Evolutionary History and Whole Genome Sequence of Pejerrey (Odontesthes Bonariensis): New Insights Into Sex Determination in Fishes

Total Page:16

File Type:pdf, Size:1020Kb

Evolutionary History and Whole Genome Sequence of Pejerrey (Odontesthes Bonariensis): New Insights Into Sex Determination in Fishes Evolutionary History and Whole Genome Sequence of Pejerrey (Odontesthes bonariensis): New Insights into Sex Determination in Fishes by Daniela Campanella B.Sc. in Biology, July 2009, Universidad Nacional de La Plata, Argentina A Dissertation submitted to The Faculty of The Columbian College of Arts and Sciences of The George Washington University in partial fulfillment of the requirements for the degree of Doctor of Philosophy January 31, 2015 Dissertation co-directed by Guillermo Ortí Louis Weintraub Professor of Biology Elisabet Caler Program Director at National Heart, Lung and Blood Institute, NIH The Columbian College of Arts and Sciences of The George Washington University certifies that Daniela Campanella has passed the Final Examination for the degree of Doctor of Philosophy as of December 12th, 2014. This is the final and approved form of the dissertation. Evolutionary History and Whole Genome Sequence of Pejerrey (Odontesthes bonariensis): New Insights into Sex Determination in Fishes Daniela Campanella Dissertation Research Committee: Guillermo Ortí, Louis Weintraub Professor of Biology, Dissertation Co-Director Elisabet Caler, Program Director at National Heart, Lung and Blood Institute, NIH, Dissertation Co-Director Hernán Lorenzi, Assistant Professor in Bioinformatics Department, J. Craig Venter Institute Rockville Maryland, Committee Member Jeremy Goecks, Assistant Professor of Computational Biology, Committee Member ! ""! ! Copyright 2015 by Daniela Campanella All rights reserved ! """! Dedication The author wishes to dedicate this dissertation to: My love, Ford, for his unconditional support and inspiration. For teaching me that admiration towards each other’s work is the fundamental fuel to go anywhere. My family and friends, for being there, meaning “there” everywhere and whenever. My grandpa Hugo, a pejerrey lover who knew how to fish, cook and enjoy the “silver arrows”. I was never a good fishing partner, but at least I caught a pejerrey genome! ! "#! Acknowledgements The author wishes to say thank you to: My co-advisor Lis. You were not only an incredible advisor and mentor, but also a friend. Thank you, Emmanuel & Mila for providing me of a home away from home. My co-advisor Guillermo. for giving me the opportunity to move forward in my career, for your guidance, enthusiasm and kind words during tough times. To Hernán, for taking over and guiding me through the bioinformatics jungle. For patiently responding to my hundreds of emails with silly questions. Thank you! To my lab-mates, Lily Hughes, Andrew Thompson, Kerry Mullaney, Roberto “tito” Cifuentes, Ricardo R-Betancur, Dahiana Arcila and Eva Rueda, for teaching me about PCR, fishes and life as a graduate student. Some of you only stayed for a while but made a big difference, and taught me so much. Thank you. Students, friends (Sanghi, Thiago, Chuy, Joey, Cristina), staff, and faculty from the GWU Biology Department, thank you all. To Juani Fernandino & Gustavo Somoza from IIB-INTECH, Chascomús. For sharing your pejerrey knowledge with me, for the countless hours of interesting conversations and the inspiration to explore. To G. Allen, R. Cifuentes, V. Cussac, A. Gosztonyi, J. Graf, E. Habit, G. Lange, M. Loureiro, D. Lumbantobing, A. Saunders, L. Smith, J. Sparks and the many additional people who assisted with collecting, curating, and providing the specimens for the Chapter 2 study. To K. Mullaney for helping with DNA amplifications, and ! #! paleontologist M. E. Raffi who contributed with observations on argentine fossils. To R. Betancur-R who helped with data analysis. To the US National Science Foundation for providing grants DEB 0918073 (to Kyle R. Piller, co-author of Chapter 2), DEB-1019308 and OISE-0530267 (to Guillermo Ortí, co- author of Chapter 2). To The George Washington University, for funding part of my work through the Weintraub Fellowship, Harlan funds, and startup funds to my co-advisor Guillermo Ortí. To the J. Craig Venter Institute in Rockville, Maryland for providing the computational resources, training and fellowship. ! #"! Abstract of Dissertation Evolutionary History and Whole Genome Sequence of Pejerrey (Odontesthes bonariensis): New Insights into Sex Determination in Fishes Recent reduction in the cost of DNA sequencing has enabled unprecedented opportunities to obtain genomic resources for non-model organisms. The main product of this dissertation is the whole-genome sequence of the pejerrey, Odontesthes bonariensis (Atherinopsidae, Atheriniformes, Teleostei), a freshwater species with high value for aquaculture and recreational fisheries and an emerging model system to study the evolution of