Entrez ID 1 Symbol 1 Entrez ID 2 Symbol 2 Data Source (R

Total Page:16

File Type:pdf, Size:1020Kb

Entrez ID 1 Symbol 1 Entrez ID 2 Symbol 2 Data Source (R Supporting Information Table 4. List of human protein-protein interactons. Entrez ID 1 Symbol 1 Entrez ID 2 Symbol 2 Data Source (R: Rual et al; S: Stelzl et al; L: Literature curation) 1 A1BG 10321 CRISP3 L 2 A2M 259 AMBP L 2 A2M 348 APOE L 2 A2M 351 APP L 2 A2M 354 KLK3 L 2 A2M 567 B2M L 2 A2M 1508 CTSB L 2 A2M 1990 ELA1 L 2 A2M 3309 HSPA5 L 2 A2M 3553 IL1B L 2 A2M 3586 IL10 L 2 A2M 3931 LCAT L 2 A2M 3952 LEP L 2 A2M 4035 LRP1 L 2 A2M 4803 NGFB L 2 A2M 5047 PAEP L 2 A2M 7045 TGFBI L 2 A2M 8728 ADAM19 L 2 A2M 9510 ADAMTS1 L 2 A2M 10944 SMAP S 2 A2M 55729 ATF7IP L 9 NAT1 8260 ARD1A L 12 SERPINA3 351 APP L 12 SERPINA3 354 KLK3 L 12 SERPINA3 1215 CMA1 L 12 SERPINA3 1504 CTRB1 L 12 SERPINA3 1506 CTRL L 12 SERPINA3 1511 CTSG L 12 SERPINA3 1990 ELA1 L 12 SERPINA3 1991 ELA2 L 12 SERPINA3 2064 ERBB2 L 12 SERPINA3 2153 F5 L 12 SERPINA3 3817 KLK2 L 12 SERPINA3 4035 LRP1 L 12 SERPINA3 4485 MST1 L 12 SERPINA3 5422 POLA L 12 SERPINA3 64215 DNAJC1 L 14 AAMP 51497 TH1L S 15 AANAT 7534 YWHAZ L 18 ABAT 7915 ALDH5A1 L 19 ABCA1 335 APOA1 L 19 ABCA1 6645 SNTB2 L 19 ABCA1 8772 FADD L 20 ABCA2 55755 CDK5RAP2 L 22 ABCB7 2235 FECH L 23 ABCF1 3692 ITGB4BP S 24 ABCA4 1258 CNGB1 L 25 ABL1 27 ABL2 L 25 ABL1 472 ATM L 25 ABL1 613 BCR L 25 ABL1 718 C3 L 25 ABL1 867 CBL L 25 ABL1 1501 CTNND2 L 25 ABL1 2048 EPHB2 L 25 ABL1 2547 XRCC6 L 25 ABL1 2876 GPX1 L 25 ABL1 2885 GRB2 L 25 ABL1 3055 HCK L 25 ABL1 3636 INPPL1 L 25 ABL1 3716 JAK1 L 25 ABL1 4193 MDM2 L 25 ABL1 4690 NCK1 L 25 ABL1 4914 NTRK1 L 25 ABL1 5062 PAK2 L 25 ABL1 5295 PIK3R1 L 25 ABL1 5335 PLCG1 L 25 ABL1 5591 PRKDC L 25 ABL1 5829 PXN L 25 ABL1 5883 RAD9A L 25 ABL1 5901 RAN L 25 ABL1 5921 RASA1 L 25 ABL1 5925 RB1 L 25 ABL1 5989 RFX1 L 25 ABL1 6091 ROBO1 L 25 ABL1 6098 ROS1 L 25 ABL1 6549 SLC9A2 L 25 ABL1 6714 SRC L 25 ABL1 6764 ST5 L 25 ABL1 7157 TP53 L 25 ABL1 7161 TP73 L 25 ABL1 7275 TUB L 25 ABL1 7535 ZAP70 L 25 ABL1 8751 ADAM15 L 25 ABL1 8936 WASF1 L 25 ABL1 9051 PSTPIP1 L 25 ABL1 9564 BCAR1 L 25 ABL1 9610 RIN1 L 25 ABL1 10006 ABI1 L 25 ABL1 10152 ABI2 L 25 ABL1 10580 SORBS1 L 25 ABL1 11183 MAP4K5 L 25 ABL1 23385 NCSTN L 25 ABL1 23616 SH3BP1 L 25 ABL1 51466 EVL L 25 ABL1 55824 PAG1 L 25 ABL1 91746 YT521 L 26 ABP1 1785 DNM2 L 27 ABL2 613 BCR L 27 ABL2 847 CAT L 27 ABL2 1398 CRK L 27 ABL2 2048 EPHB2 L 27 ABL2 2876 GPX1 L 27 ABL2 3055 HCK L 31 ACACA 672 BRCA1 L 31 ACACA 1114 CHGB S 39 ACAT2 1045 CDX2 L 40 ACCN1 41 ACCN2 L 40 ACCN1 9311 ACCN3 L 43 ACHE 351 APP L 43 ACHE 1282 COL4A1 L 43 ACHE 1939 LGTN L 43 ACHE 8292 COLQ L 43 ACHE 284217 LAMA1 L 49 ACR 5104 SERPINA5 L 49 ACR 7783 ZP2 L 51 ACOX1 6342 SCP2 L 52 ACP1 1969 EPHA2 L 52 ACP1 2047 EPHB1 L 52 ACP1 2048 EPHB2 L 52 ACP1 7535 ZAP70 L 52 ACP1 51460 SFMBT1 R 52 ACP1 54874 FNBP1L S 52 ACP1 55052 MRPL20 S 54 ACP5 1959 EGR2 S 54 ACP5 2239 GPC4 L 54 ACP5 5601 MAPK9 S 54 ACP5 6118 RPA2 S 54 ACP5 7704 ZBTB16 S 54 ACP5 8743 TNFSF10 S 54 ACP5 9141 PDCD5 S 54 ACP5 9410 