Cutting Edge 3D Display Technology Optical Hardware

Total Page:16

File Type:pdf, Size:1020Kb

Cutting Edge 3D Display Technology Optical Hardware Cutting Edge 3D Display Technology Optical Hardware Jukka-Tapani Mäkinen | 3/2017 VTT Technical Research Centre of Finland 3D Display and Rendering Technology will play a pivotal role in powering Augmented Reality, Mixed Reality, VR Devices and Experiences. The purpose of this report is to collect the State of Art (SoA) optical hardware currently used in the feld of 3D display technology. The frst part of the document presents some basic background information on the human visual perception and its effects to the 3D display technologies. The second part lists existing 3D display types and briefy explains the optical hardware used in them. The third part of the document is focused on emerging 3D display optical hardware technologies with main emphasis on Light Field (LF) and Holographic techniques. InterDigital.com About InterDigital lnterDigital, Inc., designs and develops advanced technologies that enable and enhance mobile communications and capabilities. Founded in 1972, our engineers have designed and developed a wide range of innovations used in mobile technology products and networks that include 2G, 3G, 4G and IEEE 802-related products and networks. For more than four decades, lnterDigital has been a pioneer in mobile technology and a key contributor to global wireless standards. Our team of more than 150 engineers-nearly 75 per cent of whom hold advanced degrees, including nearly 50 PhDs-has unparalleled expertise in major mobile connectivity and content delivery technologies. Since 2000, lnterDigital has spent close to $900 million on technology research and development. The company’s activities are organized around the concept of the Living Network: a future where intelligent networks self-optimize to deliver service tailored to the content, context and connectivity of the user, device or need. About Innovation Partners Innovation Partners is InterDigital’s technology sourcing initiative based on partnerships with leading technology frms, innovators and research organizations worldwide. Innovation Partners recognizes the importance of partnerships to capitalize on opportunities to expand the company’s research and development efforts in response to the evolution of the mobile technology industry. For more information, please visit www.innovation-partners.com. About VTT Technical Research Centre of Finland VTT Technical Research Centre of Finland Ltd is the leading research and technology company in the Nordic countries. The centre’s research and innovation services give their partners, both private and public, all over the world a competitive edge. VTT Technical Research Centre of Finland Ltd paves the way for the future by developing new smart technologies, proftable solutions and innovation services. For more information, please visit www.vttresearch.com. InterDigital | Goggleless AR & VR Project 2 Table of Contents 1. Introduction ............................................................................................................................................................................................... 5 1.1 Defnition of a perfect 3D display ............................................................................................................................................................................ 5 1.2 Depth perception and depth ques .......................................................................................................................................................................... 6 1.3 Human visual perception ............................................................................................................................................................................................... 7 1.3.1 Vergence-accommodation confict (VAC) .............................................................................................................................................. 8 1.3.2 Vestibular-visual confict (motion sickness) ........................................................................................................................................... 9 1.4 Classifcation of 3D display solutions ..................................................................................................................................................................... 9 1.4.1 Differences between head mounted and goggleless 3D solutions ............................................................................................ 10 1.4.2 Single user vs. multiple users ........................................................................................................................................................................ 10 1.4.3 3D display types with different form-factors ......................................................................................................................................... 11 2. AR and VR systems with glasses ......................................................................................................................................................... 12 2.1 Head-mounted devices ................................................................................................................................................................................................ 12 2.1.1 Immersive VR systems ...................................................................................................................................................................................... 12 2.1.2 Smart glasses ......................................................................................................................................................................................................... 14 2.1.3 Retinal projection displays .............................................................................................................................................................................. 15 2.1.4 See-through displays ......................................................................................................................................................................................... 15 2.1.5 Advanced AR goggles: HoloLens and Magic Leap ............................................................................................................................ 17 2.1.6 Display based on sparse OLED matrix ..................................................................................................................................................... 18 2.1.7 Displays based on contact lenses ............................................................................................................................................................... 18 2.2 Multiplexed systems with single display ............................................................................................................................................................ 20 2.2.1 Spatially multiplexed systems ..................................................................................................................................................................... 20 2.2.2 Temporally multiplexed systems ................................................................................................................................................................. 21 3. Goggles-free 3D displays ..................................................................................................................................................................... 22 3.1 Parallax-based systems............................................................................................................................................................................................... 22 3.1.1 Parallax barriers ................................................................................................................................................................................................... 23 3.1.2 3D multiview displays based on moving parallax barriers ............................................................................................................. 23 3.1.3 Lenticular sheets ................................................................................................................................................................................................. 24 3.1.4 3D multiview displays made with multiple projectors ..................................................................................................................... 25 3.1.5 Moving lenticular and LC lenses ................................................................................................................................................................ 26 3.1.6 Directional backlight displays ...................................................................................................................................................................... 27 3.2 Volumetric displays ...................................................................................................................................................................................................... 28 3.2.1 Persistence of vision displays...................................................................................................................................................................... 28 3.2.2 Multi-planar systems ......................................................................................................................................................................................
