United States Patent [19] [11] Patent Number: 4,588,409 Sercus [45] Date of Patent: May 13, 1986

Total Page:16

File Type:pdf, Size:1020Kb

United States Patent [19] [11] Patent Number: 4,588,409 Sercus [45] Date of Patent: May 13, 1986 81-18? SF 55/151686 United States Patent [19] [11] Patent Number: 4,588,409 Sercus [45] Date of Patent: May 13, 1986 ‘[54] COLOR-CHANGING DYED PRODUCT AND 4,314,812 2/1982 E6655 61111. ........................... .. 8/457 PROCESS ‘ FOREIGN PATENT DOCUMENTS [76] Inventor: Owen H. Sercus, 125 W. 12th St., 55 30450 3/1980 Ja - pan .................................... .. 8/638 New York, N-Y- 10011 1060556 3/1967 United Kingdom .................. .. 8/642 [21] APPI- NO-1 564325 OTHER PUBLICATIONS [22] Flledl Dec- 2,2’ 1983 Mayston, R. S. Amer. Dyestuff Reporter 2/ 17/64, pp. [51] Int. c1.4 ........................ .. D06P 5/13; DO6P 5/02; 142-147 1306111 5/00 Trotman, E. R. Dyeing Chemical Technology of [52] US. Cl. ......................................... .. 8/403; 8/441; Textile Fibers» Chas- Griffen & Co- Ltd» London, 1975, 8/485; 8/543; 8/638; 8/102; 8/107; 8/918; pp: 514550. 8/642; 8/924; 8/922; 8/927; 8/928 Falrchild’s Dictionary of Textiles, p. 185. [58] Field Of Search ................. .. 8/403, 441, 457, 485, Primm Exam,-,,e,_Pau1 Lieberman 8/638' 642’ 102 Assistant Examiner-—-John F. McNally [56] References Cited [57] ABSTRACT US. PATENT DOCUMENTS Textile products comprising a cellulosic substrate are 638,819 12/1889 Stimpson . colored with two or more dyes which differ in their 1,615,205 I/ 1926 Muelberger . respective resistance to chlorine bleaches. The initial 1,810,662 6/1931 Kritschevsky . color of the textile is determined by the combined effect 2,022,413 ll/ 1935 Ellis et a1. .. 8/5 of the dyes. Thereafter, textile products whichv may be 3,030,227 4/1962 Clifford et al. 8/478 in the form of garments, bed linens, draperies, or yard 3,125,403 3/1964 Senger .......... .. .. 8/65 goods, are treated with an aqueous solution of bleach to 3,220,793 11/1965 Parsons et a]. .. .. 8/14 3,447,888 6/1969 Wcisz et al. .. 8/69 decolorize, to a pre-determined degree, one or more of 3,619,103 11/1971 Williams ............... .. .. 8/14 the dyes, to thereby change the color of the textiles. 3,934,971 l/l976 Blanchard et a1. 8/485 4,314,811 2/1982 Feess et al. ........................... .. 8/457 9 Claims, No Drawings 4,588,409 1 2 can be changed in color, or even returned to white, for COLOR-CHANGING DYED PRODUCI‘ AND printing or redyeing. PROCESS Another object of the invention is to provide textiles with the inherent capability of predetermined color SUMMARY OF THE INVENTION change in order to permit garment manufacturers to This invention relates to a new textile product and obtain the bene?t of large volume purchases from mills speci?cally to a colored cellulosic textile product which and thereafter vary the colors of portions of the textile can be treated employing methods which are adaptable to meet their seasonal inventory requirements. for use either by textile mills or in home laundries to DETAILED DESCRIPTION OF THE change the textile from its original color to a completely 10 INVENTION different color. _ - In about 1956 a new series of dyes termed reactive BACKGROUND dyes began to appear on the market. These dyes, the As will be readily apparent to those in the fashion ?rst of which were based on a mono- or di-halo triazine industry, the ability to change easily and predictably the nucleus, color of textiles in the form of garments, bed linens and other home furnishings, would be of great commercial signi?cance. The ability to change the color of a favor ite garment in one’s own home would extend the range and life of the owner’s wardrobe without signi?cant 20 cost. The ability to effect color changes would also be of signi?cant commercial and economic importance to textile mills and manufacturers. For example, knowing that the color of a given run of textiles produced for a 25 where X1 is halogen, X2 may be halogen or some innoc particular season can be changed to colors for a follow uous substituent, and R is a radical including a chromo ing season would permit mills to establish large invento phore group, are capable of reacting with a cellulosic ries for a longer selling season. As presently structured, substrate, thus actually binding the color to the sub the mills must dispose of their inventories of textiles in strate. Such dyes and variants thereof are now well fashion colors by means of “close outs”, which are often 30 known in the textile industry and are available from at a loss. With the ability to predictably and selectively , various manufacturers. M ‘ change the colors of unsold inventory to other readily Reactive dyes differ one from another in their resis salable colors, or even to white, for