WDR57 S 54 ACP5 54978 C2orf18 S 58 ACTA1 1072 CFL1 L 58 ACTA1 1756 DMD L 58 ACTA1 1773 DNASE1 L 58 ACTA1 2638 GC L 58 ACTA1 2934 GSN L 58 ACTA1 4632 MYL1 L 58 ACTA1 5216 PFN1 L 58 ACTA1 5578 PRKCA L 58 ACTA1 5879 RAC1 L 58 ACTA1 6525 SMTN L 58 ACTA1 6624 FSCN1 L 58 ACTA1 6876 TAGLN L 58 ACTA1 7094 TLN1 L 58 ACTA1 7114 TMSB4X L 58 ACTA1 7187 TRAF3 L 58 ACTA1 9468 PCYT1B L 58 ACTA1 10575 CCT4 L 58 ACTA1 22948 CCT5 L 59 ACTA2 1072 CFL1 L 59 ACTA2 1773 DNASE1 L 59 ACTA2 2638 GC L 59 ACTA2 4632 MYL1 L 59 ACTA2 7114 TMSB4X L 59 ACTA2 9468 PCYT1B L 59 ACTA2 10575 CCT4 L 59 ACTA2 22948 CCT5 L 60 ACTB 70 ACTC L 60 ACTB 71 ACTG1 R 60 ACTB 1072 CFL1 R 60 ACTB 1073 CFL2 R 60 ACTB 2010 EMD L 60 ACTB 2314 FLII L 60 ACTB 2934 GSN L 60 ACTB 4093 SMAD9 L 60 ACTB 4687 NCF1 L 60 ACTB 4892 NRAP L 60 ACTB 5027 P2RX7 L 60 ACTB 5201 PFDN1 L 60 ACTB 5216 PFN1 L 60 ACTB 5217 PFN2 L 60 ACTB 5337 PLD1 L 60 ACTB 5338 PLD2 L 60 ACTB 5764 PTN L 60 ACTB 5879 RAC1 L 60 ACTB 5880 RAC2 L 60 ACTB 6336 SCN10A L 60 ACTB 6597 SMARCA4 L 60 ACTB 6709 SPTAN1 L 60 ACTB 7168 TPM1 L 60 ACTB 7169 TPM2 L 60 ACTB 7170 TPM3 L 60 ACTB 7430 VIL2 L 60 ACTB 7447 VSNL1 L 60 ACTB 8655 DNCL1 L 60 ACTB 8904 CPNE1 L 60 ACTB 11034 DSTN R 60 ACTB 23214 XPO6 L 60 ACTB 25932 CLIC4 L 60 ACTB 55729 ATF7IP L 60 ACTB 83988 NCALD L 60 ACTB 131034 CPNE4 L 60 ACTB 221184 CPNE2 L 70 ACTC 81 ACTN4 L 70 ACTC 283 ANG L 70 ACTC 1072 CFL1 L 70 ACTC 1756 DMD L 70 ACTC 2039 EPB49 L 70 ACTC 2638 GC L 70 ACTC 3315 HSPB1 L 70 ACTC 3927 LASP1 L 70 ACTC 4638 MYLK L 70 ACTC 5339 PLEC1 L 70 ACTC 5581 PRKCE L 70 ACTC 5756 PTK9 L 70 ACTC 6624 FSCN1 L 70 ACTC 7094 TLN1 L 70 ACTC 7414 VCL L 70 ACTC 7430 VIL2 L 70 ACTC 7454 WAS L 70 ACTC 7456 WASPIP L 70 ACTC 8655 DNCL1 L 70 ACTC 10097 ACTR2 L 70 ACTC 23224 SYNE2 L 70 ACTC 23345 SYNE1 L 70 ACTC 51660 BRP44L S 70 ACTC 60312 AFAP L 70 ACTC 84687 PPP1R9B L 70 ACTC 85477 SCIN L 70 ACTC 137735 STARS L 71 ACTG1 308 ANXA5 L 71 ACTG1 1072 CFL1 R 71 ACTG1 1073 CFL2 R 71 ACTG1 1773 DNASE1 L 71 ACTG1 3692 ITGB4BP S 71 ACTG1 4640 MYO1A L 71 ACTG1 5217 PFN2 S 71 ACTG1 5800 PTPRO S 71 ACTG1 5829 PXN L 71 ACTG1 6456 SH3GL2 S 71 ACTG1 6487 ST3GAL3 S 71 ACTG1 7094 TLN1 L 71 ACTG1 7114 TMSB4X L 71 ACTG1 7414 VCL L 71 ACTG1 8655 DNCL1 L 71 ACTG1 8936 WASF1 L 71 ACTG1 10134 BCAP31 L 71 ACTG1 11034 DSTN R 71 ACTG1 11098 PRSS23 S 71 ACTG1 55729 ATF7IP L 81 ACTN4 135 ADORA2A L 81 ACTN4 525 ATP6V1B1 L 81 ACTN4 818 CAMK2G L 81 ACTN4 1308 COL17A1 L 81 ACTN4 2934 GSN L 81 ACTN4 3688 ITGB1 L 81 ACTN4 4703 NEB L 81 ACTN4 9124 PDLIM1 RL 81 ACTN4 9223 MAGI1 L 81 ACTN4 9351 SLC9A3R2 L 81 ACTN4 9712 USP6NL L 81 ACTN4 10612 TRIM3 L 81 ACTN4 51778 MYOZ2 R 81 ACTN4 57554 LRRC7 L 81 ACTN4 58529 MYOZ1 R 86 ACTL6A 396 ARHGDIA S 86 ACTL6A 2130 EWSR1 R 86 ACTL6A 4609 MYC L 86 ACTL6A 5430 POLR2A L 86 ACTL6A 6597 SMARCA4 L 86 ACTL6A 9031 BAZ1B L 87 ACTN1 135 ADORA2A L 87 ACTN1 815 CAMK2A L 87 ACTN1 1308 COL17A1 L 87 ACTN1 1495 CTNNA1 L 87 ACTN1 2203 FBP1 L 87 ACTN1 2903 GRIN2A L 87 ACTN1 4110 MAGEA11 R 87 ACTN1 5585 PKN1 L 87 ACTN1 5834 PYGB L 87 ACTN1 7273 TTN L 87 ACTN1 