Recommended publications
  • Stereo Capture and Display At
    Creation of a Complete Stereoscopic 3D Workflow for SoFA Allison Hettinger and Ian Krassner 1. Introduction 1.1 3D Trend Stereoscopic 3D motion pictures have recently risen to popularity once again following the success of films such as James Cameron’s Avatar. More and more films are being converted to 3D but few films are being shot in 3D. Current available technology and knowledge of that technology (along with cost) is preventing most films from being shot in 3D. Shooting in 3D is an advantage because two slightly different images are produced that mimic the two images the eyes see in normal vision. Many take the cheaper route of shooting in 2D and converting to 3D. This results in a 3D image, but usually nowhere near the quality as if the film was originally shot in 3D. This is because a computer has to create the second image, which can result in errors. It is also important to note that a 3D image does not necessarily mean a stereo image. 3D can be used to describe images that have an appearance of depth, such as 3D animations. Stereo images refer to images that make use of retinal disparity to create the illusion of objects going out of and into the screen plane. Stereo images are optical illusions that make use of several cues that the brain uses to perceive a scene. Examples of monocular cues are relative size and position, texture gradient, perspective and occlusion. These cues help us determine the relative depth positions of objects in an image. Binocular cues such as retinal disparity and convergence are what give the illusion of depth.
    [Show full text]
  • Robust Watermarking for Anaglyph 3D Images Using DWT Techniques
    International Journal of Engineering and Technical Research (IJETR) ISSN: 2321-0869, Volume-3, Issue-6, June 2015 Robust Watermarking for Anaglyph 3D images Using DWT Techniques Ruchika Patel, Parth Bhatt 3D images section IV deals with proposed method of Abstract— In recent years the trend of 3D movies & watermarking, section V presents proposed method results. projection took a very intensive attention. Anaglyph images are Finally a conclusion will be presented in section VI. easily obtained by super impressive left and right eye images in different color planes of single image for subsequent viewing II. ANAGLYPH 3D IMAGE through colored glasses. Digital watermarking is a popular tool for copyright protection, content authentication, detection of Anaglyph 3D is the name given to the stereoscopic 3D illegal duplication and alteration, and secret communication. In outcome accomplished by means of converting each eye's this paper discrete wavelet transform (DWT) watermarking image using filters of different colors, typically red and cyan. algorithm is used for embedding an image as digital watermark Anaglyph 3D images contain two differently filtered colored on one of the stereo pair images and then combine with the other images, one for each eye. image to form a 3D anaglyph watermarked image. In the reverse process, Deanaglyph is used to separate the two stereoscopic images from which watermark is extracted. Embedding To create an anaglyph image, it is essential to have two watermark either in right image or left image yields more photos taken at the same time the photos should focus the security compared to embedding watermark directly into an same object, moving the camera laterally between 3 and 5 cm anaglyph image.