sex determination in vertebrates. Genomic resources have the potential to quickly expand scientific knowledge by providing direct access to big genetic datasets. This dissertation introduces the first version of the pejerrey genome assembly and annotation based on a shotgun sequencing approach using the Illumina platform of three genomic libraries with different insert sizes. The pejerrey is one of the few fish species known to undergo temperature-dependent sex determination (TSD). Although a major sex-determining gene has been identified recently in several species of Odontesthes, the temperature at which pejerrey eggs or larvae are exposed to during the first weeks of life is a major factor determining phenotypic sex, overriding the effect of the genotype. A direct application of the newly assembled and annotated pejerrey genome provides insight into the regulatory network affecting TSD in fishes. This study reveals potential mechanisms to explain how genetic, environmental, and chemical factors interact in a sex- determining network during key developmental stages of pejerrey. A new perspective is presented on the role of steroid hormones affecting expression of a conserved genetic toolkit shared by species with different sex determination systems. ! #""! To enhance the comparative value of the new genomic resources and place the pejerrey in a well- resolved phylogenetic context, this dissertation provides a new phylogenetic hypothesis based on analyses of new sequence data collected for eight molecular markers for a representative sample of 103 atheriniform species, covering 2/3 of the genera in this order. The new phylogenetic hypothesis is used to recommend some changes in the current classification and is calibrated with six carefully chosen fossil taxa to provide an explicit timeframe for the diversification of this group. Ancestral habitat reconstructions are inferred to test biogeographic hypotheses to explain current distribution of marine and freshwater taxa. Post-Gondwanan divergence times among families are consistent with extensive marine dispersal along the margins of continents with repeated invasion of freshwater habitats. ! #"""! Table of Contents Dedication ..........................................................................................................................iv Acknowledgements .............................................................................................................v Abstract of Dissertation.....................................................................................................vii List of Figures ....................................................................................................................xi List of Tables....................................................................................................................xiii Chapter 1: Introduction and Overview...........................................................................1-23 References.................................................................................................................................. 16 Chapter 2: Multi-locus fossil calibrated phylogeny of Atheriniformes .......................24-70 Introduction................................................................................................................................ 24 Materials & Methods ................................................................................................................. 32 Results........................................................................................................................................ 39 Discussion.................................................................................................................................. 54 References.................................................................................................................................. 64 Chapter 3: The draft genome of Odontesthes bonariensis .........................................71-127 Introduction................................................................................................................................ 71 Materials & Methods ................................................................................................................. 73 Results........................................................................................................................................ 83 Discussion and Conclusions .................................................................................................... 111 References................................................................................................................................ 120 Chapter 4: The draft genome of Odontesthes bonariensis .......................................128-168 ! "$! Introduction.............................................................................................................................