7518 XRCC4 R 87 ACTN1 7791 ZYX L 87 ACTN1 8048 CSRP3 L 87 ACTN1 8851 CDK5R1 L 87 ACTN1 8941 CDK5R2 L 87 ACTN1 9124 PDLIM1 L 87 ACTN1 9499 MYOT L 87 ACTN1 10755 GIPC1 L 87 ACTN1 26136 TES L 87 ACTN1 51778 MYOZ2 L 87 ACTN1 58529 MYOZ1 RL 87 ACTN1 117178 SSX2IP L 87 ACTN1 125950 RAVER1 L 88 ACTN2 89 ACTN3 L 88 ACTN2 135 ADORA2A L 88 ACTN2 1739 DLG1 L 88 ACTN2 1742 DLG4 L 88 ACTN2 2904 GRIN2B L 88 ACTN2 3739 KCNA4 L 88 ACTN2 3741 KCNA5 L 88 ACTN2 5585 PKN1 L 88 ACTN2 6401 SELE L 88 ACTN2 8038 ADAM12 L 88 ACTN2 9124 PDLIM1 L 88 ACTN2 22142 (null) S 88 ACTN2 23022 KIAA0992 L 88 ACTN2 27185 DISC1 L 88 ACTN2 51778 MYOZ2 L 88 ACTN2 58529 MYOZ1 L 88 ACTN2 84665 MYPN L 88 ACTN2 117178 SSX2IP L 88 ACTN2 125950 RAVER1 L 89 ACTN3 135 ADORA2A L 89 ACTN3 84665 MYPN L 90 ACVR1 91 ACVR1B L 90 ACVR1 650 BMP2 L 90 ACVR1 655 BMP7 L 90 ACVR1 2022 ENG L 90 ACVR1 2339 FNTA L 90 ACVR1 3547 IGSF1 L 90 ACVR1 3624 INHBA L 90 ACVR1 3625 INHBB L 90 ACVR1 3626 INHBC L 90 ACVR1 4086 SMAD1 L 90 ACVR1 4090 SMAD5 L 90 ACVR1 4093 SMAD9 L 90 ACVR1 8200 GDF5 L 91 ACVR1B 92 ACVR2A L 91 ACVR1B 93 ACVR2B L 91 ACVR1B 3547 IGSF1 L 91 ACVR1B 3624 INHBA L 91 ACVR1B 3625 INHBB L 91 ACVR1B 3626 INHBC L 91 ACVR1B 4089 SMAD4 L 91 ACVR1B 4092 SMAD7 L 91 ACVR1B 6642 SNX1 L 91 ACVR1B 6997 TDGF1 L 91 ACVR1B 9392 TGFBRAP1 L 92 ACVR2A 650 BMP2 L 92 ACVR2A 654 BMP6 L 92 ACVR2A 655 BMP7 L 92 ACVR2A 2022 ENG L 92 ACVR2A 2661 GDF9 L 92 ACVR2A 3547 IGSF1 L 92 ACVR2A 3624 INHBA L 92 ACVR2A 3625 INHBB L 92 ACVR2A 3626 INHBC L 92 ACVR2A 7049 TGFBR3 L 92 ACVR2A 8200 GDF5 L 93 ACVR2B 655 BMP7 L 93 ACVR2B 2660 GDF8 L 93 ACVR2B 3547 IGSF1 L 93 ACVR2B 3624 INHBA L 93 ACVR2B 3625 INHBB L 93 ACVR2B 3626 INHBC L 93 ACVR2B 6642 SNX1 L 93 ACVR2B 6643 SNX2 L 93 ACVR2B 8200 GDF5 L 93 ACVR2B 9392 TGFBRAP1 L 93 ACVR2B 10220 GDF11 L 94 ACVRL1 7040 TGFB1 L 94 ACVRL1 7048 TGFBR2 L 94 ACVRL1 9392 TGFBRAP1 L 95 ACY1 7265 TTC1 R 100 ADA 134 ADORA1 L 100 ADA 135 ADORA2A L 100 ADA 1803 DPP4 L 100 ADA 1812 DRD1 L 100 ADA 2885 GRB2 L 100 ADA 2908 NR3C1 L 102 ADAM10 1943 EFNA2 L 103 ADAR 7514 XPO1 L 107 ADCY1 108 ADCY2 L 108 ADCY2 111 ADCY5 L 108 ADCY2 2778 GNAS L 111 ADCY5 2770 GNAI1 L 111 ADCY5 2778 GNAS L 111 ADCY5 5578 PRKCA L 111 ADCY5 5590 PRKCZ L 111 ADCY5 5997 RGS2 L 112 ADCY6 1139 CHRNA7 L 116 ADCYAP1 117 ADCYAP1R1 L 116 ADCYAP1 6344 SCTR L 116 ADCYAP1 6469 SHH L 116 ADCYAP1 7434 VIPR2 L 118 ADD1 119 ADD2 L 118 ADD1 801 CALM1 L 118 ADD1 3398 ID2 L 118 ADD1 6708 SPTA1 L 118 ADD1 6709 SPTAN1 L 118 ADD1 6710 SPTB L 118 ADD1 10808 HSPH1 L 119 ADD2 801 CALM1 L 119 ADD2 2534 FYN L 119 ADD2 6709 SPTAN1 L 128 ADH5 1107 CHD3 S 133 ADM 1906 EDN1 L 133 ADM 3075 CFH L 133 ADM 4880 NPPC L 133 ADM 11318 ADMR L 134 ADORA1 1812 DRD1 L 134 ADORA1 2037 EPB41L2 L 134 ADORA1 2771 GNAI2 L 134 ADORA1 2775 GNAO1 L 134 ADORA1 2781 GNAZ L 134 ADORA1 2911 GRM1 L 134 ADORA1 5028 P2RY1 L 135 ADORA2A 1813 DRD2 L 142 PARP1 596 BCL2 L 142 PARP1 836 CASP3 L 142 PARP1 1026 CDKN1A L 142 PARP1 1058 CENPA L 142 PARP1 1059 CENPB L 142 PARP1 4605 MYBL2 L 142 PARP1 4790 NFKB1 L 142 PARP1 5111 PCNA L 142 PARP1 