Central Conocarpus Hewston & Green 1992). It must be Swamp, Grand Cayman was eliminated by emphasised that these proposed new cat­ vegetation clearance (Scott & Carbonell egories are under review, that they are 1986). Although illegal in much of the not proposed by IUCN itself and that they range, shooting remains widespread. In the do not represent a statement of how the Cayman islands there is no hunting closed categories in future official IUCN lists will season and, outside the winter, D. arborea be revised. are the only duck to shoot (M. Van Liefde The taxonomy used in this review follows pers. comm.). Taking of eggs for food has 162 Wildfowl at Risk contributed to the decline in Puerto Rico golia. In 1977, birds were breeding at Ogii and other islands ( J. Bond in litt. 1961, H. Nor and Oigon Nor in the north-central Raffaele in litt. 1973). In the Jibaro W et­ steppe (K itson 1978). In China, the species lands in Cuba, a large population fed in is currently breeding in Inner Mongolia rice paddies, but the numbers declined Autonomous Region, Heilongjiang Province drastically after the introduction of a pest and Jilin Province (Scott 1989). The winter­ control programme in 1974 (Scott & Car­ ing populations in Korea and Japan have bonell 1986). crashed since 1950 w here it is now an irregular visitor (K ear & Williams 1978). Recherche Cape Barren Goose Cereopsis Wintering now occurs mainly in China in novae-hollandiae griseus IUCN -/E Shandong, coastal Jiangsu, Anhui and Jianxi Provinces. The Asian Waterfowl Cen­ The isolated population of this goose in sus recorded 71,000 from Poyang Lake, the Recherche Islands off the south coast Jiangxi Province in 1988, and 35,000 in of Western Australia has recently been Yancheng marshes, coastal Jiangsu described as a distinct subspecies (Storr Province in January 1988 (Scott 1989). 1980). This taxon is at risk owing to its These counts may be overestimates, and small population of about 1000. The nomi­ the total Chinese wintering population may nate race has a population of around be less than 50,000 (Jianjian Lu in litt.). 16,000 concentrated on islands off Eyre The decline in Russia has been attributed Peninsula, South Australia, off Wilson’s to habitat destruction, hydro-electric Promontory, Victoria and the Furneaux schemes, controlling of river flows and Group, Tasmania. This population is hunting pressure (Kolosov 1983, Borodin increasing and under no threats (Marchant 1984). T he geese are relatively easy to & Higgins 1990).
Recommended publications
  • The Spatial Differentiation of the Suitability of Ice-Snow Tourist Destinations Based on a Comprehensive Evaluation Model in China
    sustainability Article The Spatial Differentiation of the Suitability of Ice-Snow Tourist Destinations Based on a Comprehensive Evaluation Model in China Jun Yang 1,*, Ruimeng Yang 1, Jing Sun 1, Tai Huang 2,3,* and Quansheng Ge 3 1 Liaoning Key Laboratory of Physical Geography and Geomatics, Liaoning Normal University, Dalian 116029, China; [email protected] (R.Y.); [email protected] (J.S.) 2 Department of Tourism Management, Soochow University, Suzhou 215123, China 3 Key Laboratory of Land Surface Patterns and Simulation, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China; [email protected] * Correspondence: [email protected] (J.Y.); [email protected] (T.H.) Academic Editors: Jun Liu, Gang Liu and This Rutishauser Received: 1 February 2017; Accepted: 4 May 2017; Published: 8 May 2017 Abstract: Ice, snow, and rime are wonders of the cold season in an alpine climate zone and climate landscape. With its pure, spectacular, and magical features, these regions attract numerous tourists. Ice and snow landscapes can provide not only visually-stimulating experiences for people, but also opportunities for outdoor play and movement. In China, ice and snow tourism is a new type of recreation; however, the establishment of snow and ice in relation to the suitability of the surrounding has not been clearly expressed. Based on multi-source data, such as tourism, weather, and traffic data, this paper employs the Delphi-analytic hierarchy process (AHP) evaluation method and a spatial analysis method to study the spatial differences of snow and ice tourism suitability in China. China’s ice and snow tourism is located in the latitude from 35◦N to 53.33◦N and latitude 41.5◦N to 45◦N and longitude 82◦E to 90◦E, with the main focus on latitude and terrain factors.