    [Show full text]
  • Stereoscopic Vision, Stereoscope, Selection of Stereo Pair and Its Orientation
    International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Impact Factor (2012): 3.358 Stereoscopic Vision, Stereoscope, Selection of Stereo Pair and Its Orientation Sunita Devi Research Associate, Haryana Space Application Centre (HARSAC), Department of Science & Technology, Government of Haryana, CCS HAU Campus, Hisar – 125 004, India , Abstract: Stereoscope is to deflect normally converging lines of sight, so that each eye views a different image. For deriving maximum benefit from photographs they are normally studied stereoscopically. Instruments in use today for three dimensional studies of aerial photographs. If instead of looking at the original scene, we observe photos of that scene taken from two different viewpoints, we can under suitable conditions, obtain a three dimensional impression from the two dimensional photos. This impression may be very similar to the impression given by the original scene, but in practice this is rarely so. A pair of photograph taken from two cameras station but covering some common area constitutes and stereoscopic pair which when viewed in a certain manner gives an impression as if a three dimensional model of the common area is being seen. Keywords: Remote Sensing (RS), Aerial Photograph, Pocket or Lens Stereoscope, Mirror Stereoscope. Stereopair, Stere. pair’s orientation 1. Introduction characteristics. Two eyes must see two images, which are only slightly different in angle of view, orientation, colour, A stereoscope is a device for viewing a stereoscopic pair of brightness, shape and size. (Figure: 1) Human eyes, fixed on separate images, depicting left-eye and right-eye views of same object provide two points of observation which are the same scene, as a single three-dimensional image.
    [Show full text]
  • Scalable Multi-View Stereo Camera Array for Real World Real-Time Image Capture and Three-Dimensional Displays
    Scalable Multi-view Stereo Camera Array for Real World Real-Time Image Capture and Three-Dimensional Displays Samuel L. Hill B.S. Imaging and Photographic Technology Rochester Institute of Technology, 2000 M.S. Optical Sciences University of Arizona, 2002 Submitted to the Program in Media Arts and Sciences, School of Architecture and Planning in Partial Fulfillment of the Requirements for the Degree of Master of Science in Media Arts and Sciences at the Massachusetts Institute of Technology June 2004 © 2004 Massachusetts Institute of Technology. All Rights Reserved. Signature of Author:<_- Samuel L. Hill Program irlg edia Arts and Sciences May 2004 Certified by: / Dr. V. Michael Bove Jr. Principal Research Scientist Program in Media Arts and Sciences ZA Thesis Supervisor Accepted by: Andrew Lippman Chairperson Department Committee on Graduate Students MASSACHUSETTS INSTITUTE OF TECHNOLOGY Program in Media Arts and Sciences JUN 172 ROTCH LIBRARIES Scalable Multi-view Stereo Camera Array for Real World Real-Time Image Capture and Three-Dimensional Displays Samuel L. Hill Submitted to the Program in Media Arts and Sciences School of Architecture and Planning on May 7, 2004 in Partial Fulfillment of the Requirements for the Degree of Master of Science in Media Arts and Sciences Abstract The number of three-dimensional displays available is escalating and yet the capturing devices for multiple view content are focused on either single camera precision rigs that are limited to stationary objects or the use of synthetically created animations. In this work we will use the existence of inexpensive digital CMOS cameras to explore a multi- image capture paradigm and the gathering of real world real-time data of active and static scenes.
