For Precise Evaluation of Wheel-Rail Contact Mechanics and Dynamics [Doctoral Thesis]", in Mechanical Engineering
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Assessing Steam Locomotive Dynamics and Running Safety by Computer Simulation
TRANSPORT PROBLEMS 2015 PROBLEMY TRANSPORTU Volume 10 Special Edition steam locomotive; balancing; reciprocating; hammer blow; rolling stock and track interaction Dāvis BUŠS Institute of Transportation, Riga Technical University Indriķa iela 8a, Rīga, LV-1004, Latvia Corresponding author. E-mail: [email protected] ASSESSING STEAM LOCOMOTIVE DYNAMICS AND RUNNING SAFETY BY COMPUTER SIMULATION Summary. Steam locomotives are preserved on heritage railways and also occasionally used on mainline heritage trips, but since they are only partially balanced reciprocating piston engines, damage is made to the railway track by dynamic impact, also known as hammer blow. While causing a faster deterioration to the track on heritage railways, the steam locomotive may also cause deterioration to busy mainline tracks or tracks used by high speed trains. This raises the question whether heritage operations on mainline can be done safely and without influencing the operation of the railways. If the details of the dynamic interaction of the steam locomotive's components are examined with computerised calculations they show differences with the previous theories as the smaller components cannot be disregarded in some vibration modes. A particular narrow gauge steam locomotive Gr-319 was analyzed and it was found, that the locomotive exhibits large dynamic forces on the track, much larger than those given by design data, and the safety of the ride is impaired. Large unbalanced vibrations were found, affecting not only the fatigue resistance of the locomotive, but also influencing the crew and passengers in the train consist. Developed model and simulations were used to check several possible parameter variations of the locomotive, but the problems were found to be in the original design such that no serious improvements can be done in the space available for the running gear and therefore the running speed of the locomotive should be limited to reduce its impact upon the track. -
Calculated Estimation of Railway Wheels Equivalent Conicity Influence on Critical Speed of Railway Passenger Car
MATEC Web of Conferences 157, 03006 (2018) https://doi.org/10.1051/matecconf/201815703006 MMS 2017 Calculated estimation of railway wheels equivalent conicity influence on critical speed of railway passenger car Juraj Gerlici1,*, Rostyslav Domin2, Ganna Cherniak2, Tomáš Lack1 1University of Žilina, Faculty of Mechanical Engineering, Department of Transport and Handling Machines, 010 26 Žilina, Slovak Republic 2Volodymyr Dahl East Ukrainian National University, Department of Rail Transport, 93400 Sewerodonetsk, Ukraine Abstract. The article presents the results of determining the equivalent conicity characterizing the geometric interaction of wheels and rails on 1520 mm track. The cases of interactions of rails and wheelsets, wheels of which have different profiles, are considered. The computer model of the motion speed of the passenger car is developed. According to the results of computer simulation, critical speeds for the bogie moving through the tracks of indented gauge are received. Based on the results of the simulation analysis, the significant dependence of the value of the equivalent conicity on the critical speed is confirmed. The necessity of considering the limit values of equivalent conicity in tests of high-speed rolling stock is emphasized. Keywords: railway wheels, equivalent conicity, critical speed, passenger vehicle 1 Introduction The increase of speed of passenger trains up to 160-200 km/h brings new technological level on the Ukrainian railways. Cars of high-speed trains must fully comply with international requirements, both in the level of comfort, and in terms of safety. In this regard, the task of ensuring the stability of motion of the high-speed rolling stock must be resolved as a matter of priority. -
1976 Technical Documentation Locomotive Truck Hunting M.Pdf