    [Show full text]
  • Supplement of a Systematic Examination of the Relationships Between CDOM and DOC in Inland Waters in China
    Supplement of Hydrol. Earth Syst. Sci., 21, 5127–5141, 2017 https://doi.org/10.5194/hess-21-5127-2017-supplement © Author(s) 2017. This work is distributed under the Creative Commons Attribution 3.0 License. Supplement of A systematic examination of the relationships between CDOM and DOC in inland waters in China Kaishan Song et al. Correspondence to: Kaishan Song ([email protected]) The copyright of individual parts of the supplement might differ from the CC BY 3.0 License. Figure S1. Sampling location at three rivers for tracing the temporal variation of CDOM and DOC. The average widths at sampling stations are about 1020 m, 206m and 152 m for the Songhua River, Hunjiang River and Yalu River, respectively. Table S1 the sampling information for fresh and saline water lakes, the location information shows the central positions of the lakes. Res. is the abbreviation for reservoir; N, numbers of samples collected; Lat., latitude; Long., longitude; A, area; L, maximum length in kilometer; W, maximum width in kilometer. Water body type Sampling date N Lat. Long. A(km2) L (km) W (km) Fresh water lake Shitoukou Res. 2009.08.28 10 43.9319 125.7472 59 17 6 Songhua Lake 2015.04.29 8 43.6146 126.9492 185 55 6 Erlong Lake 2011.06.24 6 43.1785 124.8264 98 29 8 Xinlicheng Res. 2011.06.13 7 43.6300 125.3400 43 22 6 Yueliang Lake 2011.09.01 6 45.7250 123.8667 116 15 15 Nierji Res. 2015.09.16 8 48.6073 124.5693 436 83 26 Shankou Res.
    [Show full text]
  • Report on Domestic Animal Genetic Resources in China
    Country Report for the Preparation of the First Report on the State of the World’s Animal Genetic Resources Report on Domestic Animal Genetic Resources in China June 2003 Beijing CONTENTS Executive Summary Biological diversity is the basis for the existence and development of human society and has aroused the increasing great attention of international society. In June 1992, more than 150 countries including China had jointly signed the "Pact of Biological Diversity". Domestic animal genetic resources are an important component of biological diversity, precious resources formed through long-term evolution, and also the closest and most direct part of relation with human beings. Therefore, in order to realize a sustainable, stable and high-efficient animal production, it is of great significance to meet even higher demand for animal and poultry product varieties and quality by human society, strengthen conservation, and effective, rational and sustainable utilization of animal and poultry genetic resources. The "Report on Domestic Animal Genetic Resources in China" (hereinafter referred to as the "Report") was compiled in accordance with the requirements of the "World Status of Animal Genetic Resource " compiled by the FAO. The Ministry of Agriculture" (MOA) has attached great importance to the compilation of the Report, organized nearly 20 experts from administrative, technical extension, research institutes and universities to participate in the compilation team. In 1999, the first meeting of the compilation staff members had been held in the National Animal Husbandry and Veterinary Service, discussed on the compilation outline and division of labor in the Report compilation, and smoothly fulfilled the tasks to each of the compilers.
    [Show full text]
  • Tracing Population Movements in Ancient East Asia Through the Linguistics and Archaeology of Textile Production
    Evolutionary Human Sciences (2020), 2, e5, page 1 of 20 doi:10.1017/ehs.2020.4 REVIEW Tracing population movements in ancient East Asia through the linguistics and archaeology of textile production Sarah Nelson1, Irina Zhushchikhovskaya2, Tao Li3,4, Mark Hudson3 and Martine Robbeets3* 1Department of Anthropology, University of Denver, Denver, CO, USA, 2Laboratory of Medieval Archaeology, Institute of History, Archaeology and Ethnography of Peoples of Far East, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, Russia, 3Eurasia3angle Research group, Max Planck Institute for the Science of Human History, Jena, Germany and 4Department of Archaeology, Wuhan University, Wuhan, China *Corresponding author. E-mail: [email protected] Abstract Archaeolinguistics, a field which combines language reconstruction and archaeology as a source of infor- mation on human prehistory, has much to offer to deepen our understanding of the Neolithic and Bronze Age in Northeast Asia. So far, integrated comparative analyses of words and tools for textile production are completely lacking for the Northeast Asian Neolithic and Bronze Age. To remedy this situation, here we integrate linguistic and archaeological evidence of textile production, with the aim of shedding light on ancient population movements in Northeast China, the Russian Far East, Korea and Japan. We show that the transition to more sophisticated textile technology in these regions can be associated not only with the adoption of millet agriculture but also with the spread of the languages of the so-called ‘Transeurasian’ family. In this way, our research provides indirect support for the Language/Farming Dispersal Hypothesis, which posits that language expansion from the Neolithic onwards was often associated with agricultural colonization.
