The Migration Flyways and Protection of Cranes in China

Total Page:16

File Type:pdf, Size:1020Kb

The Migration Flyways and Protection of Cranes in China 113 The Migration Flyways and Protection of Cranes in China Ke-ji SUN, Naoya HIJIKATA, Tomohiro ICHINOSE and Hiroyoshi HIGUCHI Graduate School of Media and Governance, Keio University 5322 Endo, Fujisawa-shi, Kanagawa, 252-0882, Japan e-mail: [email protected] Abstract In China, wetlands are being continuously developed for economic reasons, which results in the decrease and fragmentation of habitats of water birds such as cranes. In order to better understand China’s crane populations so that they may be better protected as a resource, we studied the migration and ecology of red-crowned and white-naped cranes as indicator species. Combining satellite-tracking results with a litera- ture survey and collection of network information, we reviewed the migration flyways, current status of im- portant habitats, and main existing issues that surround the conservation of red-crowned and white-naped cranes in China. Our results demonstrate that, due to the development of agriculture, animal husbandry, and industry, Chinese populations of red-crowned and white-naped cranes are under tremendous threat from habi- tat destruction, human disturbance, chemical pollution, and bird poaching. Current conservation measures are unlikely to be effective in the protection of crane populations. In order to ease the survival pressure on cranes, preservation of their habitats, protection of the environment along migration flyways, and development of effective management systems are of paramount importance. Key words: crane conservation, habitat status, migration flyway, red-crowned crane, white-naped crane 1. Introduction This decline is associated with increasing development of crane habitats, which has led to increasing survival China has a rich and diverse crane population. Among pressure on crane populations (Qian, 2005). the 15 crane species in the world, nine are observed in The Chinese government has always attached great China (Su et al., 2000; Li, 2004). The red-crowned crane, importance to the protection of cranes. In recent years, Grus japonensis, and white-naped crane, G. vipio, are under the influence of sustainable and scientific devel- representative species in China and in the List of opment views, China ushered in a climate of change in Endangered and Protected Species of China (1988), they the development of laws and regulations regarding crane are designated, respectively, as first- and second-class conservation. For instance, a national strategy for bio- national protected animals. The red-crowned and the logical diversity, which indicated China’s overall goal of white-naped crane are species of large wading birds. protecting biodiversity up to 2030, was promulgated in Both have a similar habitat preference; usually nest and 2011. In the second half of 2014, the Environmental breed in large, open reed marsh; and feed on freshwater Protection Law of the People’s Republic of China, origi- fish, mollusks, and plant roots. These two species that nally promulgated in 1985, was completely revised, and breed on the Chinese mainland are migratory, and travel was enforced on January 1, 2015. Revision of the thousands of kilometers between their breeding and Wildlife Protection Law of the People’s Republic of wintering grounds. (Higuchi et al., 1996; 1998). Because China is underway at the time of writing. Applications wetlands are the main habitat of both species, for the designation of national parks and world heritage red-crowned and white- naped cranes are often used as sites in China are currently at the preparatory stage (Zhu, important indicator species in wetland ecological 2014). Under the background that the relevant policies evaluations (Li, 2004). So far, a number of studies have for crane conservation gradually improved, in order to been conducted on these two crane species (Su & Zou, protect integrity of red-crowned and white-naped cranes 2012). Because they have similar habits and habitat better, we need to comb the existing relevant research and preferences, some studies choose them comparing with intelligence, analyze the factors that may cause a nega- each other (Li & Li, 1999; Li & Liu, 2005; Zou & Wu, tive impact on crane population, and provide scientific 2006). Based on recent data, it is for sure that the number basis for formulating more reasonable protection coun- of red-crowned crane on the Chinese mainland has termeasures. declined considerably (Su & Zou, 2012; Li Y et al., 2012). Global Environmental Research ©2015 AIRIES 19/2015: 113-121 printed in Japan 114 K. SUN et al. Su et al. (2000) and Qian (2005) conducted macro users had reached 4,620 million. We adopted the follow- analyses on the distribution and population status of all ing two methods for collection of data between January crane species in China. Based on vast