5422 POLA L 142 PARP1 5451 POU2F1 L 142 PARP1 5970 RELA L 142 PARP1 6189 RPS3A L 142 PARP1 6256 RXRA L 142 PARP1 7157 TP53 L 142 PARP1 7515 XRCC1 L 142 PARP1 9184 BUB3 L 142 PARP1 10038 PARP2 L 142 PARP1 10039 PARP3 L 142 PARP1 10432 RBM14 L 142 PARP1 23090 ZNF423 L 142 PARP1 23649 POLA2 L 142 PARP1 54840 APTX L 143 PARP4 9961 MVP L 147 ADRA1B 1173 AP2M1 L 147 ADRA1B 2767 GNA11 L 147 ADRA1B 6295 SAG L 148 ADRA1A 84687 PPP1R9B L 150 ADRA2A 153 ADRB1 L 150 ADRA2A 1967 EIF2B1 L 150 ADRA2A 2770 GNAI1 L 150 ADRA2A 2775 GNAO1 L 150 ADRA2A 7534 YWHAZ L 151 ADRA2B 1967 EIF2B1 L 151 ADRA2B 2771 GNAI2 L 151 ADRA2B
Recommended publications
  • Dominantly Acting Variants in ARF3 Have Disruptive Consequences on Golgi Integrity and Cause Microcephaly Recapitulated in ZebraSh
    Dominantly acting variants in ARF3 have disruptive consequences on Golgi integrity and cause microcephaly recapitulated in zebrash Giulia Fasano Ospedale Pediatrico Bambino Gesù Valentina Muto Ospedale Pediatrico Bambino Gesù Francesca Clementina Radio Genetic and Rare Disease Research Division, Bambino Gesù Children's Hospital IRCCS, Rome, Italy https://orcid.org/0000-0003-1993-8018 Martina Venditti Ospedale Pediatrico Bambino Gesù Alban Ziegler Département de Génétique, CHU d’Angers Giovanni Chillemi Tuscia University https://orcid.org/0000-0003-3901-6926 Annalisa Vetro Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Meyer Children’s Hospital, University of Florence Francesca Pantaleoni https://orcid.org/0000-0003-0765-9281 Simone Pizzi Bambino Gesù Children's Hospital Libenzio Conti Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome https://orcid.org/0000-0001-9466-5473 Stefania Petrini Bambino Gesù Children's Hospital Simona Coppola Istituto Superiore di Sanità Alessandro Bruselles Istituto Superiore di Sanità https://orcid.org/0000-0002-1556-4998 Ingrid Guarnetti Prandi University of Pisa, 56124 Pisa, Italy Balasubramanian Chandramouli Super Computing Applications and Innovation, CINECA Magalie Barth Céline Bris Département de Génétique, CHU d’Angers Donatella Milani Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Angelo Selicorni ASST Lariana Marina Macchiaiolo Ospedale Pediatrico Bambino Gesù, IRCCS Michaela Gonantini Ospedale Pediatrico Bambino Gesù, IRCCS Andrea Bartuli Bambino Gesù Children's
    [Show full text]
  • Recombinant Human ARFIP2 Protein Catalog Number: ATGP1695
    Recombinant human ARFIP2 protein Catalog Number: ATGP1695 PRODUCT INPORMATION Expression system E.coli Domain 1-341aa UniProt No. P53365 NCBI Accession No. NP_036534 Alternative Names Arfaptin 2, POR1 PRODUCT SPECIFICATION Molecular Weight 40.2 kDa (364aa) confirmed by MALDI-TOF Concentration 0.25mg/ml (determined by Bradford assay) Formulation Liquid in. 20mM Tris-HCl buffer (pH 8.0) containing 0.2M NaCl, 40% glycerol, 1mM DTT Purity > 90% by SDS-PAGE Tag His-Tag Application SDS-PAGE Storage Condition Can be stored at +2C to +8C for 1 week. For long term storage, aliquot and store at -20C to -80C. Avoid repeated freezing and thawing