    [Show full text]
  • Environmental Evolution of Xingkai (Khanka) Lake Since 200 Ka by OSL Dating of Sand Hills
    Article Geology August 2011 Vol.56 No.24: 26042612 doi: 10.1007/s11434-011-4593-x SPECIAL TOPICS: Environmental evolution of Xingkai (Khanka) Lake since 200 ka by OSL dating of sand hills ZHU Yun1,2, SHEN Ji1*, LEI GuoLiang2 & WANG Yong1 1 Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; 2 College of Geographical Sciences, Fujian Normal University, Fujian Key Laboratory of Subtropical Resources and Environment, Fuzhou 350007, China Received February 28, 2011; accepted May 13, 2011 Crossing the Sino-Russian boundary, Xingkai Lake is the largest freshwater lake in Northeast Asia. In addition to the lakeshore, there are four sand hills on the north side of the lake that accumulated during a period of sustainable and stable lacustrine trans- gression and were preserved after depression. Analysis of well-dated stratigraphic sequences based on 18 OSL datings combined with multiple index analysis of six sites in the sand hills revealed that the north shoreline of Xingkai Lake retreated in a stepwise fashion since the middle Pleistocene, and that at least four transgressions (during 193–183 ka, 136–130 ka, 24–15 ka and since 3 ka) and three depressions occurred during this process. The results of this study confirmed that transgressive stages were concur- rent with epochs of climate cooling, whereas the period of regression corresponded to the climatic optima. Transgressions and regressions were primarily caused by variations in the intensity of alluvial accumulation in the Ussuri River Valley and fluctua- tions in regional temperature and humidity that were controlled by climatic change.
    [Show full text]
  • DRAINAGE BASINS of the SEA of OKHOTSK and SEA of JAPAN Chapter 2
    60 DRAINAGE BASINS OF THE SEA OF OKHOTSK AND SEA OF JAPAN Chapter 2 SEA OF OKHOTSK AND SEA OF JAPAN 61 62 AMUR RIVER BASIN 66 LAKE XINGKAI/KHANKA 66 TUMEN RIVER BASIN Chapter 2 62 SEA OF OKHOTSK AND SEA OF JAPAN This chapter deals with major transboundary rivers discharging into the Sea of Okhotsk and the Sea of Japan and their major transboundary tributaries. It also includes lakes located within the basins of these seas. TRANSBOUNDARY WATERS IN THE BASINS OF THE SEA OF OKHOTSK AND THE SEA OF JAPAN1 Basin/sub-basin(s) Total area (km2) Recipient Riparian countries Lakes in the basin Amur 1,855,000 Sea of Okhotsk CN, MN, RU … - Argun 164,000 Amur CN, RU … - Ussuri 193,000 Amur CN, RU Lake Khanka Sujfun 18,300 Sea of Japan CN, RU … Tumen 33,800 Sea of Japan CN, KP, RU … 1 The assessment of water bodies in italics was not included in the present publication. 1 AMUR RIVER BASIN o 55 110o 120o 130o 140o SEA OF Zeya OKHOTSK R U S S I A N Reservoir F E mur D un A E mg Z A e R Ulan Ude Chita y ilka a A a Sh r od T u Ing m n A u I Onon g ya r re A Bu O n e N N Khabarovsk Ulaanbaatar Qiqihar i MONGOLIA a r u u gh s n s o U CHIN A S Lake Khanka N Harbin 45o Sapporo A Suj fu Jilin n Changchun SEA O F P n e JA PA N m Vladivostok A Tu Kilometres Shenyang 0 200 400 600 The boundaries and names shown and the designations used on this map Ch’ongjin J do not imply official endorsement or acceptance by the United Nations.