amounts of data 1st, 2012 and December 31st, 2014: (1) 200 active bird acquired in recent years, Su & Zou (2012) systematically watchers were carefully selected from the list of SNS collated the distribution of red-crowned cranes and the registered users, and all information regarding poaching condition of their habitats. In order for policy-making to of migratory birds that was posted online by these users be effective in achieving conservation of cranes, a deeper was monitored throughout the study period; (2) keywords understanding of migration flyways, current status of were used to seek other information on migratory bird crane habitats, and existing issues surrounding protection capture, trafficking, transporting, purchasing, and con- of cranes is needed. To this end, we studied the migration sumption. Information was considered relevant if the and ecology of red-crowned and white-naped cranes, by following were detailed: a specific time, location, and collating satellite tracking results and relevant survey and clear images of the poaching event. crowd sourced wildlife data. Here, we present a review of the data on crane migration flyways and features of im- 3. Migration Flyways and Habitat Conditions portant habitats, and outline important issues surrounding conservation of red-crowned and white-naped cranes. By 3.1 Migration flyways and population status analyzing and understanding the current status of crane populations in China, we can better identify challenges to The red-crowned crane the conservation of these species, and make important The global population of the red-crowned crane is contributions to the establishment of effective crane approximately 2,800 individuals, divided into two en- conservation laws and regulations. tirely separate groups: island and continental subpopula- tions. The island subpopulation resides in Hokkaido in 2. Information Collection northern Japan. This subpopulation is non-migratory, and in 2008, was estimated at more than 1,300 birds Japanese, Russian, and American scientists used (Masatomi, 2008). The continental subpopulation com- satellites to track the migration of 18 red-crowned and 20 prises 1,500 birds (Su et al., 2000; Masatomi et al., 2004; white-naped cranes. Eleven of the 18 red-crowned cranes Su & Zou, 2012). This subpopulation is migratory, sum- were captured in a breeding ground along the Amur River mering in northeastern China, Russia, and Mongolia, and in Russia, and the other 7 along Lake Khanka on the wintering in the middle and lower reaches of the Yangtze border of Russia and China (Higuchi et al., 1998; Tamura Plain and the middle part of the Korean Peninsula along et al., 2000). Nine of the 20 white-naped cranes were the Demilitarized Zone (DMZ) (Fig. 1, H). Because of captured in Izumi in Kyushu, Japan, between 1992 and these different wintering grounds, the continental sub- 1993 (Higuchi et al., 1996); the other 11 were captured in population is approximately divided into two separate Daursky, Khingansky or Muraviovka in Russia, between flyways: western (Fig. 1, α) and eastern flyways (Fig. 1, 1991 and 1993 (Higuchi et al., 2004). Information on the β) (Higuchi et al., 1998). migration flyways and critical habitats of these birds was In China, there are three main breeding grounds for obtained. Using these data, we have predicted the distri- the red-crowned crane: Hulu Lake and the surrounding bution of these two crane species. areas, where the borders of Russia, Mongolia and China Satellite tracking is an excellent research tool to study meet (Fig. 1, A); the Songnen Plain in the northeastern bird migration (Higuchi 2012, 2013), but the number of Inner Mongolia Autonomous Region, Jilin Province, individual animals used for tracking is small. In order to and western Heilongjiang Province (Fig. 1, B); and the determine the migration pattern, distribution, and abun- Sanjiang Plain in eastern Heilongjiang Province, and the dance of cranes more accurately, we collected observa- Amur Region in eastern Russia (Fig. 1, C) (Qian, 2005). tion records from various sources such as papers, reports, Birds in the continental subpopulation, which uses online data, and observations of bird watchers. Critical the western flyway, probably all migrate through habitats were assigned based on of revision of relevant Shuangtaihekou Nature Reserve (Fig. 1, D). Migrating information on crane habitats, such as land use change, red-crowned cranes have been observed each year from development history, and bird conservation status. 1991–2012 in the Shuangtaihekou Nature Reserve, in Bird poaching is common in China but there is little numbers ranging from 300 to 800, and the largest known study in this field. We used online databases and social
Recommended publications
  • Crop Systems on a County-Scale