TECHNICAL DOCUMENTATION LOCOMOTIVE TRUCK HUNTING MODEL V. K. Garg OHO G. C. Martin P. W. Hartmann J. G. Tolomei mnnnn irnational Government-Industry 04 - Locomotives ch Program on Track Train Dynamics R-219 TE C H N IC A L DOCUMENTATION rnn nnn LOCOMOTIVE TRUCK HUNTING MODEL V. K. Garg G. C. Martin P. W. Hartmann a a J. G. Tolomei dD 11 TT|[inr i3^1 i i H§ic§ An International Government-Industry Research Program on Track Train Dynamics Chairman L. A. Peterson J. L. Cann Director Vice President Office of Rail Safety Research Steering Operation and Maintenance Federal Railroad Administration Canadian National Railways G. E. Reed Vice Chairman Director Committee W. J. Harris, Jr. Railroad Sales Vice President AMCAR Division Research and Test Department ACF Industries Association of American Railroads D. V. Sartore or the E. F. Lind Chief Engineer Design Project Director-Phase I Burlington Northern, Inc. Track Train Dynamics Southern Pacific Transportation Co. P. S. Settle Tack Tain President M. D. Armstrong Railway Maintenance Corporation Chairman Transportation Development Agency W. W. Simpson Dynamics Canadian Ministry of Transport Vice President Engineering W. S. Autrey Southern Railway System Chief Engineer Atchison, Topeka & Santa Fe Railway Co. W. S. Smith Vice President and M. W. Beilis Director of Transportation Manager General Mills, Inc. Locomotive Engineering General Electric Company J. B. Stauffer Director M. Ephraim Transportation Test Center Chief Engineer Federal Railroad Administration Electro Motive Division General Motors Corporation R. D. Spence (Chairman) J. G. German President Vice President ConRail Engineering Missouri Pacific Co. L. S. Crane (Chairman) President and Chief W. -
RED RAVEN, the LINKED-BOGIE PROTOTYPE Ara Mekhtarian, Joseph Horvath, C.T. Lin Department of Mechanical Engineering, California
RED RAVEN, THE LINKED-BOGIE PROTOTYPE Ara Mekhtarian, Joseph Horvath, C.T. Lin Department of Mechanical Engineering, California State University, Northridge California, USA Abstract RedRAVEN is a pioneered autonomous robot utilizing the innovative Linked-Bogie dynamic frame, which minimizes platform tilt and movement, and improves traction while maintaining all the vehicle’s wheels in contact with uneven surfaces at all times. Its unique platform design makes the robot extremely maneuverable since it allows the vehicle’s horizontal center of gravity to line up with the center of its differential-drive axle. Where conventional differential-drive vehicles use one or more caster wheels either in front or in the rear of the driving axle to balance the vehicle’s platform, the Linked-Bogie design utilizes caster wheels both in the front and in the rear of the driving axle. Without using any springs or shock absorbers, the dynamic frame allows for compensation of uneven surfaces by allowing each wheel to move independently. The compact and lightweight ground vehicle also features a driving-wheel neutralizing mechanism, a rigid aluminum frame, and a translucent polycarbonate weatherproofing shell. INTRODUCTION 1. Horizontal Center of Gravity Red RAVEN, the grand award (HCG) winner of the 2011 Intelligent Ground Vehicle (IGV) Competition, is mechanically Unless a differential drive vehicle designed to navigate through an autonomous can balance the weight of its platform on the course fast and efficiently. The Cal State two driving wheels similar to a Segway, an Northridge IGV Team designed the vehicle additional and floating or caster wheel is with the innovative Linked-Bogie dynamic required to support the platform weight. -
Trains Galore
Neil Thomas Forrester Hugo Marsh Shuttleworth (Director) (Director) (Director) Trains Galore 15th & 16th December at 10:00 Special Auction Services Plenty Close Off Hambridge Road NEWBURY RG14 5RL Telephone: 01635 580595 Email: [email protected] Bob Leggett Graham Bilbe Dominic Foster www.specialauctionservices.com Toys, Trains & Trains Toys & Trains Figures Due to the nature of the items in this auction, buyers must satisfy themselves concerning their authenticity prior to bidding and returns will not be accepted, subject to our Terms and Conditions. Additional images are available on request. If you are happy with our service, please write a Google