7. Digital Terrestrial Transition and Use of Digital Distribution Methods
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
History of the DVB Project
History of the DVB Project (This article was written by David Wood around 2013.) Introduction The DVB Project is an Alliance of about 200 companies, originally of European origin but now worldwide. Its objective is to agree specifications for digital media delivery systems, including broadcasting. It is an open, private sector initiative with an annual membership fee, governed by a Memorandum of Understanding (MoU). Until late 1990, digital television broadcasting to the home was thought to be impractical and costly to implement. During 1991, broadcasters and consumer equipment manufacturers discussed how to form a concerted pan-European platform to develop digital terrestrial TV. Towards the end of that year, broadcasters, consumer electronics manufacturers and regulatory bodies came together to discuss the formation of a group that would oversee the development of digital television in Europe. This so-called European Launching Group (ELG) expanded to include the major European media interest groups, both public and private, the consumer electronics manufacturers, common carriers and regulators. It drafted the MoU establishing the rules by which this new and challenging game of collective action would be played. The concept of the MoU was a departure into unexplored territory and meant that commercial competitors needed to appreciate their common requirements and agendas. Trust and mutual respect had to be established. The MoU was signed by all ELG participants in September 1993, and the Launching Group renamed itself as the Digital Video Broadcasting Project (DVB). Development work in digital television, already underway in Europe, moved into top gear. Around this time a separate group, the Working Group on Digital Television, prepared a study of the prospects and possibilities for digital terrestrial television in Europe. -
TS 101 499 V2.2.1 (2008-07) Technical Specification
ETSI TS 101 499 V2.2.1 (2008-07) Technical Specification Digital Audio Broadcasting (DAB); MOT SlideShow; User Application Specification European Broadcasting Union Union Européenne de Radio-Télévision EBU·UER 2 ETSI TS 101 499 V2.2.1 (2008-07) Reference RTS/JTC-DAB-57 Keywords audio, broadcasting, DAB, digital, PAD ETSI 650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16 Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88 Important notice Individual copies of the present document can be downloaded from: http://www.etsi.org The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat. Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://portal.etsi.org/tb/status/status.asp If you find errors in the present document, please send your comment to one of the following services: http://portal.etsi.org/chaircor/ETSI_support.asp Copyright Notification No part may be reproduced except as authorized by written permission. -
Replacing Digital Terrestrial Television with Internet Protocol?
This is a repository copy of The short future of public broadcasting: Replacing digital terrestrial television with internet protocol?. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/94851/ Version: Accepted Version Article: Ala-Fossi, M and Lax, S orcid.org/0000-0003-3469-1594 (2016) The short future of public broadcasting: Replacing digital terrestrial television with internet protocol? International Communication Gazette, 78 (4). pp. 365-382. ISSN 1748-0485 https://doi.org/10.1177/1748048516632171 Reuse Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher’s website. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ The Short Future of Public Broadcasting: Replacing DTT with IP? Marko Ala-Fossi & Stephen Lax School of Communication, School of Media and Communication Media and Theatre (CMT) University of Leeds 33014 University of Tampere Leeds LS2 9JT Finland UK [email protected] [email protected] Keywords: Public broadcasting, terrestrial television, switch-off, internet protocol, convergence, universal service, data traffic, spectrum scarcity, capacity crunch. -
A Brief History of Radio Broadcasting in Africa
A Brief History of Radio Broadcasting in Africa Radio is by far the dominant and most important mass medium in Africa. Its flexibility, low cost, and oral character meet Africa's situation very well. Yet radio is less developed in Africa than it is anywhere else. There are relatively few radio stations in each of Africa's 53 nations and fewer radio sets per head of population than anywhere else in the world. Radio remains the top medium in terms of the number of people that it reaches. Even though television has shown considerable growth (especially in the 1990s) and despite a widespread liberalization of the press over the same period, radio still outstrips both television and the press in reaching most people on the continent. The main exceptions to this ate in the far south, in South Africa, where television and the press are both very strong, and in the Arab north, where television is now the dominant medium. South of the Sahara and north of the Limpopo River, radio remains dominant at the start of the 21St century. The internet is developing fast, mainly in urban areas, but its growth is slowed considerably by the very low level of development of telephone systems. There is much variation between African countries in access to and use of radio. The weekly reach of radio ranges from about 50 percent of adults in the poorer countries to virtually everyone in the more developed ones. But even in some poor countries the reach of radio can be very high. In Tanzania, for example, nearly nine out of ten adults listen to radio in an average week. -
AM / FM / DAB / XM Tuner