cycles. BACKGROUND Description Arfaptin 2, also known as ARFIP2, is a Rac1 binding protein necessary for Rac-mediated actin polymerization and the subsequent formation of membrane ruffles and lamellipodia. ARFIP2 has also been shown to interact with the ADP ribosylation factor ARF6, a GTPase that associates with the plasma membrane and intracellular endosome vesicles, in a GTP dependent manner. Arfaptin 2 also regulates the aggregation of mutant Huntingtin protein by possibly impairing proteasome function. Expression of ARFIP2 was shown to be increased at sites of neurodegeneration. Recombinant human ARFIP2 protein, fused to His-tag at N-terminus, was expressed in E. coli 1 Recombinant human ARFIP2 protein Catalog Number: ATGP1695 and purified by using conventional chromatography techniques. Amino acid Sequence MGSSHHHHHH SSGLVPRGSH MGSMTDGILG KAATMEIPIH GNGEARQLPE DDGLEQDLQQ VMVSGPNLNE TSIVSGGYGG SGDGLIPTGS GRHPSHSTTP SGPGDEVARG IAGEKFDIVK KWGINTYKCT KQLLSERFGR GSRTVDLELE LQIELLRETK RKYESVLQLG RALTAHLYSL LQTQHALGDA FADLSQKSPE LQEEFGYNAE TQKLLCKNGE TLLGAVNFFV SSINTLVTKT MEDTLMTVKQ YEAARLEYDA YRTDLEELSL GPRDAGTRGR LESAQATFQA HRDKYEKLRG DVAIKLKFLE ENKIKVMHKQ LLLFHNAVSA YFAGNQKQLE QTLQQFNIKL RPPGAEKPSW LEEQ General References D'Souza Schorey C., et al.
    [Show full text]
  • BACE1 Elevation Engendered by GGA3 Deletion Increases Β-Amyloid
    Kim et al. Molecular Neurodegeneration (2018) 13:6 DOI 10.1186/s13024-018-0239-7 RESEARCH ARTICLE Open Access BACE1 elevation engendered by GGA3 deletion increases β-amyloid pathology in association with APP elevation and decreased CHL1 processing in 5XFAD mice WonHee Kim1,2, Liang Ma1,2, Selene Lomoio1,2, Rachel Willen1,2, Sylvia Lombardo1,2, Jinghui Dong2, Philip G. Haydon2 and Giuseppina Tesco1,2* Abstract Background: β-site amyloid precursor protein cleaving enzyme 1 (BACE1) is the rate-limiting enzyme in the production of amyloid beta (Aβ), the toxic peptide that accumulates in the brains of Alzheimer’s disease (AD) patients. Our previous studies have shown that the clathrin adaptor Golgi-localized γ-ear-containing ARF binding protein 3 (GGA3) plays a key role in the trafficking of BACE1 to lysosomes, where it is normally degraded. GGA3 depletion results in BACE1 stabilization both in vitro and in vivo. Moreover, levels of GGA3 are reduced and inversely related to BACE1 levels in post-mortem brains of AD patients. Method: In order to assess the effect of GGA3 deletion on AD-like phenotypes, we crossed GGA3 −/− mice with 5XFAD mice. BACE1-mediated processing of APP and the cell adhesion molecule L1 like protein (CHL1) was measured as well as levels of Aβ42 and amyloid burden. Results: In 5XFAD mice, we found that hippocampal and cortical levels of GGA3 decreased while BACE1 levels increased with age, similar to what is observed in human AD brains. GGA3 deletion prevented age-dependent elevation of BACE1 in GGA3KO;5XFAD mice. We also found that GGA3 deletion resulted in increased hippocampal levels of Aβ42 and amyloid burden in 5XFAD mice at 12 months of age.