review Buyers Premium with SAS & SAS LIVE: 20% plus Value Added Tax making a total of 24% of the Hammer Price the-saleroom.com Premium: 25% plus Value Added Tax making a total of 30% of the Hammer Price 7. Graham Farish and Peco N Gauge 13. Fleischmann N Gauge Prussian Train N Gauge Goods Wagons and Coaches, three cased Sets, two boxed sets 7881 comprising 7377 T16 Graham Farish coaches in Southern Railway steam locomotive with five small coaches and Livery 0633/0623 (2) and a Graham Farish SR 7883 comprising G4 steam locomotive with brake van, together with Peco goods wagons tender and five freight wagons, both of the private owner wagons and SR all cased (24), KPEV, G-E, boxes G (2) Day 1 Tuesday 15th December at 10:00 G-E, Cases F (28) £60-80 Day 1 Tuesday 15th December at 10:00 £60-80 14. Fleischmann N Gauge Prussian Train Sets, two boxed sets 7882 comprising T9 8177 steam locomotive and five coaches and 7884 comprising G8 5353 steam locomotive with tender and six goods wagons, G-E, Boxes F (2) £60-80 1. -
Field and Analytical Investigation of a 3D Dynamic Train-Track Interaction Model at Critical Speeds
The Pennsylvania State University The Graduate School Department of Civil and Environmental Engineering FIELD AND ANALYTICAL INVESTIGATION OF A 3D DYNAMIC TRAIN-TRACK INTERACTION MODEL AT CRITICAL SPEEDS A Dissertation in Civil Engineering by Yin Gao 2016 Yin Gao Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy August 2016 ii The dissertation of Yin Gao was reviewed and approved* by the following: Hai Huang Associate Professor of Rail Transportation Engineering Dissertation Adviser Co-chair of Committee Shelley Marie Stoffels Professor of Civil Engineering Co-chair of Committee Tong Qiu Associate Professor of Civil and Environmental Engineering Jamal Rostami Associate Professor of Energy and Mineral Engineering Patrick Fox Professor of Civil and Environmental Engineering Department Head of Civil and Environmental Engineering *Signatures are on file in the Graduate School iii ABSTRACT Railroad transportation, especially high-speed passenger rail, has been developing at sensational speed, creating the needs to evaluate the track safety and predict the potential hazards for railroad operation. As train speed increases, the responses of the train and track substructure present larger dynamic behavior, which raises problems in passenger comfort, operational safety and track structures. With the boom of modeling and computing techniques, numerical simulation becomes a more feasible, safe and effective tool to identify the problems in railroad engineering. In this dissertation, a self-developed three-dimensional train-track interaction model is formulated, validated and implemented to predict the potential risks and explore the mechanisms of rail track problems. The developed 3D dynamic track-subgrade interaction model includes a train model, 2D discrete support track model and 3D computation-efficient finite element (FE) soil subgrade model. -
The Niagara Story Thomas R
The Making Of A Legend- The Niagara Story Thomas R. Get:bracht Part I diameter from 25" on the J1, to 22.5", and they in Introduction creased the stroke from 28" to 29" to take maximum In 1945, the Equipment Engineering Department of advantage of the expansive properties of higher pressure the New York Central Railroad developed and Alco exe steam. This reduction of 16 percent in cylinder swept cuted a locomotive design which had a marked impact volume was offset by a 22 percent increase in boiler pres on the steam locomotives to follow, and on the tradi sure, to 275 psi. Main engine starting tractive effort was tional measurements by which motive power would be about the same, at 43,440 lbs. for the J3, but at the same evaluated. This locomotive was so significant that its cutoffs the J3 would be more economical in the use of performance is still discussed by the men who design steam than the Jl. Weight per driving axle increased, and run locomotives. The locomotive was the New York due in part to the use of one piece engine beds and roller Central class S1 4-8-4 Niagara. bearing axles on the J3's. (Later J1's also were provided There have been a number of articles pertaining to by Alco with one piece engine beds.) The weight per this locomotive in the technical and railfan press. The driving axle of the J3 Hudsons was 65,300 lbs. compared purpose of this series is to supplement these various ar with the 60,670 lbs. -