    Supporting information Chinese cropping systems are a net source of greenhouse gases despite soil carbon sequestration Bing Gaoa,b, c, Tao Huangc,d, Xiaotang Juc*, Baojing Gue,f, Wei Huanga,b, Lilai Xua,b, Robert M. Reesg, David S. Powlsonh, Pete Smithi, Shenghui Cuia,b* a Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China b Xiamen Key Lab of Urban Metabolism, Xiamen 361021, China c College of Resources and Environmental Sciences, Key Laboratory of Plant-soil Interactions of MOE, China Agricultural University, Beijing 100193, China d College of Geography Science, Nanjing Normal University, Nanjing 210046, China e Department of Land Management, Zhejiang University, Hangzhou, 310058, PR China f School of Agriculture and Food, The University of Melbourne, Victoria, 3010 Australia g SRUC, West Mains Rd. Edinburgh, EH9 3JG, Scotland, UK h Department of Sustainable Agriculture Sciences, Rothamsted Research, Harpenden, AL5 2JQ. UK i Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 3UU, UK Bing Gao & Tao Huang contributed equally to this work. Corresponding author: Xiaotang Ju and Shenghui Cui College of Resources and Environmental Sciences, Key Laboratory of Plant-soil Interactions of MOE, China Agricultural University, Beijing 100193, China. Phone: +86-10-62732006; Fax: +86-10-62731016. E-mail: [email protected] Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China. Phone: +86-592-6190777; Fax: +86-592-6190977. E-mail: [email protected] S1. The proportions of the different cropping systems to national crop yields and sowing area Maize was mainly distributed in the “Corn Belt” from Northeastern to Southwestern China (Liu et al., 2016a).
    [Show full text]
  • Saving the Flagship Species of North-East Asia
    North-East Asian Subregional Programme for Environmental Cooperation (NEASPEC) SAVING THE FLAGSHIP SPECIES THE FLAGSHIP SAVING SAVING THE FLAGSHIP SPECIES OF NORTH-EAST ASIA OF NORTH-EAST ASIA United Nations ESCAP United Nations Economic and Social Commission for Asia and the Pacific Environment and Sustainable Development Division United Nations Building Rajadamnern Nok Avenue Nature Conservation Strategy of NEASPEC Bangkok 10200 Thailand Tel: (662) 288-1234; Fax: (662) 288-1025 E-mail: [email protected] E-mail: [email protected] Website: <http://www.unescap.org/esd> United Nations ESCAP ECONOMIC AND SOCIAL COMMISSION FOR ASIA AND THE PACIFIC ESCAP is the regional development arm of the United Nations and serves as the main economic and social development centre for the United Nations in Asia and the Pacific. Its mandate is to foster cooperation between its 53 members and 9 associate members. ESCAP provides the strategic link between global and country-level programmes and issues. It supports the Governments of the region in consolidating regional positions and advocates regional approaches to meeting the region’s unique socio-economic challenges in a globalizing world. The ESCAP office is located in Bangkok, Thailand. Please visit our website at www.unescap.org for further information. Saving the Flagship Species The grey shaded area of the map represents the members and associate members of ESCAP of North-East Asia: United Nations publication Nature Conservation Strategy of NEASPEC Copyright© United Nations 2007 ST/ESCAP/2495
    [Show full text]
  • 6. Tourism Guide 2010 English Version Combined.Pdf
    Contents Introduction section Page 1 Introduction to the Greater Tumen Region Page 2 Highlights Page 4 Practical Information Guide section Page 5 China Page 9 Heilongjiang Page 12 Jilin Page 15 Liaoning Page 17 Inner Mongolia Page 19 Mongolia Page 23 Khentii Page 25 Sükhbaatar Page 27 Dornod Page 30 Ulaan Baatar Page 31 ROK Page 35 Gangwon The GTI Page 38 Gyeongbuk The Greater Tumen Initiative (GTI) is an intergovernmental cooperation Page 41 Ulsan mechanism in Northeast Asia, supported Page 43 Busan by the United Nations Development Programme (UNDP), with a four- country membership: the People’s Page 45 Russia Republic of China, Mongolia, the Republic of Korea and the Russian Federation. Created in 1995, the GTI Page 49 Primorsky Krai has remained a unique platform for Page 53 The Russian Far East promoting economic cooperation and fostering peace, stability and sustainable development in the region. The GTI Page 55 GTI bordering area: DPRK serves as a catalyst for expanding policy dialogue among member states and for strengthening the fundamentals for Page 57 Rajin-Sonbong economic growth. Regional cooperation fostered by the GTI has proven to be an effective way to improve basic infrastructure, ensure energy security, boost tourism development, facilitate trade and investment, and promote environmental sustainability in the region. Introduction to the Greater Tumen Region The Tumen River starts its life over 2,000m above sea level in majestic Tian Chi, a volcanic crater lake surrounded by jagged, snow-dappled peaks. It then proceeds northeast on a gentle, 500km-long journey, one that sees its fish-filled waters pass through three time zones, and brushing against three national borders before emptying into the sea.