Recommended publications
  • Documento Completo Descargar Archivo
    Publicaciones científicas del Dr. Raúl A. Ringuelet Zoogeografía y ecología de los peces de aguas continentales de la Argentina y consideraciones sobre las áreas ictiológicas de América del Sur Ecosur, 2(3): 1-122, 1975 Contribución Científica N° 52 al Instituto de Limnología Versión electrónica por: Catalina Julia Saravia (CIC) Instituto de Limnología “Dr. Raúl A. Ringuelet” Enero de 2004 1 Zoogeografía y ecología de los peces de aguas continentales de la Argentina y consideraciones sobre las áreas ictiológicas de América del Sur RAÚL A. RINGUELET SUMMARY: The zoogeography and ecology of fresh water fishes from Argentina and comments on ichthyogeography of South America. This study comprises a critical review of relevant literature on the fish fauna, genocentres, means of dispersal, barriers, ecological groups, coactions, and ecological causality of distribution, including an analysis of allotopic species in the lame lake or pond, the application of indexes of diversity of severa¡ biotopes and comments on historical factors. Its wide scope allows to clarify several aspects of South American Ichthyogeography. The location of Argentina ichthyological fauna according to the above mentioned distributional scheme as well as its relation with the most important hydrography systems are also provided, followed by additional information on its distribution in the Argentine Republic, including an analysis through the application of Simpson's similitude test in several localities. SINOPSIS I. Introducción II. Las hipótesis paleogeográficas de Hermann von Ihering III. La ictiogeografía de Carl H. Eigenmann IV. Estudios de Emiliano J. Mac Donagh sobre distribución de peces argentinos de agua dulce V. El esquema de Pozzi según el patrón hidrográfico actual VI.
    [Show full text]
  • Condition Monitoring of Threatened Fish Populations in Lake Alexandrina and Lake Albert
    Condition Monitoring of Threatened Fish Populations in Lake Alexandrina and Lake Albert Report to the Murray–Darling Basin Authority and the South Australian Department for Environment and Water Scotte Wedderburn and Thomas Barnes June 2018 © The University of Adelaide and the Department for Environment and Water With the exception of the Commonwealth Coat of Arms, the Murray–Darling Basin Authority logo, photographs and presented data, all material presented in this document is provided under a Creative Commons Attribution 4.0 International licence (https://creativecommons.org/licences/by/4.0/). For the avoidance of any doubt, this licence only applies to the material set out in this document. The details of the licence are available on the Creative Commons website (accessible using the links provided) as is the full legal code for the CC BY 4.0 licence (https://creativecommons.org/licences/by/4.0/legalcode). MDBA’s preference is that this publication be attributed (and any material sourced from it) using the following: Publication title: Condition Monitoring of Threatened Fish Populations in Lake Alexandrina and Lake Albert Source: Licensed from the Department for Environment and Water under a Creative Commons Attribution 4.0 International Licence The contents of this publication do not purport to represent the position of the Commonwealth of Australia or the MDBA in any way and are presented for the purpose of informing and stimulating discussion for improved management of Basin's natural resources. To the extent permitted by law, the copyright holders (including its employees and consultants) exclude all liability to any person for any consequences, including but not limited to all losses, damages, costs, expenses and any other compensation, arising directly or indirectly from using this report (in part or in whole) and any information or material contained in it.
    [Show full text]
  • Humboldt Bay Fishes
    Humboldt Bay Fishes ><((((º>`·._ .·´¯`·. _ .·´¯`·. ><((((º> ·´¯`·._.·´¯`·.. ><((((º>`·._ .·´¯`·. _ .·´¯`·. ><((((º> Acknowledgements The Humboldt Bay Harbor District would like to offer our sincere thanks and appreciation to the authors and photographers who have allowed us to use their work in this report. Photography and Illustrations We would like to thank the photographers and illustrators who have so graciously donated the use of their images for this publication. Andrey Dolgor Dan Gotshall Polar Research Institute of Marine Sea Challengers, Inc. Fisheries And Oceanography [email protected] [email protected] Michael Lanboeuf Milton Love [email protected] Marine Science Institute [email protected] Stephen Metherell Jacques Moreau [email protected] [email protected] Bernd Ueberschaer Clinton Bauder [email protected] [email protected] Fish descriptions contained in this report are from: Froese, R. and Pauly, D. Editors. 