The Effect of Crosswinds on Ride Comfort in High Speed Trains Running on Curves Dyna, Vol
Dyna ISSN: 0012-7353 [email protected] Universidad Nacional de Colombia Colombia Aizpun-Navarro, Miguel; Sesma-Gotor, Ignacio The effect of crosswinds on ride comfort in high speed trains running on curves Dyna, vol. 82, núm. 194, diciembre, 2015, pp. 46-51 Universidad Nacional de Colombia Medellín, Colombia Available in: http://www.redalyc.org/articulo.oa?id=49643211006 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative The effect of crosswinds on ride comfort in high speed trains running on curves Miguel Aizpun-Navarro a & Ignacio Sesma-Gotor b a Escuela de Ingeniería Mecánica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile. [email protected] b Departamento de Mecánica Aplicada, CEIT, Donostia San Sebastián, España. [email protected] Received: July 25th, 2014. Received in revised form: March 15th, 2015. Accepted: November 8th, 2015 Abstract The effect of crosswinds on the risk of railway vehicles overturning has been a major issue ever since manufacturers began to produce lighter vehicles that run at high speeds. However, ride comfort can also be influenced by crosswinds, and this effect has not been thoroughly analyzed. This article describes the effect of crosswinds on ride comfort in high speed trains when running on curves and for several wind velocities under a Chinese hat wind scenario, which is the scenario recommended by the standard. Simulation results show that the combination of crosswinds and the added stiffness of the lateral bumpstop on the secondary suspension can become a significant source of instability, leading to flange-to-flange contact and greatly jeopardizing ride comfort. -
ELECTRIC DOUBLE-DECKER MULTIPLE UNIT KISS Aeroexpress, Russia
ELECTRIC DOUBLE-DECKER MULTIPLE UNIT KISS Aeroexpress, Russia In May 2013, Russian rail company Aeroexpress ordered 11 KISS electric double-decker multiple units from Stadler. These included 9 six-car and 2 four-car trainsets. The trains, named «Eurasia» by Aeroexpress, are used on the three lines between Moscow city centre and the airports. With the purchase of the new trains, Aeroexpress meets the fast-growing demands for public transport capacity and offers its passengers new standards in comfort. The four-car versions have 396 seats, while the six-car models have 700, of which 84 are in business class. They fulfil the Russian standards and, at the same time, set new standards for commuter traffic in Russia. Air conditioning in the passenger compartments and drivers‘ cabs is adapted to the tough climatic conditions in Russia. The design of the interior is bright and passenger-friendly. A modern passenger information system provides travellers with relevant information. www.stadlerrail.com Stadler Rail Group CJSC Stadler Minsk Ernst-Stadler-Strasse 1 Zavodskaja Street 47 CH-9565 Bussnang 222750 Fanipol Phone +41 71 626 21 20 Dzerhzhinsk District [email protected] Region of Minsk Phone +375 17 16 22 410 [email protected] Technical features Vehicle data Technology – Lightweight car bodies in integral aluminium design in line with Customer Aeroexpress the latest standards for crashworthiness (EN 15227) and car Lines serviced Moscow airport link body strength (EN 12663) – Vehicle body made of extruded aluminium sections -
Hunting Stability Analysis of Railway Systems Term Project in Vehicle Dynamics Course@IIT Hyderabad