    [Show full text]
  • Estimating Frost During Growing Season and Its Impact on the Velocity of Vegetation Greenup and Withering in Northeast China
    remote sensing Article Estimating Frost during Growing Season and Its Impact on the Velocity of Vegetation Greenup and Withering in Northeast China Guorong Deng 1,2 , Hongyan Zhang 1,2,*, Lingbin Yang 1,2, Jianjun Zhao 1,2 , Xiaoyi Guo 1,2 , Hong Ying 1,2, Wu Rihan 1,2 and Dan Guo 3 1 Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China; [email protected] (G.D.); [email protected] (L.Y.); [email protected] (J.Z.); [email protected] (X.G.); [email protected] (H.Y.); [email protected] (W.R.) 2 Urban Remote Sensing Application Innovation Center, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China 3 College of Resources and Environment, Jilin Agricultural University, Changchun 130024, China; [email protected] * Correspondence: [email protected]; Tel.: +86-431-8509-9550 Received: 31 March 2020; Accepted: 23 April 2020; Published: 25 April 2020 Abstract: Vegetationphenology and photosynthetic primary production have changed simultaneously over the past three decades, thus impacting the velocity of vegetation greenup (Vgreenup) and withering (Vwithering). Although climate warming reduces the frequency of frost events, vegetation is exposed more frequently to frost due to the extension of the growing season. Currently, little is known about the effect of frost during the growing season on Vgreenup and Vwithering. This study analyzed spatiotemporal variations in Vgreenup and Vwithering in Northeast China between 1982 to 2015 using Global Inventory Modeling and Mapping Studies Normalized Difference Vegetation Index (GIMMS 3g NDVI) data.
    [Show full text]
  • Tracing Population Movements in Ancient East Asia Through the Linguistics and Archaeology of Textile Production
    Evolutionary Human Sciences (2020), 2, e5, page 1 of 20 doi:10.1017/ehs.2020.4 REVIEW Tracing population movements in ancient East Asia through the linguistics and archaeology of textile production Sarah Nelson1, Irina Zhushchikhovskaya2, Tao Li3,4, Mark Hudson3 and Martine Robbeets3* 1Department of Anthropology, University of Denver, Denver, CO, USA, 2Laboratory of Medieval Archaeology, Institute of History, Archaeology and Ethnography of Peoples of Far East, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, Russia, 3Eurasia3angle Research group, Max Planck Institute for the Science of Human History, Jena, Germany and 4Department of Archaeology, Wuhan University, Wuhan, China *Corresponding author. E-mail: [email protected] Abstract Archaeolinguistics, a field which combines language reconstruction and archaeology as a source of infor- mation on human prehistory, has much to offer to deepen our understanding of the Neolithic and Bronze Age in Northeast Asia. So far, integrated comparative analyses of words and tools for textile production are completely lacking for the Northeast Asian Neolithic and Bronze Age. To remedy this situation, here we integrate linguistic and archaeological evidence of textile production, with the aim of shedding light on ancient population movements in Northeast China, the Russian Far East, Korea and Japan. We show that the transition to more sophisticated textile technology in these regions can be associated not only with the adoption of millet agriculture but also with the spread of the languages of the so-called ‘Transeurasian’ family. In this way, our research provides indirect support for the Language/Farming Dispersal Hypothesis, which posits that language expansion from the Neolithic onwards was often associated with agricultural colonization.