2003 FishBase. Worldwide Web electronic publication. http://www.fishbase.org/ 13 August 2003 Photographer Fish Photographer Bauder, Clinton wolf-eel Gotshall, Daniel W scalyhead sculpin Bauder, Clinton blackeye goby Gotshall, Daniel W speckled sanddab Bauder, Clinton spotted cusk-eel Gotshall, Daniel W. bocaccio Bauder, Clinton tube-snout Gotshall, Daniel W. brown rockfish Gotshall, Daniel W. yellowtail rockfish Flescher, Don american shad Gotshall, Daniel W. dover sole Flescher, Don stripped bass Gotshall, Daniel W. pacific sanddab Gotshall, Daniel W. kelp greenling Garcia-Franco, Mauricio louvar
    [Show full text]
  • Discovery of Endangered Annual Killifish Austrolebias
    Neotropical Ichthyology, 12(1): 117-124, 2014 Copyright © 2014 Sociedade Brasileira de Ictiologia Discovery of endangered annual killifish Austrolebias cheradophilus (Aplocheiloidei: Rivulidae) in Brazil, with comments on habitat, population structure and conservation status Luis Esteban Krause Lanés1,2, Ândrio Cardozo Gonçalves1,3 and Matheus Vieira Volcan1,3 Austrolebias genus comprises about 40 small annual killifishes endemic to South America and their highest diversity occurs in southern Brazil and Uruguay, especially in drainages of Patos-Mirim system. Austrolebias species are severely threatened with extinction because their life cycle and restricted ranges. Low dispersal ability and the extensive loss and fragmentation of freshwater wetlands contribute to this threat. Accurate information on the geographic distribution and ecology of the species, vital to plan conservation and management strategies, are scarce. In order to provide basic knowledge for annual fish conservation this paper reports the presence of Austrolebias cheradophilus and present data about its population structure (CPUA, size, sex ratio, length-weight relationships and condition factor) and conservation status in southern Brazil. The estimated CPUA of populations was 0.86 fish/m2. Standard length (SL) of males ranged between 32.14 and 49.17 mm and for females between 25.11 and 41.6 mm. There were no differences in SL between the sexes (t-test = - 1.678; P = 0.105), and Chi-squared test demonstrated marginal differences in proportions of sexes (2.25:1; χ2 = 3.846; P = 0.07). Allometric coefficient of theLWR was slightly hyperallometric (b = 3.08) and K of the specimens ranged from 1.84 to 2.42 (mean ± S.E.
    [Show full text]
  • Multi-Locus Fossil-Calibrated Phylogeny of Atheriniformes (Teleostei, Ovalentaria)
    Molecular Phylogenetics and Evolution 86 (2015) 8–23 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Multi-locus fossil-calibrated phylogeny of Atheriniformes (Teleostei, Ovalentaria) Daniela Campanella a, Lily C. Hughes a, Peter J. Unmack b, Devin D. Bloom c, Kyle R. Piller d, ⇑ Guillermo Ortí a, a Department of Biological Sciences, The George Washington University, Washington, DC, USA b Institute for Applied Ecology, University of Canberra, Australia c Department of Biology, Willamette University, Salem, OR, USA d Department of Biological Sciences, Southeastern Louisiana University, Hammond, LA, USA article info abstract Article history: Phylogenetic relationships among families within the order Atheriniformes have been difficult to resolve Received 29 December 2014 on the basis of morphological evidence. Molecular studies so far have been fragmentary and based on a Revised 21 February 2015 small number taxa and loci. In this study, we provide a new phylogenetic hypothesis based on sequence Accepted 2 March 2015 data collected for eight molecular markers for a representative sample of 103 atheriniform species, cover- Available online 10 March 2015 ing 2/3 of the genera in this order. The phylogeny is calibrated with six carefully chosen fossil taxa to pro- vide an explicit timeframe for the diversification of this group. Our results support the subdivision of Keywords: Atheriniformes into two suborders (Atherinopsoidei and Atherinoidei), the nesting of Notocheirinae Silverside fishes within Atherinopsidae, and the monophyly of tribe Menidiini, among others. We propose taxonomic Marine to freshwater transitions Marine dispersal changes for Atherinopsoidei, but a few weakly supported nodes in our phylogeny suggests that further Molecular markers study is necessary to support a revised taxonomy of Atherinoidei.
