International Journal of Emerging Engineering Research and Technology Volume 6, Issue 12, 2018, PP 17-29 ISSN 2394-5923 (Print) & ISSN 2394-5931 (Online) New 3D Integral Imaging Camera Viewing Parameters 1Mahmoud G. Eljadid, 2A. Aggoun, 3Osama H. Youssef Atallah 1Software Engineering Department, Faculty of Information Technology, Tripoli University, Libya. 2School of Mathematics and Computer Science, University of Wolverhampton, United Kingdom. 3Biomedical Engineering Department, Medical Research Institute, Alexandria University, Egypt. *Corresponding Author: Mahmoud G. Eljadid, Software Engineering Department, Faculty of Information Technology, Tripoli University, Libya. Email:
[email protected] ABSTRACT 3D Holoscopic imaging (also known as Integral imaging) is a technique that is capable of creating and encoding a true volume spatial optical model of the object scene in the form of a planar intensity distribution by using unique optical components. It is akin to holography in that 3D information recorded on a 2D medium can be replayed as a full 3D optical model, Typically, moving from cylindrical lens to the next cylindrical lens is carried out knowing the lens width, Lw, which defines the translation of the camera along the x optical axis and hence the position of the new camera cylindrical lens. This new renderer is represented in the paper by the term integral ray tracing (IRT). In this paper, a method of generation 3D integral images camera file parameters is proposed. The camera file is an important part of the process of generating micro-images and set up the camera position. The method is mainly based on Parallel Multiprocessor Ray Tracing System adapted "Tachyon" as renderer. Experimental results show validation of the new algorithm and the lenticular lens can be set up and tested on small-balls, gears, room, tree and teapot scenes.