Hunting stability analysis of railway systems Term Project in Vehicle Dynamics Course@IIT Hyderabad Borrowed from – ‘Hunting By stability analysis of a Chetan S me15mtech11022 railway vehicle system using Anvesh Kumar me15mtech11020 a novel non-linear creep model’ by Yung Chang Saitheja V me15mtech11032 Cheng Course Instructor: Dr. Ashok Kumar Pandey What is hunting oscillation? • Wheels of ‘traction railway system’ have a cone angle. • At high speed , adhesion force is in-sufficient in maintaining stability and the wheels start to oscillate. • This oscillation about the mean position where it is ‘trying’ to find the equilibrium position is called hunting. • We pretty much know the obvious implications of these oscillation. Approach to hunting oscillation solution • Various models a. Linear Figure 1 b. Non-linear • A modified non-linear concept is propose by the author. • Why linear to non-linear? Figure 2 Cad Model of Locomotive Cad Model of suspension system Car Body Model It has three parts : 1. Wheel 2. Bogie/Truck 3. Car Figure 3 Governing equations of wheel-sets Figure 4 Governing equations of wheel-sets Equations for non-linear creep forces Governing equations of wheel-sets Equations for non-linear creep forces(Continued) Assumptions • α푖푗 = 1 (to convert non-linear to linear) • ϕ푤푖푗 = (λ푦푖푗)/a (roll angle of front and rear wheels) • ϕ푠푒 = 0 (super-elevation angle of curved track) • W=푊푒푥푡 (external load) Proposed linear model Proposed linear model(continued) Stability Analysis using Lyapunov • How to use it in this model? Note: -
The Making of a Legend the Niagara Story Thomas R
The Making of a Legend The Niagara Story Thomas R. Gerbracht (Continued from 3rd Quarter 1988 issue) Part VII "Central Headlight;• used sprays of water in the cylin Steam Locomotive Horsepower - ders of the engine on stationary tests to closely approxi Description and Measurement mate the volume of steam delivery to the exhaust nozzle There are more variables in the measurement of steam which would occur in full capacity, over-the-road testing. locomotive horsepower than in diesel or electric horse In this way the smokebox design and its ability to draft power. In the steam era, the railroads who supported the the boiler could be improved. Up to this time, the smoke most comprehensive test programs to measure steam lo box proportions, the size of the table plate and the ex comotive performance, including horsepower, were the haust nozzle, their shapes and their relation to one Pennsylvania Railroad and the New York Central.73 another were largely guesswork. The first locomotives to Other railroads such as C&O, N&W, and Santa Fe ran benefit from these tests were the NYC Hudsons. There is dynamometer car tests, but the PRR and NYC were in no indication that any other railroad utilized this knowl the forefront of steam locomotive development and their edge. For example, reference is made by Ralph Johnson efforts exceeded those of Alco, Baldwin and Lima. that the front ends of the first two PRR T-l's had to be All of the railroads which tested steam power used modified after they were placed in service to enable them to steam properly.77 different techniques, and it is therefore difficult to com pare maximum drawbar ratings of different steam loco C) Flue Size and Effect on Performance motives. -
7Aans J. a Zebt by S 216A Alsoa-1 Aorney Y Nov
Nov. 25, 1952 F. EBL. 2,619,043 STEAM LOCOMOTIVE Filed May 12, 1949 5 Sheets-Sheet i INVENTOR. /7aans J. A zebt BY s 216a alsoa-1 Aorney y Nov. 25, 1952 F. LEEBL 2,619,043 STEAM LOCOMOTIVE Filed May 12, 1949 5 Sheets-Sheet 2 i INVENTOR. Maavy23 M. AzeA4 BY 2. 2-as-4--a- 17422,727e/ Nov. 25, 1952 F. LEEB 2,619,043 STEAM LOCOMOTIVE Filed May 12, 1949 5 Sheets-Sheet 3 Asa & s ed/adrataeae13. $$$$.Yn, ZN ni Yn N Y e TN NSN 2YZZZZZZZZZZZZ 2. l NYNYNYaYY 2 - all-St. 7 SsSN |:N Y- sef aizé , is s N S Z N n S 2. bStaASE Žg2S2 S33. N 2.?ess N2 %N.NC K 4 NVENTOR, 77 any MZre? BY . affo/ae/ Nov. 25, 1952 F. LEBL 2,619,043 STEAM LOCOMOTIVE Filed May 12, 1949 5 Sheets-Sheet 4 2222222222ZZ INVENTOR. Arany /4 tead Azaraey Nov. 25, 1952 F. L. EBL. 2,619,043 STEAM LOCOMOTIVE Filed May 12, 1949 5 Sheets-Sheet 5 N lN disk H14 ZZZZ ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZEENNNNNNNNN as Y. Arang M AzealINVENTOR. 2s. 2.-- 1aorney Patented Nov. 25, 1952 2,619,043 UNITED STATES PATENT OFFICE 2,619,043 STEAM LOCOMOTIVE Franz J. Liebl, Bad Weilbach, near Wiesbaden, Germany Application May 12, 1949, Serial No. 92,887 5 Claims. (Cl. 105-33) 1. 2 This invention relates to new and useful in and 8c. The steam turbine 3 (Fig. 1a) is pref provements in steam locomotives. erably Centrally mounted on the lead truck 3a. Steam locomotives are principally of two kinds.