    [Show full text]
  • Habitat Specialisation in the Reed Parrotbill Paradoxornis Heudei Evidence from Its Distribution and Habitat
    FORKTAIL 29 (2013): 64–70 Habitat specialisation in the Reed Parrotbill Paradoxornis heudei—evidence from its distribution and habitat use LI-HU XIONG & JIAN-JIAN LU The Reed Parrotbill Paradoxornis heudei is found in habitats dominated by Common Reed Phragmites australis in East Asia. This project was designed to test whether the Reed Parrotbill is a specialist of reed-dominated habitats, using data collected through literature review and field observations. About 87% of academic publications describing Reed Parrotbill habitat report an association with reeds, and the species was recorded in reeds at 92% of sites where it occurred. On Chongming Island, birds were only recorded in transects covered with reeds or transects with scattered reeds close to large reedbeds. At the Chongxi Wetland Research Centre, monthly monitoring over three years also showed that the species was not recorded in habitats without reeds. The density of Reed Parrotbills was higher in reedbeds than mixed vegetation (reeds with planted trees) and small patches of reeds. The species rarely appeared in mixed habitat after reeds disappeared. These results confirm that the species is a reed specialist and highlights that conservation of reed-dominated habitat is a precondition to conserve the Reed Parrotbill. INTRODUCTION METHODS Habitat specialisation results in some species having a close Three sets of information on Reed Parrotbill distribution and relationship with only a few habitat types (Futuyma & Moreno habitat use were used: (1) distribution and habitat use data in the 1988), and habitat specialists have some specific life-history Chinese part of its range, collated from academic publications, web characteristics, for example, they often have weak dispersal abilities news, communication with birdwatchers and personal (Krauss et al.
    [Show full text]
  • Environmental Evolution of Xingkai (Khanka) Lake Since 200 Ka by OSL Dating of Sand Hills
    Article Geology August 2011 Vol.56 No.24: 26042612 doi: 10.1007/s11434-011-4593-x SPECIAL TOPICS: Environmental evolution of Xingkai (Khanka) Lake since 200 ka by OSL dating of sand hills ZHU Yun1,2, SHEN Ji1*, LEI GuoLiang2 & WANG Yong1 1 Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; 2 College of Geographical Sciences, Fujian Normal University, Fujian Key Laboratory of Subtropical Resources and Environment, Fuzhou 350007, China Received February 28, 2011; accepted May 13, 2011 Crossing the Sino-Russian boundary, Xingkai Lake is the largest freshwater lake in Northeast Asia. In addition to the lakeshore, there are four sand hills on the north side of the lake that accumulated during a period of sustainable and stable lacustrine trans- gression and were preserved after depression. Analysis of well-dated stratigraphic sequences based on 18 OSL datings combined with multiple index analysis of six sites in the sand hills revealed that the north shoreline of Xingkai Lake retreated in a stepwise fashion since the middle Pleistocene, and that at least four transgressions (during 193–183 ka, 136–130 ka, 24–15 ka and since 3 ka) and three depressions occurred during this process. The results of this study confirmed that transgressive stages were concur- rent with epochs of climate cooling, whereas the period of regression corresponded to the climatic optima. Transgressions and regressions were primarily caused by variations in the intensity of alluvial accumulation in the Ussuri River Valley and fluctua- tions in regional temperature and humidity that were controlled by climatic change.