printing, or redye tance to bleaching, and in particular, in their resistance ing, “close out” sales would become unnecessary. to chlorine based bleaches such as those normally used The availability of textiles whose colors can be 35 in home laundries. Thus, for example, some typical quickly and inexpensively changed would also permit reactive dyes have the following resistance to bleach, smaller manufacturers to purchase two or more colors measured on a scale of l to 5 (with 5 indicating full at the relatively large minimum yardage for single runs imposed by the large mills. stability to bleach under normal conditions). US. Pat. No. 3,030,227 describes a process in which a fabric is dyed with a dyestuff which is acid resistant BLEACH and with a resin-bonded pigment susceptible to decom REACTIVE DYE RESISTANCE position upon treatment with acid. In combination, the Color Index Reactive Yellow 22 1 two coloring materials impart a certain color to the Color Index Reactive Orange 86 4-5 fabric. If it is desired to change the color, the fabric is 45 Color Index Reactive Yellow 86 2 treated with acid to decompose the resin-bonded pig Color Index Reactive Orange 14 1 Color Index Reactive Blue (conc.) 163 1 ment, leaving the fabric colored only by the acid resis Color Index Reactive Blue 4 3-4 tant dyestuff. Color Index Reactive Blue 10 3 The procedure of US. Pat. No. 3,030,227 is useful, Color Index Reactive Red 31 4 but has a number of drawbacks. In the ?rst place, the 50 Color Index Reactive 'Red 2 1 Color Index Reactive Orange 4 4 number of suitable dyestuffs or pigments available is Color Index Reactive Brown 10 4 rather limited so that a full range of colors is dif?cult to achieve. More importantly, the acids required for ef fecting the color change are not normally available to Bleach resistance ratings are normally available from the consumer for use in home laundries. Finally the 55 dye manufacturers. For example, the ratings for the treatment leaves the textile with an offensive odor. above dyes which are “Procion” @ dyes sold by Impe It is an object of the present invention to provide a rial Chemical Industries (ICI), are published by ICI. method of changing the color of textiles, either in the In accordance with the present invention a cellulosic form of garments and other ?nished products, or as substrate is dyed with a combination of dyes, preferably piece goods, that can be practised quickly and easily reactive dyes, of different colors, at least one dye hav using materials which are readily available to consum ing high stability toward bleach (e.g., 4-5 on the above ers. scale) and at least one being susceptible to decoloriza It is a further object of~ the invention to provide a tion upon treatment with bleach (e. g., 1-2 on the above method of changing the color of textiles and garments scale). The dyed material is stable toward all treatments which can be safely and simply practised by the con 65 normally applied to colored fabrics; for example, it is sumer in the home laundry or local laundromat. stable to laundering using hot water and conventional It is also an object of this invention to provide textile soaps or synthetic detergents. However, when treated - mills with a method of producing colored textiles which with conventional home bleach, for example, conven 4,588,409 3 4 tional aqueous hypochlorite solutions, the unstable dye a concentration which will produce the desired inten is decolorized, leaving the stable dye to determine the sity of color. Thereafter, the substrate is washed in an color of the substrate. Thus, a complete shift in color acidi?ed oxidizing solution to convert the dye back to can be accomplished using readily available materials the form of a water insoluble pigment and to develop which can normally be put to use by the consumer in the ?nal color. the home laundry. Alternatively, the vat dye may be obtained from the ~ Certain vat dyes are also known to be stable to bleach manufacturer in the form of the leuco compound, and and it is therefore possible to substitute a vat dye for the the vatting step can be omitted. In this case, the dye is bleach stable reactive dye, in some circumstances. Pref applied to the cellulosic substrate in aqueous solution, erably however both the dyes are reactive dyes. for example, by padding, followed by treatment to acid The invention therefore comprises, in a ?rst aspect, a ify and oxidize the compound in order to fix the pig ‘colored textile material comprising a cellulosic sub ment on the fabric and develop the desired color. strate dyed with at least two dyes of different colors, Where the dyes used are of the same type, the bleach one of said dyes being stable to bleach and the other stable dye or dyes and the decolorizable dye or dyes are being subject to decolorization by bleach.