    [Show full text]
  • Catalogue of Protozoan Parasites Recorded in Australia Peter J. O
    1 CATALOGUE OF PROTOZOAN PARASITES RECORDED IN AUSTRALIA PETER J. O’DONOGHUE & ROBERT D. ADLARD O’Donoghue, P.J. & Adlard, R.D. 2000 02 29: Catalogue of protozoan parasites recorded in Australia. Memoirs of the Queensland Museum 45(1):1-164. Brisbane. ISSN 0079-8835. Published reports of protozoan species from Australian animals have been compiled into a host- parasite checklist, a parasite-host checklist and a cross-referenced bibliography. Protozoa listed include parasites, commensals and symbionts but free-living species have been excluded. Over 590 protozoan species are listed including amoebae, flagellates, ciliates and ‘sporozoa’ (the latter comprising apicomplexans, microsporans, myxozoans, haplosporidians and paramyxeans). Organisms are recorded in association with some 520 hosts including mammals, marsupials, birds, reptiles, amphibians, fish and invertebrates. Information has been abstracted from over 1,270 scientific publications predating 1999 and all records include taxonomic authorities, synonyms, common names, sites of infection within hosts and geographic locations. Protozoa, parasite checklist, host checklist, bibliography, Australia. Peter J. O’Donoghue, Department of Microbiology and Parasitology, The University of Queensland, St Lucia 4072, Australia; Robert D. Adlard, Protozoa Section, Queensland Museum, PO Box 3300, South Brisbane 4101, Australia; 31 January 2000. CONTENTS the literature for reports relevant to contemporary studies. Such problems could be avoided if all previous HOST-PARASITE CHECKLIST 5 records were consolidated into a single database. Most Mammals 5 researchers currently avail themselves of various Reptiles 21 electronic database and abstracting services but none Amphibians 26 include literature published earlier than 1985 and not all Birds 34 journal titles are covered in their databases. Fish 44 Invertebrates 54 Several catalogues of parasites in Australian PARASITE-HOST CHECKLIST 63 hosts have previously been published.
    [Show full text]
  • Biodiversity Summary: Port Phillip and Westernport, Victoria
    Biodiversity Summary for NRM Regions Species List What is the summary for and where does it come from? This list has been produced by the Department of Sustainability, Environment, Water, Population and Communities (SEWPC) for the Natural Resource Management Spatial Information System. The list was produced using the AustralianAustralian Natural Natural Heritage Heritage Assessment Assessment Tool Tool (ANHAT), which analyses data from a range of plant and animal surveys and collections from across Australia to automatically generate a report for each NRM region. Data sources (Appendix 2) include national and state herbaria, museums, state governments, CSIRO, Birds Australia and a range of surveys conducted by or for DEWHA. For each family of plant and animal covered by ANHAT (Appendix 1), this document gives the number of species in the country and how many of them are found in the region. It also identifies species listed as Vulnerable, Critically Endangered, Endangered or Conservation Dependent under the EPBC Act. A biodiversity summary for this region is also available. For more information please see: www.environment.gov.au/heritage/anhat/index.html Limitations • ANHAT currently contains information on the distribution of over 30,000 Australian taxa. This includes all mammals, birds, reptiles, frogs and fish, 137 families of vascular plants (over 15,000 species) and a range of invertebrate groups. Groups notnot yet yet covered covered in inANHAT ANHAT are notnot included included in in the the list. list. • The data used come from authoritative sources, but they are not perfect. All species names have been confirmed as valid species names, but it is not possible to confirm all species locations.
    [Show full text]
  • Training Manual Series No.15/2018
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CMFRI Digital Repository DBTR-H D Indian Council of Agricultural Research Ministry of Science and Technology Central Marine Fisheries Research Institute Department of Biotechnology CMFRI Training Manual Series No.15/2018 Training Manual In the frame work of the project: DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals 2015-18 Training Manual In the frame work of the project: DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals 2015-18 Training Manual This is a limited edition of the CMFRI Training Manual provided to participants of the “DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals” organized by the Marine Biotechnology Division of Central Marine Fisheries Research Institute (CMFRI), from 2nd February 2015 - 31st March 2018. Principal Investigator Dr. P. Vijayagopal Compiled & Edited by Dr. P. Vijayagopal Dr. Reynold Peter Assisted by Aditya Prabhakar Swetha Dhamodharan P V ISBN 978-93-82263-24-1 CMFRI Training Manual Series No.15/2018 Published by Dr A Gopalakrishnan Director, Central Marine Fisheries Research Institute (ICAR-CMFRI) Central Marine Fisheries Research Institute PB.No:1603, Ernakulam North P.O, Kochi-682018, India. 2 Foreword Central Marine Fisheries Research Institute (CMFRI), Kochi along with CIFE, Mumbai and CIFA, Bhubaneswar within the Indian Council of Agricultural Research (ICAR) and Department of Biotechnology of Government of India organized a series of training programs entitled “DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals”.