    [Show full text]
  • Lake Status Records from China: Data Base Documentation
    Lake status records from China: Data Base Documentation G. Yu 1,2, S.P. Harrison 1, and B. Xue 2 1 Max Planck Institute for Biogeochemistry, Postfach 10 01 64, D-07701 Jena, Germany 2 Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences. Nanjing 210008, China MPI-BGC Tech Rep 4: Yu, Harrison and Xue, 2001 ii MPI-BGC Tech Rep 4: Yu, Harrison and Xue, 2001 Table of Contents Table of Contents ............................................................................................................ iii 1. Introduction ...............................................................................................................1 1.1. Lakes as Indicators of Past Climate Changes........................................................1 1.2. Chinese Lakes as Indicators of Asian Monsoonal Climate Changes ....................1 1.3. Previous Work on Palaeohydrological Changes in China.....................................3 1.4. Data and Methods .................................................................................................6 1.4.1. The Data Set..................................................................................................6 1.4.2. Sources of Evidence for Changes in Lake Status..........................................7 1.4.3. Standardisation: Lake Status Coding ..........................................................11 1.4.4. Chronology and Dating Control..................................................................11 1.5. Structure of this Report .......................................................................................13
    [Show full text]
  • Multi-Destination Tourism in Greater Tumen Region
    MULTI-DESTINATION TOURISM IN GREATER TUMEN REGION RESEARCH REPORT 2013 MULTI-DESTINATION TOURISM IN GREATER TUMEN REGION RESEARCH REPORT 2013 Greater Tumen Initiative Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH GTI Secretariat Regional Economic Cooperation and Integration in Asia (RCI) Tayuan Diplomatic Compound 1-1-142 Tayuan Diplomatic Office Bldg 1-14-1 No. 1 Xindong Lu, Chaoyang District No. 14 Liangmahe Nanlu, Chaoyang District Beijing, 100600, China Beijing, 100600, China www.tumenprogramme.org www.economicreform.cn Tel: +86-10-6532-5543 Tel: + 86-10-8532-5394 Fax: +86-10-6532-6465 Fax: +86-10-8532-5774 [email protected] [email protected] © 2013 by Greater Tumen Initiative The views expressed in this paper are those of the author and do not necessarily reflect the views and policies of the Greater Tumen Initiative (GTI) or members of its Consultative Commission and Tourism Board or the governments they represent. GTI does not guarantee the accuracy of the data included in this publication and accepts no responsibility for any consequence of their use. By making any designation of or reference to a particular territory or geographic area, or by using the term “country” in this document, GTI does not intend to make any judgments as to the legal or other status of any territory or area. “Multi-Destination Tourism in the Greater Tumen Region” is the report on respective research within the GTI Multi-Destination Tourism Project funded by Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH. The report was prepared by Mr. James MacGregor, sustainable tourism consultant (ecoplan.net).
    [Show full text]
  • Report on the State of the Environment in China 2016
    2016 The 2016 Report on the State of the Environment in China is hereby announced in accordance with the Environmental Protection Law of the People ’s Republic of China. Minister of Ministry of Environmental Protection, the People’s Republic of China May 31, 2017 2016 Summary.................................................................................................1 Atmospheric Environment....................................................................7 Freshwater Environment....................................................................17 Marine Environment...........................................................................31 Land Environment...............................................................................35 Natural and Ecological Environment.................................................36 Acoustic Environment.........................................................................41 Radiation Environment.......................................................................43 Transport and Energy.........................................................................46 Climate and Natural Disasters............................................................48 Data Sources and Explanations for Assessment ...............................52 2016 On January 18, 2016, the seminar for the studying of the spirit of the Sixth Plenary Session of the Eighteenth CPC Central Committee was opened in Party School of the CPC Central Committee, and it was oriented for leaders and cadres at provincial and ministerial
    [Show full text]
  • The Threatened and Near-Threatened Birds of Northern Ussuriland, South-East Russia, and the Role of the Bikin River Basin in Their Conservation KONSTANTIN E
    Bird Conservation International (1998) 8:141-171. © BirdLife International 1998 The threatened and near-threatened birds of northern Ussuriland, south-east Russia, and the role of the Bikin River basin in their conservation KONSTANTIN E. MIKHAILOV and YURY B. SHIBNEV Summary Fieldwork on the distribution, habitat preferences and status of birds was conducted in the Bikin River basin, northern Ussuriland, south-east Russia, during May-July 1992,1993, 1995,1996 and 1997. The results of this survey combined with data collected during 1960- 1990, show the area to be of high conservation priority and one of the most important for the conservation of Blakiston's Fish Owl Ketupa blakistoni, Chinese Merganser Mergus squamatus, Mandarin Duck Aix galericulata and Hooded Crane Grus monacha. This paper reports on all of the 13 threatened and near-threatened breeding species of northern Ussuriland, with special emphasis on their occurrence and status in the Bikin area. Three more species, included in the Red Data Book of Russia, are also briefly discussed. Maps show the distribution of the breeding sites of the species discussed. The establishment of a nature reserve in the lower Bikin area is suggested as the only way to conserve the virgin Manchurian-type habitats (wetlands and forests), and all 10 species of special conservation concern. Monitoring of the local populations of Blakiston's Fish Owl, Chinese Merganser and Mandarin Duck in the middle Bikin is required. Introduction No other geographical region of Russia has as rich a biodiversity as Ussuriland which includes the territory of Primorski Administrative Region and the most southern part of Khabarovsk Administrative Region.