Recommended publications
  • Colour and Textile Chemistry—A Lucky Career Choice
    COLOUR AND TEXTILE CHEMISTRY—A LUCKY CAREER CHOICE By David M. Lewis, The University of Leeds, AATCC 2008 Olney Award Winner Introduction In presenting this Olney lecture, I am conscious that it should cover not only scientific detail, but also illustrate, from a personal perspective, the excitement and opportunities offered through a scientific career in the fields of colour and textile chemistry. The author began this career in 1959 by enrolling at Leeds University, Department of Colour Chemistry and Dyeing; the BSc course was followed by research, leading to a PhD in 1966. The subject of the thesis was "the reaction of ω-chloroacetyl-amino dyes with wool"; this study was responsible for instilling a great enthusiasm for reactive dye chemistry, wool dyeing mechanisms, and wool protein chemistry. It was a natural progression to work as a wool research scientist at the International Wool Secretariat (IWS) and at the Australian Commonwealth Scientific Industrial Research Organisation (CSIRO) on such projects as wool coloration at room temperature, polymers for wool shrink-proofing, transfer printing of wool, dyeing wool with disperse dyes, and moth-proofing. Moving into academia in 1987 led to wider horizons bringing many new research challenges. Some examples include dyeing cellulosic fibres with specially synthesised reactive dyes or reactive systems with the objective of achieving much higher dye-fibre covalent bonding efficiencies than those produced using currently available systems; neutral dyeing of cellulosic fibres with reactive dyes; new formaldehyde-free crosslinking agents to produce easy-care cotton fabrics; application of leuco vat dyes to polyester and nylon substrates; cosmetic chemistry, especially in terms of hair dyeing and bleaching; security printing; 3-D printing from ink-jet systems; and durable flame proofing cotton with formaldehyde-free systems.
    [Show full text]
  • Tub Dyeing Basics Step by Step Instructions on the Next Page G with Fiber Reactive Dyes
    tub dyeing basics Step by step instructions on the next page g with Fiber Reactive Dyes Use this method to dye fabric or clothing, made of natural fibers one uniform or solid color. Also called Garment Dyeing or Vat Dyeing, this method can also be done in a washing machine. Fiber Reactive Dye is the dye of choice for all cellulose (plant) fibers, like cotton, Rayon, hemp, linen, Tencel®, Modal®, bamboo, etc. (For dyeing silk, wool and other protein fibers, see Dyeing Wool and Silk with Fiber Reactive Dyes on our website) The chemical bond of these dyes is permanent, so once all the excess dye is washed out an infant can chew on the fabric and it will not come off! Fiber Reactive Dyes work in lukewarm water so these directions can also be used to dye batik (waxed) fabrics in successive colors without fear of melting the wax. WHAT You’ll need: SALT & SODA ASH REQUIREMENTS • Fiber Reactive Dye • A bucket large enough The amount of Non-Iodized Salt and Soda Ash are for your item to move a function of the amount of water used. For each • Soda Ash around in, or a top pound of dry fabric you will need about 3 gallons of • Non-Iodized Salt loading washing machine warm water. The water must cover the fabric with • Urea (optional) • Pitcher & cup enough room for thorough, tangle-free stirring; oth- erwise you get uneven dyeing and streaks. For each • Calsolene Oil (optional) • Measuring cups 1½ gallons of water use 1½ cups of Non-Iodized • Synthrapol • Spoons Salt and 1/6 cup of Soda Ash.