    [Show full text]
  • The Etyfish Project © Christopher Scharpf and Kenneth J
    ATHERINIFORMES (part 2) · 1 The ETYFish Project © Christopher Scharpf and Kenneth J. Lazara COMMENTS: v. 4.0 - 9 Dec. 2019 Order ATHERINIFORMES (part 2 of 2) Family BEDOTIIDAE Malagasy Rainbowfishes 2 genera · 16 species Bedotia Regan 1903 -ia, belonging to: Maurice Bedot (1859-1927), director of the Geneva Natural History Museum (where holotype of type species B. madagascariensis is housed) and editor of journal in which description appeared Bedotia albomarginata Sparks & Rush 2005 albus, white; marginatus, edged or bordered, referring to characteristic white marginal stripes on second dorsal fin and anal fin Bedotia alveyi Jones, Smith & Sparks 2010 in honor of Mark Alvey (b. 1955), Field Museum (Chicago, Illinois, USA), for his “tremendous” efforts to promote natural history research and species discovery during his tenure as Administrative Director of Academic Affairs Bedotia geayi Pellegrin 1907 in honor of pharmacist and natural history collector Martin François Geay (1859-1910), who collected type Bedotia leucopteron Loiselle & Rodriguez 2007 leukos, white; pteron, fin, referring to iridescent-white fin coloration particularly evident in adult male Bedotia longianalis Pellegrin 1914 longus, long; analis, anal, referring to more anal-fin rays (19) compared to the similar B. geayi (14-17) Bedotia madagascariensis Regan 1903 -ensis, suffix denoting place: Madagascar, where it (and entire family) is endemic Bedotia marojejy Stiassny & Harrison 2000 named for Parc national de Marojejy, northeastern Madagascar, type locality Bedotia masoala Sparks 2001 named for Masoala Peninsula of northeastern Madagascar, where this species appears to be endemic Bedotia tricolor Pellegrin 1932 tri-, three, referring to anal-fin coloration of adults, “three equal parallel bands: black, yellow, red, exactly reproducing the Belgian flag” (translation) Rheocles Jordan & Hubbs 1919 etymology not explained, presumably rheos, current or stream, referring to occurrence of R.
    [Show full text]
  • Austrolebias Bagual, a New Species of Annual Fish (Cyprinodontiformes: Rivulidae) from Southern Brazil
    AQUA20(4)-LAYOUT.qxp_AQUA 16/10/14 09:50 Pagina 161 aqua, International Journal of Ichthyology Austrolebias bagual, a new species of annual fish (Cyprinodontiformes: Rivulidae) from southern Brazil Matheus Vieira Volcan 1,2, Luis Esteban Krause Lanés1,3 and Ândrio Cardozo Gonçalves1 1) Instituto Pró-Pampa (IPPampa), Laboratório de Ictiologia. Pelotas, Rio Grande do Sul, Brasil. E-mail: [email protected] 2) Universidade Federal de Santa Maria (UFSM). Programa de Pós Graduação em Biodiversidade Animal. Santa Maria, Rio Grande do Sul, Brasil. 3) Universidade do Vale do Rio dos Sinos (UNISINOS), Programa de Pós Graduação em Biologia: Diversidade e Manejo da Vida Silvestre, Laboratório de Ecologia e Conservação de Ecossistemas Aquáticos, São Leopoldo, Rio Grande do Sul, Brasil. Received: 22 September 2014 – Accepted: 10 July 2014 Abstract adloffi por la altura inferior del cuerpo y cabeza (excepto en Austrolebias bagual, a new species of annual fish closely re- A. reicherti), más corta longitud de la base de la aleta anal y lated to the A. adloffi species group, is described from spec- tamaño de la aleta caudal en los machos, y la altura de la imens collected from temporary ponds located in the mid- cabeza más baja (excepto en A. reicherti) y el tamaño de la dle course of the Rio Camaquã, Laguna dos Patos system at aleta anal en las hembras. Por otra parte, las hembras de A. the municipality of Encruzilhada do Sul, Rio Grande do bagual no presentan un par de manchas negras dispuestas Sul, Brazil. The new species is distinguished from other ver ti calmente en la parte posterior del pedúnculo caudal, Austrolebias species by the unique male pigmentation pat- típico de la mayoría de las especies del grupo A.