    [Show full text]
  • Analysis of Trans Esnps Infers Regulatory Network Architecture
    Analysis of trans eSNPs infers regulatory network architecture Anat Kreimer Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2014 © 2014 Anat Kreimer All rights reserved ABSTRACT Analysis of trans eSNPs infers regulatory network architecture Anat Kreimer eSNPs are genetic variants associated with transcript expression levels. The characteristics of such variants highlight their importance and present a unique opportunity for studying gene regulation. eSNPs affect most genes and their cell type specificity can shed light on different processes that are activated in each cell. They can identify functional variants by connecting SNPs that are implicated in disease to a molecular mechanism. Examining eSNPs that are associated with distal genes can provide insights regarding the inference of regulatory networks but also presents challenges due to the high statistical burden of multiple testing. Such association studies allow: simultaneous investigation of many gene expression phenotypes without assuming any prior knowledge and identification of unknown regulators of gene expression while uncovering directionality. This thesis will focus on such distal eSNPs to map regulatory interactions between different loci and expose the architecture of the regulatory network defined by such interactions. We develop novel computational approaches and apply them to genetics-genomics data in human. We go beyond pairwise interactions to define network motifs, including regulatory modules and bi-fan structures, showing them to be prevalent in real data and exposing distinct attributes of such arrangements. We project eSNP associations onto a protein-protein interaction network to expose topological properties of eSNPs and their targets and highlight different modes of distal regulation.
    [Show full text]
  • Analysis of Gene Expression Data for Gene Ontology
    ANALYSIS OF GENE EXPRESSION DATA FOR GENE ONTOLOGY BASED PROTEIN FUNCTION PREDICTION A Thesis Presented to The Graduate Faculty of The University of Akron In Partial Fulfillment of the Requirements for the Degree Master of Science Robert Daniel Macholan May 2011 ANALYSIS OF GENE EXPRESSION DATA FOR GENE ONTOLOGY BASED PROTEIN FUNCTION PREDICTION Robert Daniel Macholan Thesis Approved: Accepted: _______________________________ _______________________________ Advisor Department Chair Dr. Zhong-Hui Duan Dr. Chien-Chung Chan _______________________________ _______________________________ Committee Member Dean of the College Dr. Chien-Chung Chan Dr. Chand K. Midha _______________________________ _______________________________ Committee Member Dean of the Graduate School Dr. Yingcai Xiao Dr. George R. Newkome _______________________________ Date ii ABSTRACT A tremendous increase in genomic data has encouraged biologists to turn to bioinformatics in order to assist in its interpretation and processing. One of the present challenges that need to be overcome in order to understand this data more completely is the development of a reliable method to accurately predict the function of a protein from its genomic information. This study focuses on developing an effective algorithm for protein function prediction. The algorithm is based on proteins that have similar expression patterns. The similarity of the expression data is determined using a novel measure, the slope matrix. The slope matrix introduces a normalized method for the comparison of expression levels throughout a proteome. The algorithm is tested using real microarray gene expression data. Their functions are characterized using gene ontology annotations. The results of the case study indicate the protein function prediction algorithm developed is comparable to the prediction algorithms that are based on the annotations of homologous proteins.