    [Show full text]
  • Using PRO MX Reactive Dye Please Read Directions Carefully Before Starting
    BATIK using PRO MX Reactive Dye Please read directions carefully before starting. Batik is an ancient form of resist dyeing. Unwaxed areas of the fabric absorb dye while the waxed areas resist the dye, preserving the original color of the fabric. More wax is added to dyed areas preserving the new color and the fabric is dipped in another color of dye. Repeat this process until the design is completed then remove the wax. Designs may involve only one or many colors depending upon the number of times the hot wax is applied and the cloth is dipped into different colored dye baths. For additional information visit our web site at www.prochemicalanddye.com. Always use proper ventilation in your work area. Create a local exhaust system by putting a portable exhaust fan in a window, so it pulls air from the room to the outside. Heated wax releases irritating chemicals including acrolein and aldehydes. There is no approved MSHA/NIOSH filter for acrolein. A respirator is not a substitute for good ventilation. Heat wax to the lowest temperature at which it remains liquid. Do not leave hot wax unattended, as it is a fire hazard. Keep water away from the wax pot, as it will splatter. Always make sure you have a fire extinguisher or bucket of sand nearby in case of fire. Wax forms potentially hazardous vapors at high temperatures and may ignite. Do not use open flames, such as a gas or propane burner, instead use a crock pot or electric fry pan with temperature control. Make sure your hair is tied back and sleeves are rolled up when using heating equipment.
    [Show full text]
  • Comparative Study of Fastness Properties and Color Absorbance Criteria of Conventional and Avitera Reactive Dyeing on Cotton Knit Fabric
    European Scientific Journal May 2016 edition vol.12, No.15 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431 Comparative Study Of Fastness Properties And Color Absorbance Criteria Of Conventional And Avitera Reactive Dyeing On Cotton Knit Fabric Md. Abu Sufian B.Sc. in Textile Engineering,University of Chittagong, Bangladesh Md.Abdul Hannan M.Sc. in Textile Technology, University of Boras, Sweden Md. Masud Rana Muhmmad Zanibul Huq M.Sc. in Textile Engineering, Bangladesh University of Textiles, Bangladesh doi: 10.19044/esj.2016.v12n15p352 URL:http://dx.doi.org/10.19044/esj.2016.v12n15p352 Abstract 160 GSM Single Jersey cotton knitted fabric was dyed with conventional Remazol reactive dye and latest Avitera reactive dye (Huntsman). Detailed comparison of the process parameters and fastness properties of these dyed fabrics were studied. Investigation exposed that Avitera delivered better dyeing performance including fastness to washing, perspiration, rubbing than conventionally dyed fabrics. Concerning process parameters Avitera dye required less soda, salt and no addition of other auxiliaries. Also this new Avitera reactive dye is more eco-friendly, cost effective and energy saving than conventional Remazol reactive dye. CMC DE and Da* color deviation were significantly higher between the dyed samples. Again K/S value of Avitera dyed sample was superior to that of Remazol dyed samples as because of enhanced dye uptake. Sequentially reflectance and relative indicators of the latest reactive dyed samples were also experimented. Keywords: Avitera reactive dye, Remazol reactive dye, Color Fastness, Energy saving, K/S value, CMC DE, Reflectance. Introduction: The best dyes to apply on cotton fabric and other cellulose fibers are reactive dyes.