    [Show full text]
  • Basilichthys Australis (Eigenmann 1928)
    FICHA DE ANTECEDENTES DE ESPECIE Id especie: Nombre Científico: Basilichthys australis (Eigenmann 1928) Nombre Común: pejerrey; pejerrey chileno; cauque. Reino: Animalia Orden: Atheriniformes Phyllum/División: Chordata Familia: Atherinopsidae Clase: Actinopterygii Género: Basilichthys. Sinonimia: Austromenidia laticlavia Cuvier, Basilichthys microlepidotus Girard, Atherinopsis microlepidotus Thompson, Basilichthys australis Eigenmann, Basilichthys microlepidotus (no Jenyns) Girard, Atherina laticlavia Valenciennes, Chirostoma laticlavia Steindachner, Basilichthys laticlavia Regan. Antecedentes Generales: ASPECTOS MORFOLÓGICOS: Es una especie de pez de agua dulce, de cuerpo alargado, fusiforme, con escamas pequeñas pseudocicloídeas. Cabeza corta. Boca terminal, no protráctil, con dientes pequeños y puntiagudos. Ojos laterales. Se distingue la aleta dorsal anterior enteramente por detrás de las ventrales. Su extremo alcanza el nivel del ano. (Bahamondes et al. 1979). La segunda dorsal se inicia al nivel del primer tercio de la anal; pectorales distanciadas de las pélvicas. Su talla puede ser mayor a 30 cm. Se distingue por presentar una banda oscura longitudinal, plateada en su borde inferior, flancos verde amarillentos, más blancos. El dorso está recorrido por banda oscura angosta, de coloración verde azulada. (Ruiz & Marchant 2004). La ausencia de diferenciación para las especies B. australis y B. microlepidotus, las considera aún como grupo, proponiéndose como viable una caracterización molecular para lograr su completo diagnóstico. ASPECTOS REPRODUCTIVOS: Desovan en lagos y pozones de ríos. Los juveniles se dispersan en ambientes riparianos o litorales como hábitat de crianza. Se determinó la época de desove entre agosto y noviembre en el Río Maipo, y entre agosto a diciembre en el Lago Rapel (Vila 1979). COMPORTAMIENTO: Distribución geográfica: La distribución aproximada de Basilichthys australis comprendía una extensión desde el Río Aconcagua (Región de Valparaíso) hasta Puerto Montt (Región de Los Lagos), entre 33 y 42º S.
    [Show full text]
  • Morphological Adaptation of the Buccal Cavity in Relation to Feeding Habits of the Omnivorous fish Clarias Gariepinus: a Scanning Electron Microscopic Study
    The Journal of Basic & Applied Zoology (2012) 65, 191–198 The Egyptian German Society for Zoology The Journal of Basic & Applied Zoology www.egsz.org www.sciencedirect.com Morphological adaptation of the buccal cavity in relation to feeding habits of the omnivorous fish Clarias gariepinus: A scanning electron microscopic study A.M. Gamal, E.H. Elsheikh *, E.S. Nasr Department of Zoology, Faculty of Science, Zagazig University, Egypt Received 12 March 2012; accepted 9 April 2012 Available online 5 September 2012 KEYWORDS Abstract The surface architecture of the buccal cavity of the omnivorous fish Clarias gariepinus Taste buds; was studied in relation to its food and feeding habits. The buccal cavity of the present fish was inves- Buccal cavity; tigated by means of a scanning electron microscope. This cavity may be distinguished into the roof Scanning electron and the floor. Papilliform and molariform teeth which are located in the buccal cavity are associated microscope; with seizing, grasping, holding of the prey, crushing and grinding of various food items. Three types Surface architecture; of taste buds (Types I, II & III) were found at different levels in the buccal cavity. Type I taste buds Fishes were found in relatively high epidermal papillae. Type II taste buds were mostly found in low epi- dermal papillae. Type III taste buds never raise above the normal level of the epithelium. These types may be useful for ensuring full utilization of the gustatory ability of the fish. A firm consis- tency or rigidity of the free surface of the epithelial cells may be attributed to compactly arranged microridges.
    [Show full text]