    [Show full text]
  • New Approaches to Functional Process Discovery in HPV 16-Associated Cervical Cancer Cells by Gene Ontology
    Cancer Research and Treatment 2003;35(4):304-313 New Approaches to Functional Process Discovery in HPV 16-Associated Cervical Cancer Cells by Gene Ontology Yong-Wan Kim, Ph.D.1, Min-Je Suh, M.S.1, Jin-Sik Bae, M.S.1, Su Mi Bae, M.S.1, Joo Hee Yoon, M.D.2, Soo Young Hur, M.D.2, Jae Hoon Kim, M.D.2, Duck Young Ro, M.D.2, Joon Mo Lee, M.D.2, Sung Eun Namkoong, M.D.2, Chong Kook Kim, Ph.D.3 and Woong Shick Ahn, M.D.2 1Catholic Research Institutes of Medical Science, 2Department of Obstetrics and Gynecology, College of Medicine, The Catholic University of Korea, Seoul; 3College of Pharmacy, Seoul National University, Seoul, Korea Purpose: This study utilized both mRNA differential significant genes of unknown function affected by the display and the Gene Ontology (GO) analysis to char- HPV-16-derived pathway. The GO analysis suggested that acterize the multiple interactions of a number of genes the cervical cancer cells underwent repression of the with gene expression profiles involved in the HPV-16- cancer-specific cell adhesive properties. Also, genes induced cervical carcinogenesis. belonging to DNA metabolism, such as DNA repair and Materials and Methods: mRNA differential displays, replication, were strongly down-regulated, whereas sig- with HPV-16 positive cervical cancer cell line (SiHa), and nificant increases were shown in the protein degradation normal human keratinocyte cell line (HaCaT) as a con- and synthesis. trol, were used. Each human gene has several biological Conclusion: The GO analysis can overcome the com- functions in the Gene Ontology; therefore, several func- plexity of the gene expression profile of the HPV-16- tions of each gene were chosen to establish a powerful associated pathway, identify several cancer-specific cel- cervical carcinogenesis pathway.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • The Biomarkers of Key Mirnas and Target Genes Associated with Acute Myocardial Infarction
    The biomarkers of key miRNAs and target genes associated with acute myocardial infarction Qi Wang1, Bingyan Liu2,3, Yuanyong Wang4, Baochen Bai1, Tao Yu3 and Xian–ming Chu1,5 1 Department of Cardiology, The Affiliated hospital of Qingdao University, Qingdao, China 2 School of Basic Medicine, Qingdao University, Qingdao, China 3 Institute for Translational Medicine, Qingdao University, Qingdao, China 4 Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao, China 5 Department of Cardiology, The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao, China ABSTRACT Background. Acute myocardial infarction (AMI) is considered one of the most prominent causes of death from cardiovascular disease worldwide. Knowledge of the molecular mechanisms underlying AMI remains limited. Accurate biomarkers are needed to predict the risk of AMI and would be beneficial for managing the incidence rate. The gold standard for the diagnosis of AMI, the cardiac troponin T (cTnT) assay, requires serial testing, and the timing of measurement with respect to symptoms affects the results. As attractive candidate diagnostic biomarkers in AMI, circulating microRNAs (miRNAs) are easily detectable, generally stable and tissue specific. Methods. The Gene Expression Omnibus (GEO) database was used to compare miRNA expression between AMI and control samples, and the interactions between miRNAs and mRNAs were analysed for expression and function. Furthermore, a protein-protein interaction (PPI) network was constructed. The miRNAs identified in the bioinformatic analysis were verified by RT-qPCR in an H9C2 cell line. The miRNAs in plasma samples from patients with AMI (n D 11) and healthy controls (n D 11) were used to construct Submitted 23 December 2019 receiver operating characteristic (ROC) curves to evaluate the clinical prognostic value Accepted 14 April 2020 of the identified miRNAs.
    [Show full text]
  • Protein Identities in Evs Isolated from U87-MG GBM Cells As Determined by NG LC-MS/MS
    Protein identities in EVs isolated from U87-MG GBM cells as determined by NG LC-MS/MS. No. Accession Description Σ Coverage Σ# Proteins Σ# Unique Peptides Σ# Peptides Σ# PSMs # AAs MW [kDa] calc. pI 1 A8MS94 Putative golgin subfamily A member 2-like protein 5 OS=Homo sapiens PE=5 SV=2 - [GG2L5_HUMAN] 100 1 1 7 88 110 12,03704523 5,681152344 2 P60660 Myosin light polypeptide 6 OS=Homo sapiens GN=MYL6 PE=1 SV=2 - [MYL6_HUMAN] 100 3 5 17 173 151 16,91913397 4,652832031 3 Q6ZYL4 General transcription factor IIH subunit 5 OS=Homo sapiens GN=GTF2H5 PE=1 SV=1 - [TF2H5_HUMAN] 98,59 1 1 4 13 71 8,048185945 4,652832031 4 P60709 Actin, cytoplasmic 1 OS=Homo sapiens GN=ACTB PE=1 SV=1 - [ACTB_HUMAN] 97,6 5 5 35 917 375 41,70973209 5,478027344 5 P13489 Ribonuclease inhibitor OS=Homo sapiens GN=RNH1 PE=1 SV=2 - [RINI_HUMAN] 96,75 1 12 37 173 461 49,94108966 4,817871094 6 P09382 Galectin-1 OS=Homo sapiens GN=LGALS1 PE=1 SV=2 - [LEG1_HUMAN] 96,3 1 7 14 283 135 14,70620005 5,503417969 7 P60174 Triosephosphate isomerase OS=Homo sapiens GN=TPI1 PE=1 SV=3 - [TPIS_HUMAN] 95,1 3 16 25 375 286 30,77169764 5,922363281 8 P04406 Glyceraldehyde-3-phosphate dehydrogenase OS=Homo sapiens GN=GAPDH PE=1 SV=3 - [G3P_HUMAN] 94,63 2 13 31 509 335 36,03039959 8,455566406 9 Q15185 Prostaglandin E synthase 3 OS=Homo sapiens GN=PTGES3 PE=1 SV=1 - [TEBP_HUMAN] 93,13 1 5 12 74 160 18,68541938 4,538574219 10 P09417 Dihydropteridine reductase OS=Homo sapiens GN=QDPR PE=1 SV=2 - [DHPR_HUMAN] 93,03 1 1 17 69 244 25,77302971 7,371582031 11 P01911 HLA class II histocompatibility antigen,