    [Show full text]
  • Reactive Dyes… General Structure Has a Reactive Group Which Are Adsorbed on to the Cellulose and Than Reacted with the Fiber to Form Covalent Bonds
    Reactive Chemistry TECHNICAL INFORMATION Murat ŞAHİNLİ 12.11.2015 Cellulose… Cellulose structure Reactive dyes… General structure has a reactive group which are adsorbed on to the cellulose and than reacted with the fiber to form covalent bonds. Chromophore Bridging RG Reactive group Functional groups Reactive dyes… General structure has a reactive group which are adsorbed on to the cellulose and than reacted with the fiber to form covalent bonds. Chromophore Bridging RG Functional groups Shade Fastness Fastness Dischargeability Levelness Fixation Substantivity Application temperature Solubility Application temperature Reactive dyes… General reaction When put fabric and dye into the water; Cellulose: Cell-OH Cell-O¯ Electrostatic repulsion because of Dye: the negative charges HO3S-Dye-X X-Dye-SO3¯ With addition of salt: Cell-O¯ ⁺ Na Reduce the repulsion X-Dye-SO3¯ ⁺ Na Reactive dyes… General reaction After addition alkaline and linking with covalent bond; Thanks to covalent bond X-Dye-SO3¯ ⁺ Na + Na ⁺ ¯O-Cell Linking much more resistant to the usual conditions of use than the ( Soda ash, caustic …) physicochemical bond between direct dyes and cellulose. Na ⁺ ¯O3S – Dye –O-Cell + NaX Bond type App. Relative strength Covalent 30.0 Ionic 7.0 Hydrogene 3.0 Other 1.0 Intermolecular Reactive dyes… Description of dyeing mechanism Exhaustion of dye in presence of electrolyte by adsorption Fixation under the influence of alkali Wash off the unfixed dye from material surface T1: Addition of alkali and start of the fixation Reactive dyes… Exhaustion The reactive dyes is adsorbed onto the cellulose surface and than diffuses into the fiber. This phase is fully reversible.
    [Show full text]
  • The Textile Museum Thesaurus
    The Textile Museum Thesaurus Edited by Cecilia Gunzburger TM logo The Textile Museum Washington, DC This publication and the work represented herein were made possible by the Cotsen Family Foundation. Indexed by Lydia Fraser Designed by Chaves Design Printed by McArdle Printing Company, Inc. Cover image: Copyright © 2005 The Textile Museum All rights reserved. No part of this document may be reproduced, stored in a retrieval system, or transmitted in any form or by any means -- electronic, mechanical, photocopying, recording or otherwise -- without the express written permission of The Textile Museum. ISBN 0-87405-028-6 The Textile Museum 2320 S Street NW Washington DC 20008 www.textilemuseum.org Table of Contents Acknowledgements....................................................................................... v Introduction ..................................................................................................vii How to Use this Document.........................................................................xiii Hierarchy Overview ....................................................................................... 1 Object Hierarchy............................................................................................ 3 Material Hierarchy ....................................................................................... 47 Structure Hierarchy ..................................................................................... 55 Technique Hierarchy ..................................................................................
    [Show full text]
  • Dye Process for Cotton Fabric
    Dye Process for cotton fabric This is the process that seems to work best for me. M. Marlene Oaks You will need the following: 100% cotton fabric, say Kona cotton or good broadcloth. I like to dye in 1 to 2 yard pieces. You can also overdye on say a white on white—experiment. A plastic shoe box or other such plastic container per piece of fabric Dye—kind I like is listed below & is purchased online at Dharma Trading at http:// www.dharmatrading.com/html/eng/3796-AA.shtml?lnav=dyes.html Soda ash– also purchased at Dharma Trading, and a half gallon or larger jar with lid Non iodized salt Rubber or vinyl gloves Plastic spoons (disposable kind) Old rubber spatula A 4 cup plastic measuring cup per color dye (get at least a clear red, yellow & blue to start as they mix to make most color), jars with lids to save extra Dharma Fiber Reactive Procion DyesPro's: Best dye for cotton, rayons, linens, hemp and other plant based fibers. Best dye for Tie-Dye and Batik. Vibrant wash fast permanent colors. Easy to use. Does not need hot water. Economical! Dharma Fiber Reactive Dye must be 'fixed' (made permanent) with Soda Ash. About 1 lb. Soda Ash per 4 oz. of dye is needed when garment dyeing or per 3 lbs of fabric as a pre-soak when tie- dyeing. So here’s what I do to make interesting fabric for quilting or other sewing projects: 1) Wash your fabric in hot water to remove any chemicals or sizing.