    [Show full text]
  • Spacespex™ Anaglyph—The Only Way to Bring 3Dtv to the Masses
    SPACESPEX™ ANAGLYPH—THE ONLY WAY TO BRING 3DTV TO THE MASSES By Michael Starks © M. Starks 2009 May be reproduced provided nothing is added, omitted or changed-- including this copyright notice. SpaceSpex™ is the name I applied to my versions of the orange/blue anaglyph technique in 1993. In fact the Gang Li/ColorCode and some models of SpaceSpex use amber or orange/brown rather than yellow, but they are on a continuum. Like all the bicolor anaglyph methods it is compatible with all video equipment and displays and I think it’s the best of the methods using inexpensive paper glasses with colored lenses. Until someone comes up with a way to put hundreds of millions of new 3D TV’s in homes which can use polarized glasses or LCD shutter glasses, anaglyph is going to be the only way for mass distribution of full color high quality 3D over cable, satellite, the web or on DVD. However the solution I have proposed for Set Top Boxes, PC’s, TV sets and DVD players for the last 20 years is to have user controls, so those with display hardware that permits polarized or shutter glasses or even autostereo viewing or who want 2D can make that choice from the single 3D video file. This is the method of the TDVision codec, Next3D, and of Peter Wimmer’s famous StereoScopic Player (a new version due end of 2009), (all of which should appear in hardware soon) and probably the best stereoplayer of all in Masuji Suto’s StereoMovie Maker, and is being incorporated in most well known software DVD and media players.
    [Show full text]
  • Virtual Reality and Visual Perception by Jared Bendis
    Virtual Reality and Visual Perception by Jared Bendis Introduction Goldstein (2002) defines perception as a “conscious sensory experience” (p. 6) and as scientists investigate how the human perceptual system works they also find themselves investigating how the human perceptual system doesn’t work and how that system can be fooled, exploited, and even circumvented. The pioneers in the ability to control the human perceptual system have been in the field of Virtual Realty. In Simulated and Virtual Realities – Elements of Perception, Carr (1995) defines Virtual Reality as “…the stimulation of human perceptual experience to create an impression of something which is not really there” (p. 5). Heilig (2001) refers to this form of “realism” as “experience” and in his 1955 article about “The Cinema of the Future” where he addresses the need to look carefully at perception and breaks down the precedence of perceptual attention as: Sight 70% Hearing 20% Smell 5% Touch 4% Taste 1% (p. 247) Not surprisingly sight is considered the most important of the senses as Leonardo da Vinci observed: “They eye deludes itself less than any of the other senses, because it sees by none other than the straight lines which compose a pyramid, the base of which is the object, and the lines conduct the object to the eye… But the ear is strongly subject to delusions about the location and distance of its objects because the images [of sound] do not reach it in straight lines, like those of the eye, but by tortuous and reflexive lines. … The sense of smells is even less able to locate the source of an odour.
    [Show full text]
  • Catalog-Web-ONYX-And-STAX.Pdf
    1 ABOUT NEXT LED Table of Contents Our Focus Next LED is a leading American manufacturer of 2 About Next LED commercial, billboard, sports, and indoor LED displays. We pour the quality and work ethic of 4 LED 101 the heartland into every sign we engineer and assemble from our headquarters in Wichita, 6 Pitch / Dealer Tools Kansas. As the LED signage industry matures and businesses and organizations around the world realize the benefits of dynamic marketing 8 Commercial Signs through digital signs, it is our sole focus to provide the most reliable products and related services 10 Franchise / Dynamic Data that go beyond the physical components of the display. In a word, every Next LED product comes 12 Billboards loaded with VALUE. 14 Sports Highest Quality Parts While all LED signs aren’t created equal, they are, 16 Operating Software for the most part, created using the same types of components, often supplied by the exact same OEM companies. Next LED uses the highest quality 18 Custom Content LED diodes, lamps, ribbon cables, power supplies, data, and aluminum cabinetry to create a rugged, Questions? Call us at: reliable product for both on and off premise use. 2 888.263.6530 5 Year Parts, Labor, & Brightness Warranty Experience the Best Warranty in the Industry 5 YEARS It’s one thing to say you’ve got a great product; it’s another to stand behind it. Next LED’s industry leading warranty guarantees that you won’t have TM NO PARTS LABOR BRIGHTNESS anything to worry about for up to five years.