    [Show full text]
  • Dynamics of the Linc Complex
    DYNAMICS OF THE LINC COMPLEX Loic Gazquez University of Manchester School of Biological Sciences 2017 A thesis submitted to the University of Manchester for the degree of Doctor of Philosophy in the Faculty of Biology, Medicine and Health TABLE OF CONTENTS Table of Contents .................................................................................................................................... 2 Abstract.................................................................................................................................................... 4 Declaration .............................................................................................................................................. 5 Copyright statement ................................................................................................................................ 5 Acknowledgements ................................................................................................................................. 6 I. Introduction .................................................................................................................................. 7 Nuclear Envelope and the LINC complex ................................................................................... 7 I. 1.1. The first LINC component: the SUN ................................................................................ 8 I. 1.2. The second LINC component: the KASH ........................................................................ 8 I. 1.1. Structure
    [Show full text]
  • Apba, a New Genetic Locus Involved in Thiamine Biosynthesis in Salmonella Typhimurium DIANA M
    JOURNAL OF BACrERIOLOGY, Aug. 1994, p. 4858-4864 Vol. 176, No. 16 0021-9193/94/$04.00+0 Copyright X 1994, American Society for Microbiology apbA, a New Genetic Locus Involved in Thiamine Biosynthesis in Salmonella typhimurium DIANA M. DOWNS* AND LESLIE PETERSEN Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706 Received 3 February 1994/Returned for modification 14 April 1994/Accepted 3 June 1994 In Salnonella typhimurium, the synthesis of the pyrimidine moiety of thiamine can occur by utilization of the first five steps in de novo purine biosynthesis or independently of the pur genes through the alternative pyrimidine biosynthetic, or APB, pathway (D. M. Downs, J. Bacteriol. 174:1515-1521, 1992). We have isolated the first mutations defective in the APB pathway. These mutations define the apbA locus and map at 10.5 min on the S. typhimurium chromosome. We have cloned and sequenced the apbA gene and found it to encode a 32-kDa polypeptide whose sequence predicts an NAD/flavin adenine dinucleotide-binding pocket in the protein. The phenotypes of apbA mutants suggest that, under some conditions, the APB pathway is the sole source of the pyrimidine moiety of thiamine in wild-type S. typhimurium, and furthermore, the pur genetic background of the strain influences whether this pathway can function under aerobic and/or anaerobic growth conditions. Thiamine (vitamin B1) is a required nutrient for the cell and thiamine biosynthesis still required the remainingpur genes for in its coenzymic form, thiamine pyrophosphate, participates as the formation of HMP (9). a carrier of C2 units in reactions such as the ones catalyzed by Recently, we demonstrated the existence of a pathway that transketolase and pyruvate dehydrogenase.
    [Show full text]
  • Supplemental Information
    Supplemental information Dissection of the genomic structure of the miR-183/96/182 gene. Previously, we showed that the miR-183/96/182 cluster is an intergenic miRNA cluster, located in a ~60-kb interval between the genes encoding nuclear respiratory factor-1 (Nrf1) and ubiquitin-conjugating enzyme E2H (Ube2h) on mouse chr6qA3.3 (1). To start to uncover the genomic structure of the miR- 183/96/182 gene, we first studied genomic features around miR-183/96/182 in the UCSC genome browser (http://genome.UCSC.edu/), and identified two CpG islands 3.4-6.5 kb 5’ of pre-miR-183, the most 5’ miRNA of the cluster (Fig. 1A; Fig. S1 and Seq. S1). A cDNA clone, AK044220, located at 3.2-4.6 kb 5’ to pre-miR-183, encompasses the second CpG island (Fig. 1A; Fig. S1). We hypothesized that this cDNA clone was derived from 5’ exon(s) of the primary transcript of the miR-183/96/182 gene, as CpG islands are often associated with promoters (2). Supporting this hypothesis, multiple expressed sequences detected by gene-trap clones, including clone D016D06 (3, 4), were co-localized with the cDNA clone AK044220 (Fig. 1A; Fig. S1). Clone D016D06, deposited by the German GeneTrap Consortium (GGTC) (http://tikus.gsf.de) (3, 4), was derived from insertion of a retroviral construct, rFlpROSAβgeo in 129S2 ES cells (Fig. 1A and C). The rFlpROSAβgeo construct carries a promoterless reporter gene, the β−geo cassette - an in-frame fusion of the β-galactosidase and neomycin resistance (Neor) gene (5), with a splicing acceptor (SA) immediately upstream, and a polyA signal downstream of the β−geo cassette (Fig.
    [Show full text]