    [Show full text]
  • ABSTRACT YI, DING. a Comparison of Mordant and Natural Dyes In
    ABSTRACT YI, DING. A Comparison of Mordant and Natural Dyes in Dyeing Cotton Fabrics. (Under the direction of Dr. Harold S. Freeman and Dr. Peter J. Hauser). Mordant dyes constitute a class of synthetic colorants that are applied to textile fibers mainly through the aid of transition metal ions such as Cr3+. The resultant dye-metal complexes are key to the fastness properties produced on wool. In the same way, most natural dyes require the use of a mordant to have coloring power on textiles such as cotton. Unlike mordant dyes on wool, the fastness properties of natural dyes on cotton are generally quite low. Consequently, they have largely been replaced by synthetic dyes that are more cost effective, brighter, and more durable under end-use applications. Interest in green technologies has led to renewed consideration of natural dyes for textile coloration because they are biodegradable and do not involve manufacturing processes requiring genotoxic aromatic amines. Interestingly, such a shift would bring dyeing technology full circle to a family of colorants lacking the vibrancy and technical properties of most synthetic dyes. However, similarities between the dyeing method for mordant and natural dyes brought to mind the potential for reducing the level of synthetic dyes used commercially by combining suitable dyes from these two classes for dyeing textiles. This thesis research was devoted to stage 1 of this idea, namely the evaluation of mordant dyes as colorants for cotton fabric. With this in mind, dyes such as Mordant Blue 13, Mordant Brown 40, Mordant Orange 6 and Mordant Yellow 8 were applied to cotton using various dyeing times, temperatures, dye bath concentrations and mordants.
    [Show full text]
  • Obiko Art Wear Archive Project
    TEXTILE ARTS COUNCIL FINE ARTS MUSEUMS OF SAN FRANCISCO OBIKO ART WEAR ARCHIVE PROJECT Feather collar by K.Lee Manuel “Electra” 1988. Photo: David Reese The Obiko ArtWear Archive documents and celebrates the work of Bay Area clothing and jewelry designers whose work was showcased at Sandra Sakata’s renowned boutique, Obiko. In the 1970s- through the 1990s, one-of-a-kind Art Wear blossomed in a culture that embraced global design. The influence of Asian and African ethnic costume and textile techniques is particularly evident in the aesthetic of this remarkable era. The archive includes a collection of designers’ work, four fashion shows, oral histories, photos and memories. The Textile Art Council hopes that the archive will be a great discovery and resource for future generations. © 2014 Textile Arts Council Fine Arts Museums of San Francisco, all rights reserved | Design: Nancy Rosenblum, Frisco Graphics OBIKO ART WEAR ARCHIVE PROJECT TABLE OF CONTENTS 1. Acknowledgements 2. History 3. Designers 4. Audio Interviews 5. Videos OBIKO ART WEAR ARCHIVE PROJECT ACKNOWLEDGEMENTS Jean Cacicedo Ana Lisa Hedstrom Thank Yous OBIKO ART WEAR ARCHIVE PROJECT | ACKNOWLEDGE- MENTS JEAN CACICEDO The hand-crafted garments and accessories that emerged in late 1960s and 1970s America played a significant role in our cultural identity. One-of-a-kind wearables emerged on both the east and west coasts, drawing on an anti-fashion street style approach. Two seminal galleries, Julie:Artisans in New York City and Obiko in San Francisco, provided a showcase for this work. I began my career on the east coast in the late 60s during an extraordinary time consumed by nationwide political protests and self expression.
    [Show full text]
  • Green Technology in Textile Processing: Part IV-Eco-Friendly Dyeing of Polyester/Cotton Fabric
    Indian Journal of Fibre & Textile Research Vol. 24, March 1999,-pp. 64-69 Green technology in textile processing: Part IV-Eco-friendly dyeing of polyester/cotton fabric H T Deo', A I Wasif, B K Desai & Arindam Chakraborty Division of Technology of Fibres and Textile Processing, Department of Chemical Technology, University ofMumbai, Matunga, Mumbai 400 019, India Received 31 March 1998; accepted 3 June 1998 New eco-friendly dyeing processes are described for dyeing of polyester/cotton blend fabrics with disperselreactive and di sperse/vat dyes. By process modifications (Eco-Dyeing I and Eco-Dyeing II) and by substituting the non-ecofriendly chemicals with the eco-friendly ones, a significant reduction in pollution load in terms of Biochemical Oxygen Demand (BOD) and Chemical Oxygen Demand'(COD) has been achieved. The reductions achieved in BOD and COD respectively are 10.47% and 14.38% for dyeing with disperse/reactive dyes and 7.56% and 12.82% for dyeing with disperse/vat dyes. A substantial saving in water consumption has also been achieved in both the methods of dyeing. Eco-Dyeing II , in particular, results in 85 % saving in water consumption. Keywords : Disperse dye, Dyeing, Eco-dyeing, Polyester/cotton fabric, Reactive dye, Vat dye, Water recycl in g I Introduction Kenyon4 reported that polyester/cotton blends can In recent years, the production capacity of polyes­ be dyed by reverse dyeing technique with vinyl sul­ ter has increased tremendously in India. Due to the phone colours. leI reported a process for batch col­ existing tropical conditions, a large proportion of the ouration of polyester/cotton blends, wherein alkali polyester produced is blended with cotton, viscose stable disperse dyes and high-exhaust reactive dyes and .