    [Show full text]
  • DRAINAGE BASINS of the SEA of OKHOTSK and SEA of JAPAN Chapter 2
    60 DRAINAGE BASINS OF THE SEA OF OKHOTSK AND SEA OF JAPAN Chapter 2 SEA OF OKHOTSK AND SEA OF JAPAN 61 62 AMUR RIVER BASIN 66 LAKE XINGKAI/KHANKA 66 TUMEN RIVER BASIN Chapter 2 62 SEA OF OKHOTSK AND SEA OF JAPAN This chapter deals with major transboundary rivers discharging into the Sea of Okhotsk and the Sea of Japan and their major transboundary tributaries. It also includes lakes located within the basins of these seas. TRANSBOUNDARY WATERS IN THE BASINS OF THE SEA OF OKHOTSK AND THE SEA OF JAPAN1 Basin/sub-basin(s) Total area (km2) Recipient Riparian countries Lakes in the basin Amur 1,855,000 Sea of Okhotsk CN, MN, RU … - Argun 164,000 Amur CN, RU … - Ussuri 193,000 Amur CN, RU Lake Khanka Sujfun 18,300 Sea of Japan CN, RU … Tumen 33,800 Sea of Japan CN, KP, RU … 1 The assessment of water bodies in italics was not included in the present publication. 1 AMUR RIVER BASIN o 55 110o 120o 130o 140o SEA OF Zeya OKHOTSK R U S S I A N Reservoir F E mur D un A E mg Z A e R Ulan Ude Chita y ilka a A a Sh r od T u Ing m n A u I Onon g ya r re A Bu O n e N N Khabarovsk Ulaanbaatar Qiqihar i MONGOLIA a r u u gh s n s o U CHIN A S Lake Khanka N Harbin 45o Sapporo A Suj fu Jilin n Changchun SEA O F P n e JA PA N m Vladivostok A Tu Kilometres Shenyang 0 200 400 600 The boundaries and names shown and the designations used on this map Ch’ongjin J do not imply official endorsement or acceptance by the United Nations.
    [Show full text]
  • Wildfowl at Risk, 1992
    Wildfowl at Risk, 1992 ANDY J. GREEN Brief accounts are given of the status and causes of decline of 50 species and subspecies of wildfowl (.Anseriformes) that are known to be threatened with extinction. A number of changes are made to the earlier list presented in this journal by Kear & Williams (1978), and each taxon is assigned a provisional category of threat in line with recent proposals for the re-evaluation o f IUCN categories made by Mace & Lande (1991). This is a short review of the Anseriform to the list. Information on the status of species and subspecies (families Anatidae wildfowl has been greatly enhanced by the and Anhimidae) that are currently consid­ expansion of the mid-winter censuses ered “threatened” with extinction. It gives organised by IWRB and Asian Wetland summaries of the current understanding of Bureau, which now cover large parts of the status of and threats to each taxon, Europe, Asia, Africa and South America. and is based on a more detailed and con­ The Asian Waterfowl Census (van der Ven tinuing review of these taxa that was initi­ 1987, 1988, Scott & Rose 1989, Perennou et ated in 1990 on behalf of The Wildfowl & al. 1990, Perennou & Mundkur 1991) has Wetlands Trust. These activities are now produced particularly useful data on a conducted under the umbrella of the new large number of threatened taxa, and is Threatened Waterfowl Research Group of often referred to below. In the past 13 the International Waterfowl & Wetlands years, successful conservation action has Research Bureau (IWRB) which produces a brought a few taxa out of danger, while the biannual newsletter circulated to over 300 advance of wetland destruction, deforesta­ people across the world working on threat­ tion and intense hunting pressure has ened wildfowl.