    [Show full text]
  • The Artistic & Scientific World in 8K Super Hi-Vision
    17th International Display Workshops 2010 (IDW 2010) Fukuoka, Japan 1-3 December 2010 Volume 1 of 3 ISBN: 978-1-61782-701-3 ISSN: 1883-2490 Printed from e-media with permission by: Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571 Some format issues inherent in the e-media version may also appear in this print version. Copyright© (2010) by the Society for Information Display All rights reserved. Printed by Curran Associates, Inc. (2012) For permission requests, please contact the Society for Information Display at the address below. Society for Information Display 1475 S. Bascom Ave. Suite 114 Campbell, California 95008-4006 Phone: (408) 879-3901 Fax: (408) 879-3833 or (408) 516-8306 [email protected] Additional copies of this publication are available from: Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571 USA Phone: 845-758-0400 Fax: 845-758-2634 Email: [email protected] Web: www.proceedings.com TABLE OF CONTENTS VOLUME 1 KEYNOTE ADDRESS The Artistic & Scientific World in 8K Super Hi-Vision.................................................................................................................................1 Yoichiro Kawaguchi INVITED ADDRESS TAOS-TFTs : History and Perspective............................................................................................................................................................5 Hideo Hosono LCT1: PHOTO ALIGNMENT TECHNOLOGY The UV2A Technology for Large Size LCD-TV Panels .................................................................................................................................9
    [Show full text]
  • Holographic Optics for Thin and Lightweight Virtual Reality
    Holographic Optics for Thin and Lightweight Virtual Reality ANDREW MAIMONE, Facebook Reality Labs JUNREN WANG, Facebook Reality Labs Fig. 1. Left: Photo of full color holographic display in benchtop form factor. Center: Prototype VR display in sunglasses-like form factor with display thickness of 8.9 mm. Driving electronics and light sources are external. Right: Photo of content displayed on prototype in center image. Car scenes by komba/Shutterstock. We present a class of display designs combining holographic optics, direc- small text near the limit of human visual acuity. This use case also tional backlighting, laser illumination, and polarization-based optical folding brings VR out of the home and in to work and public spaces where to achieve thin, lightweight, and high performance near-eye displays for socially acceptable sunglasses and eyeglasses form factors prevail. virtual reality. Several design alternatives are proposed, compared, and ex- VR has made good progress in the past few years, and entirely perimentally validated as prototypes. Using only thin, flat films as optical self-contained head-worn systems are now commercially available. components, we demonstrate VR displays with thicknesses of less than 9 However, current headsets still have box-like form factors and pro- mm, fields of view of over 90◦ horizontally, and form factors approach- ing sunglasses. In a benchtop form factor, we also demonstrate a full color vide only a fraction of the resolution of the human eye. Emerging display using wavelength-multiplexed holographic lenses that uses laser optical design techniques, such as polarization-based optical folding, illumination to provide a large gamut and highly saturated color.
    [Show full text]
  • Stereo 3D (Depth) from 2D
    Stereo 3D (Depth) from 2D • 3D information is lost by Viewing Stereo projection. Stereograms • How do we recover 3D Autostereograms information? Depth from Stereo Image 3D Model Depth Cues Shadows: Occlusions: Shading: Size Constancy Perspective Illusions (perspective): Height in Plane: Texture Gradient: 3D from 2D + Accommodation • Accommodation (Focus) • Change in lens curvature • Eye Vengeance according to object depth. • Effective depth: 20-300 cm. • Motion. • Stereo Accommodation Eye Vergence • Change in lens curvature • Change in lens curvature according to object depth. according to object depth. • Effective depth: 20-300 cm. • Effective depth: up to 6 m. Motion: Motion: Stereo Vision • In a system with 2 cameras (eyes), 2 different images are captured. • The "disparity" between the images is larger for closer objects: 1 disp ∝ depth • "Fusion" of these 2 images gives disparities depth information. Left Right Right Eye Left Eye Right Eye Left Eye Image Separation for Stereo • Special Glasses • Red/green images with red/green glasses. • Orthogonal Polarization • Alternating Shuttering Optic System Optic System Parlor Stereo Viewer 1850 Viewmaster 1939 ViduTech 2011 Active Shutter System Red/Green Filters Anaglyphs Anaglyphs How they Work Orthogonal Polarization Orthogonal Polarization Linear Polarizers: 2 polarized projectors are used (or alternating polarization) Orthogonal Polarization Orthogonal Polarization Circular Polarizers: Circular Polarizers: Left handed Right handed Orthogonal Polarization TV and Computer Screens Polarized Glasses Circular Polarizer Glasses: Same as polarizers – but reverse light direction Left handed Right handed Glasses Free TV and Glasses Free TV and Computer Screens Computer Screens Parallax Stereogram Parallax Stereogram Parallax Barrier display Uses Vertical Slits Blocks part of screen from each eye Glasses Free TV and Glasses Free TV and Computer Screens Computer Screens Lenticular lens method Lenticular lens method Uses lens arrays to send different Image to each eye.