ENGLISH FRANÇAIS Owner’s Manual Owner’s ESPAÑOL ® ITALIANO AM / FM / DAB / XM Tuner /XM /DAB /FM AM M4 DEUTSCH NEDERLANDS SVENSKA РУССКИЙ IMPORTANT SAFETY INSTRUCTIONS ENGLISH 1. Read instructions - All the safety and operating instructions should be NOTE TO CATV SYSTEM INSTALLER read before the product is operated. This reminder is provided to call the CATV system installer’s attention to Section 820-40 of 2. Retain instructions - The safety and operating instructions should be the NEC which provides guidelines for proper grounding and, in particular, specifies that retained for future reference. the cable ground shall be connected to the grounding system of the building, as close 3. Heed Warnings - All warnings on the product and in the operating to the point of cable entry as practical. instructions should be adhered to. 4. Follow Instructions - All operating and use instructions should be FRANÇAIS followed. 5. Cleaning - Unplug this product from the wall outlet before cleaning. Do not use liquid cleaners or aerosol cleaners. Use a damp cloth for cleaning. 6. Attachments - Do not use attachments not recommended by the product manufacturer as they may cause hazards. 7. Water and Moisture - Do not use this product near water-for example, near a bath tub, wash bowl, kitchen sink, or laundry tub; in a wet basement; or near a swimming pool; and the like. ESPAÑOL 8. Accessories - Do not place this product on an unstable cart, stand, tripod, bracket, or table. The product may fall, causing serious injury to a child or adult and serious damage to the product. Use only with a cart, stand, tripod, bracket, or table recommended by the manufacturer, or sold with the product. -
Digital Audio Broadcasting : Principles and Applications of Digital Radio
Digital Audio Broadcasting Principles and Applications of Digital Radio Second Edition Edited by WOLFGANG HOEG Berlin, Germany and THOMAS LAUTERBACH University of Applied Sciences, Nuernberg, Germany Digital Audio Broadcasting Digital Audio Broadcasting Principles and Applications of Digital Radio Second Edition Edited by WOLFGANG HOEG Berlin, Germany and THOMAS LAUTERBACH University of Applied Sciences, Nuernberg, Germany Copyright ß 2003 John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England Telephone (þ44) 1243 779777 Email (for orders and customer service enquiries): [email protected] Visit our Home Page on www.wileyeurope.com or www.wiley.com All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP, UK, without the permission in writing of the Publisher. Requests to the Publisher should be addressed to the Permissions Department, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, or emailed to [email protected], or faxed to (þ44) 1243 770571. This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the Publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought. -
Digital Dividend: Insights for Spectrum Decisions
Thematic reports ITUPublications Infrastructure Digital dividend: Insights for spectrum decisions International Telecommunication Union Telecommunication Development Bureau Place des Nations CH-1211 Geneva 20 Switzerland ISBN: 978-92-61-28011-6 9 7 8 9 2 6 1 2 8 0 1 1 6 Published in Switzerland Geneva, 2018 Digital dividend: insights for spectrum decisions Photo credits: Shutterstock Digital dividend: Insights for spectrum decisions Please consider the environment before printing this report. © ITU 2018 All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior written permission of ITU. Foreword The rising importance of the radio spectrum in the world means that the way in which it is managed is vital for economical and societal development. As spectrum is freed up by the transition of analogue television services to digital and by the use of ever more advanced transmission and coding digital broadcasting technology, national and international spectrum decision makers are faced with the question of how to allocate the ‘digital dividend’ resulting from the spectrum efficiencies gained by this process in the frequency bands currently allocated to broadcasting. Although reallocation of spectrum is an important aspect of the transition to digital terrestrial tele- vision, there are other reasons for introducing or evolving the digital terrestrial television services. In addition to gaining spectrum efficiency, it will bringconsumer benefits(more choice and quality in television services) and industry benefits(new revenue streams and business models). By definition, the process by which the digital dividend will be allocated is closely related to the introduction or evolution of digital terrestrial television services. -
Checklist for Returning to Community Radio Stations
RETURNING TO COMMUNITY RADIO STATIONS - CHECKLIST As the various states and territories progressively lift social distancing requirements, community radio station boards and management committees should consider their roadmap for safe return. Every station will be different – with each returning in the way that is best suited for their situation. Public health remains the most important consideration. Following advice from Federal Government health authorities and any state/territory regulation is critical. Organisational Consideration Action Y/N Access to information 1. Do you and your organisation have all relevant facts about COVID-19? 2. Is your organisation staying up to date? 3. Check official information sources including: • Australian Government Department of Health: www.health.gov.au/news/health-alerts/novel- coronavirus-2019-ncov-health-alert • World Health Organisation: www.who.int • Safe Work Australia ww.safeworkaustralia.org.au 4. Relevant State/Territory/local government websites. Governance 5. Is station board and staff clear on who within your organisation will make and implement decisions on returning to the studio/office? 6. Does everyone within your organisation understand their role? 7. Has your organisation nominated a COVID-19 Safety Coordinator to oversee delivery of your return plan? You can locate a description of this role on CBAAs website. Strategy 8. Has your organisation reviewed its strategic plan for COVID-19 considerations? 9. Has your organisation defined what success looks like? 10. Does your organisation need to amend fixtures, broadcasting and training rules or activities to ensure physical distancing? Financial 11. Does your organisation know what its new safety/return to studio measures will cost? 12. -
Development of a Digital Terrestrial Front End