    [Show full text]
  • Lake Status Records from China: Data Base Documentation
    Lake status records from China: Data Base Documentation G. Yu 1,2, S.P. Harrison 1, and B. Xue 2 1 Max Planck Institute for Biogeochemistry, Postfach 10 01 64, D-07701 Jena, Germany 2 Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences. Nanjing 210008, China MPI-BGC Tech Rep 4: Yu, Harrison and Xue, 2001 ii MPI-BGC Tech Rep 4: Yu, Harrison and Xue, 2001 Table of Contents Table of Contents ............................................................................................................ iii 1. Introduction ...............................................................................................................1 1.1. Lakes as Indicators of Past Climate Changes........................................................1 1.2. Chinese Lakes as Indicators of Asian Monsoonal Climate Changes ....................1 1.3. Previous Work on Palaeohydrological Changes in China.....................................3 1.4. Data and Methods .................................................................................................6 1.4.1. The Data Set..................................................................................................6 1.4.2. Sources of Evidence for Changes in Lake Status..........................................7 1.4.3. Standardisation: Lake Status Coding ..........................................................11 1.4.4. Chronology and Dating Control..................................................................11 1.5. Structure of this Report .......................................................................................13
    [Show full text]
  • Multi-Destination Tourism in Greater Tumen Region
    MULTI-DESTINATION TOURISM IN GREATER TUMEN REGION RESEARCH REPORT 2013 MULTI-DESTINATION TOURISM IN GREATER TUMEN REGION RESEARCH REPORT 2013 Greater Tumen Initiative Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH GTI Secretariat Regional Economic Cooperation and Integration in Asia (RCI) Tayuan Diplomatic Compound 1-1-142 Tayuan Diplomatic Office Bldg 1-14-1 No. 1 Xindong Lu, Chaoyang District No. 14 Liangmahe Nanlu, Chaoyang District Beijing, 100600, China Beijing, 100600, China www.tumenprogramme.org www.economicreform.cn Tel: +86-10-6532-5543 Tel: + 86-10-8532-5394 Fax: +86-10-6532-6465 Fax: +86-10-8532-5774 [email protected] [email protected] © 2013 by Greater Tumen Initiative The views expressed in this paper are those of the author and do not necessarily reflect the views and policies of the Greater Tumen Initiative (GTI) or members of its Consultative Commission and Tourism Board or the governments they represent. GTI does not guarantee the accuracy of the data included in this publication and accepts no responsibility for any consequence of their use. By making any designation of or reference to a particular territory or geographic area, or by using the term “country” in this document, GTI does not intend to make any judgments as to the legal or other status of any territory or area. “Multi-Destination Tourism in the Greater Tumen Region” is the report on respective research within the GTI Multi-Destination Tourism Project funded by Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH. The report was prepared by Mr. James MacGregor, sustainable tourism consultant (ecoplan.net).
    [Show full text]
  • World Bank Document
    Document of The World Bank Public Disclosure Authorized Report No: 21860 Public Disclosure Authorized PROJECT APPRAISAL DOCUMENT ON A PROPOSED LOAN IN THE AMOUNT OF USS100 MILLION TO THE PEOPLE'S REPUBLIC OF CHINA Public Disclosure Authorized FORA LIAO RIVER BASIN PROJECT May 21, 2001 Urban Development Sector Unit East Asia and Pacific Region Public Disclosure Authorized CURRENCY EQUIVALENTS (Exchange R.ate Effective May 1, 2001) Currency Unit = Yuan (Y) Y 1.00 = US$0.12 USSLOO = Y8.3 FISCAL YEAR January 1 -- Decernber 31 ABBREVIATIONS AND ACRONYMS AIC Average IncrementalCost LFD LiaoningProvincial Finance Department CAS Country AssistanceStrategy LIEP Liaoning IntegratedEnvironment Program CITC China InternationalTendering I.P LiaoningProvince Company LPG LiaoningProvincial Government CNAO China National Audit Office LRB Liao River Basin COD ChemicalOxygen Demand LRBP Liao River Basin Project DRA DesignReview & Advisory LUCRPOLiaoning Urban Construction& Renewal Project (Consultancy) Office EA EnvironmentalAssessment MOC Ministryof Construction EMP EnvironmentalManagement Plan MOF Ministry of Finance EPB EnvironmentalProtection Bureau i NCB National CompetitiveBidding ERSF Environment Revolving Subloan NGO NongovernmentalOrganization Facility OED Operations EvaluationDepartment ES EnvironmentSubloans PAP Project-AffectedPersons EU EuropeanUnion PDMC Panjin MunicipalDrainage ManagementCompany FMS Financial ManagementSystem PMO Project ManagementOffice GPN GeneralProcurement Notice PRC People's Republicof China ICB InternationalCompetitive
    [Show full text]