    [Show full text]
  • A Review and Selective Analysis of 3D Display Technologies for Anatomical Education
    University of Central Florida STARS Electronic Theses and Dissertations, 2004-2019 2018 A Review and Selective Analysis of 3D Display Technologies for Anatomical Education Matthew Hackett University of Central Florida Part of the Anatomy Commons Find similar works at: https://stars.library.ucf.edu/etd University of Central Florida Libraries http://library.ucf.edu This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more information, please contact [email protected]. STARS Citation Hackett, Matthew, "A Review and Selective Analysis of 3D Display Technologies for Anatomical Education" (2018). Electronic Theses and Dissertations, 2004-2019. 6408. https://stars.library.ucf.edu/etd/6408 A REVIEW AND SELECTIVE ANALYSIS OF 3D DISPLAY TECHNOLOGIES FOR ANATOMICAL EDUCATION by: MATTHEW G. HACKETT BSE University of Central Florida 2007, MSE University of Florida 2009, MS University of Central Florida 2012 A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Modeling and Simulation program in the College of Engineering and Computer Science at the University of Central Florida Orlando, Florida Summer Term 2018 Major Professor: Michael Proctor ©2018 Matthew Hackett ii ABSTRACT The study of anatomy is complex and difficult for students in both graduate and undergraduate education. Researchers have attempted to improve anatomical education with the inclusion of three-dimensional visualization, with the prevailing finding that 3D is beneficial to students. However, there is limited research on the relative efficacy of different 3D modalities, including monoscopic, stereoscopic, and autostereoscopic displays.
    [Show full text]
  • New Display Technologies (Crts), Displays Have Become Ubiquitous and Have Taken Many Different Forms
    1.0 Introduction Mini Briefing Electronic displays are one of the fastest-growing worldwide technologies. Once reserved for televisions and computers, and composed of large cathode-ray tubes New Display Technologies (CRTs), displays have become ubiquitous and have taken many different forms. Flat-panel displays are overtaking the CRT and are being used in larger quantities for Steve Statham portable computers, a variety of handheld devices, desktop computers and televisions, as well as tiny microdisplays, which are being used in projection televisions, for near-eye applications, where a virtual screen is presented to the viewer. The world of displays is Advances in new display technologies are rapidly changing to meet the evolving needs of the beginning to open up many new possibilities to electronic-device user. consumers and manufacturers. Unfortunately there is always a large time lag between the discoveries made, and the time when practical applications 2.0 Applications finally appear. Even once they have been incorporated into everyday items, they are The electronic-display device industry caters mainly for the sometimes expensive. automation and electronics appliance industries. Characteristic of OEM products, the growth of the display However, major developments are now taking industry is directly linked to the demand trends in end-user place in a variety of display materials with the markets. Display manufacturers, mainly concentrated in potential to enable handheld computers and mobile Japan and East Asian countries, account for over 80% of phones to be more functional and user-friendly, total display production. which could greatly aid in the convergence of functionality and convenience that these products The end-user market (which includes televisions, are intended to deliver.
    [Show full text]