DEVELOPMENT OF A DIGITAL TERRESTRIAL FRONT END J D Mitchell (BBC) and P Sadot (LSI Logic, France) ABSTRACT BBC Research and Development and LSI Logic are jointly developing a front end for digital terrestrial television transmitted according to the DVB-T specification. The front end consists of two separate components. First, an analogue down-converter that converts the input signal from UHF to a low IF. Second, an integrated circuit that accepts the analogue signal from the down-converter and performs the required DSP operations, which include synchronisation and demodulation, to form a stream of soft decisions suitable for presentation to an FEC decoder. The development process began by agreeing a set of requirements to which the two components must conform. This paper begins by outlining these requirements. During the development of the components, many issues have been considered and resolved. A selection of the key issues and the decisions that were reached is given and, finally, a discussion of the architecture that results from these decisions is presented. INTRODUCTION BBC Research and Development and LSI Logic are working together on the development of a digital terrestrial front end which is capable of decoding transmissions compliant with the European DVB-T specification (1). This development unites the BBC's system expertise in COFDM, see Nokes et al. (2), Stott (3) and (4), and LSI Logic's long-established chip design capability. As part of the front end development, LSI Logic and the BBC are working together on two distinct, but related, development projects: a single CMOS chip implementing a complete OFDM demodulator, and a new terrestrial down-converter designed for use with the digital chip. -
Public Media – Pubic Broadcasting System (PBS)
SUPPORTING PUBLIC AND COMMUNITY MEDIA ACTION NEEDED We urge Congress to: Restore public broadcasting funding to the FY 2013 appropriation level of $445 million through the Corporation for Public Broadcasting (CPB). Pass the Community Access Preservation Act (CAP Act) to preserve public, educational, and governmental (PEG) non-commercial cable channels for local communities. OVERVIEW—PUBLIC AND COMMUNITY MEDIA Public media consists of the Public Broadcasting Service (PBS), National Public Radio (NPR), and more than 1,000 local public broadcasting stations. Community media is comprised of public, educational, and government (PEG) cable access TV and community radio stations. Both public and community media have a long history of presenting local, regional, and national nonprofit arts programming, a great majority of which is not available on commercial channels. These organizations play a unique role in bringing both classics and contemporary works to the American public. All of these systems exist because of federal funding or legislation. TALKING POINTS— CORPORATION FOR PUBLIC BROADCASTING In creating America’s unique public broadcasting system, Congress acknowledged public broadcasting’s role in transmitting arts and culture: “It is in the public interest to encourage the growth and development of public radio and television broadcasting, including the use of such media for instructional, educational, and cultural purposes.” And Corporation for Public Broadcasting (CPB) is the vehicle through which Congress has chosen to promote noncommercial public telecommunications. CPB does not produce or broadcast programs. The vast majority of funding through CPB goes directly to local public broadcast stations in the form of Community Service Grants. The federal portion of the average public station’s revenue is approximately 10–15 percent. -
History of Radio Broadcasting in Montana
University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 1963 History of radio broadcasting in Montana Ron P. Richards The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Richards, Ron P., "History of radio broadcasting in Montana" (1963). Graduate Student Theses, Dissertations, & Professional Papers. 5869. https://scholarworks.umt.edu/etd/5869 This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. THE HISTORY OF RADIO BROADCASTING IN MONTANA ty RON P. RICHARDS B. A. in Journalism Montana State University, 1959 Presented in partial fulfillment of the requirements for the degree of Master of Arts in Journalism MONTANA STATE UNIVERSITY 1963 Approved by: Chairman, Board of Examiners Dean, Graduate School Date Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. UMI Number; EP36670 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. UMT Oiuartation PVUithing UMI EP36670 Published by ProQuest LLC (2013). -
Technical Review: Wib – a New System Concept for Digital Terrestrial Television (DTT)
WiB – A New System Concept for Digital Terrestrial Television (DTT) 06 March 2017 E. Stare, J.J. Giménez, P.Klenner FOREWORD The main purpose of an EBU Technical Review is to critically examine new technologies or developments in media production or distribution. All Technical Reviews are reviewed by one (or more) technical experts at the EBU or externally and by the EBU Technical Editions Manager. Responsibility for the views expressed in this article rests solely with the author(s). To access the full collection of our Technical Reviews, please see: tech.ebu.ch/publications If you are interested in submitting a topic for an EBU Technical Review, please contact: [email protected] EBU Technology & Innovation | Technical Review | 06 March 2017 2 ABSTRACT Authors: E. STARE1, J.J. GIMÉNEZ2, P. KLENNER3 A new system concept for DTT, called “WiB”, is presented, where potentially all frequencies within the Ultra High Frequency (UHF) band are used on all transmitter (Tx) sites (i.e. reuse-1). Interference, especially from neighbouring transmitters operating on the same frequency and transmitting different information, is handled by a combination of a robust transmission mode, directional discrimination of the receiving antenna and interference cancellation methods. With this approach DTT may be transmitted as a single wideband signal, covering potentially the entire UHF band, from a single wideband transmitter per transmitter site. Thanks to a higher spectrum utilisation the approach allows for a dramatic reduction in fundamental power/cost and about 37 - 60% capacity increase for the same coverage compared with current DTT. High speed mobile reception as well as fine granularity local services would also be supported, without loss of capacity.