    [Show full text]
  • A Comparative Study on Silk Dyeing with Acid Dye and Reactive Dye
    International Journal of Engineering & Technology IJET-IJENS Vol:10 No:06 22 A Comparative Study on Silk Dyeing with Acid Dye and Reactive Dye 1Md. Koushic Uddin, 2Ms. Sonia Hossain 1 Lecturer, Dept. of Textile Technology, Ahsanullah University of Science and Technology 2 Assistant Professor, Dept. of Textile Tecnology, Ahsanullah University of Science and Technology Abstract— Silk has always been the symbol of royalty due to its fibre is also produced by some spiders belonging to the lustrous appearance and peach like softness. The coloration of this Arachina family. Unlike the silk worm’s fibre, the spider’s fibre royal fiber is also an art form. The process varies largely in the cannot be commercially produced, and therefore the silk fibre form of hanks and woven pieces. There are numerous ranges of referred to in this work is the fibre coming from the silkworm. dyestuff available for use of silk dyeing. Almost every class of dyestuff used for cotton or wool can be used for dyeing silk. In Most historians agree that silk and sericulture the cultivation of general the dyestuffs are applied by techniques similar to those of silkworm had their origin in China nearly 2500 BC. After wool or cotton. This research paper shows a comparative analysis finding this knowledge China kept it as a secret and held a of silk dyeing with acid dye, which is commonly used and reactive monopoly in the silk industry for nearly 4000 years. After this dye, which is more commonly applied on cotton. The study focuses period, sericulture spread to Korea and Japan and it also spread on the dye uptake, different types of fastness properties and the strength of the dyed samples.
    [Show full text]
  • Problems with Fiber Reactive Dyeings Not Repeating - .A Look at Five Typical Cases
    Appendix A Problems With Fiber Reactive Dyeings Not Repeating - .A Look at Five Typical Cases By: Brent Smith, Keith Beck, and Tod Uadderra College of Textiles, NCSU Raleigh, NC Reprinted with permission f” American Dyestuff Reuorter (September 1990) Problems With Fiber Reactive Dyeings Not Repeating- A Look At Five Typical Cases -! By Brent Smith, Keith Beck, Tod Madderra School of Textiles, N.C.S.U. Raleigh, NC Introduction igure 1-Data acquisition system. demonstrated by our real-time data While it’s a fact that the fiber reac- acquisition system. tive dyeing of cellulosic materials is of great commercial importance, it is also one of the most difficult batch Case I: A “Normal” Dyeing with prdcesses to control. As part of a Triazines Consortium for Research in Apparel, Dyeings known to have good pro- .. Fiber and Textile Manufacturing duction history generally use dye (CRAFTM), the authors have de- combinations with similar exhaus- : I veloped a system for acquiring real- tion and substantivity characteris- time on-line data from batch dyeings. tics. A typical case is shown in Figure Actual production dyeing problems 2 for a combination of two mono- can now be diagnosed in our own chloro triazine dyes, Orange 13 and laboratory using data from this data Violet 1. The kinetics of exhaustion acquisition system. This information as well as the substantivity of the is a great asset to both laboratory dyes clearly produce similar exhaust ’. I and production dyers in establishing curves up to the time of alkali addi- dye recipes and procedures which, tion (25 minutes). Addition of alkali, due to their inherent design, repeat which in this case produces essen- consistently and resist shade varia- tially no further exhaustion of the tions.
    [Show full text]