    [Show full text]
  • Detailed Species Accounts from The
    Threatened Birds of Asia: The BirdLife International Red Data Book Editors N. J. COLLAR (Editor-in-chief), A. V. ANDREEV, S. CHAN, M. J. CROSBY, S. SUBRAMANYA and J. A. TOBIAS Maps by RUDYANTO and M. J. CROSBY Principal compilers and data contributors ■ BANGLADESH P. Thompson ■ BHUTAN R. Pradhan; C. Inskipp, T. Inskipp ■ CAMBODIA Sun Hean; C. M. Poole ■ CHINA ■ MAINLAND CHINA Zheng Guangmei; Ding Changqing, Gao Wei, Gao Yuren, Li Fulai, Liu Naifa, Ma Zhijun, the late Tan Yaokuang, Wang Qishan, Xu Weishu, Yang Lan, Yu Zhiwei, Zhang Zhengwang. ■ HONG KONG Hong Kong Bird Watching Society (BirdLife Affiliate); H. F. Cheung; F. N. Y. Lock, C. K. W. Ma, Y. T. Yu. ■ TAIWAN Wild Bird Federation of Taiwan (BirdLife Partner); L. Liu Severinghaus; Chang Chin-lung, Chiang Ming-liang, Fang Woei-horng, Ho Yi-hsian, Hwang Kwang-yin, Lin Wei-yuan, Lin Wen-horn, Lo Hung-ren, Sha Chian-chung, Yau Cheng-teh. ■ INDIA Bombay Natural History Society (BirdLife Partner Designate) and Sálim Ali Centre for Ornithology and Natural History; L. Vijayan and V. S. Vijayan; S. Balachandran, R. Bhargava, P. C. Bhattacharjee, S. Bhupathy, A. Chaudhury, P. Gole, S. A. Hussain, R. Kaul, U. Lachungpa, R. Naroji, S. Pandey, A. Pittie, V. Prakash, A. Rahmani, P. Saikia, R. Sankaran, P. Singh, R. Sugathan, Zafar-ul Islam ■ INDONESIA BirdLife International Indonesia Country Programme; Ria Saryanthi; D. Agista, S. van Balen, Y. Cahyadin, R. F. A. Grimmett, F. R. Lambert, M. Poulsen, Rudyanto, I. Setiawan, C. Trainor ■ JAPAN Wild Bird Society of Japan (BirdLife Partner); Y. Fujimaki; Y. Kanai, H.
    [Show full text]
  • Detailed Species Accounts from The
    Threatened Birds of Asia: The BirdLife International Red Data Book Editors N. J. COLLAR (Editor-in-chief), A. V. ANDREEV, S. CHAN, M. J. CROSBY, S. SUBRAMANYA and J. A. TOBIAS Maps by RUDYANTO and M. J. CROSBY Principal compilers and data contributors ■ BANGLADESH P. Thompson ■ BHUTAN R. Pradhan; C. Inskipp, T. Inskipp ■ CAMBODIA Sun Hean; C. M. Poole ■ CHINA ■ MAINLAND CHINA Zheng Guangmei; Ding Changqing, Gao Wei, Gao Yuren, Li Fulai, Liu Naifa, Ma Zhijun, the late Tan Yaokuang, Wang Qishan, Xu Weishu, Yang Lan, Yu Zhiwei, Zhang Zhengwang. ■ HONG KONG Hong Kong Bird Watching Society (BirdLife Affiliate); H. F. Cheung; F. N. Y. Lock, C. K. W. Ma, Y. T. Yu. ■ TAIWAN Wild Bird Federation of Taiwan (BirdLife Partner); L. Liu Severinghaus; Chang Chin-lung, Chiang Ming-liang, Fang Woei-horng, Ho Yi-hsian, Hwang Kwang-yin, Lin Wei-yuan, Lin Wen-horn, Lo Hung-ren, Sha Chian-chung, Yau Cheng-teh. ■ INDIA Bombay Natural History Society (BirdLife Partner Designate) and Sálim Ali Centre for Ornithology and Natural History; L. Vijayan and V. S. Vijayan; S. Balachandran, R. Bhargava, P. C. Bhattacharjee, S. Bhupathy, A. Chaudhury, P. Gole, S. A. Hussain, R. Kaul, U. Lachungpa, R. Naroji, S. Pandey, A. Pittie, V. Prakash, A. Rahmani, P. Saikia, R. Sankaran, P. Singh, R. Sugathan, Zafar-ul Islam ■ INDONESIA BirdLife International Indonesia Country Programme; Ria Saryanthi; D. Agista, S. van Balen, Y. Cahyadin, R. F. A. Grimmett, F. R. Lambert, M. Poulsen, Rudyanto, I. Setiawan, C. Trainor ■ JAPAN Wild Bird Society of Japan (BirdLife Partner); Y. Fujimaki; Y. Kanai, H.
    [Show full text]