Railway Northern Great Steam Locomotives
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
MLS Masterclass - 2002
MLS MasterClass - 2002 Build a 2-6-6T / 0-6-6T Mason Bogie An Adventure in 1:20.3 By David Fletcher Chapter 3 - Mr. Mason, Bogies & Boilers Background Welcome back to the Mason show...and onward we march. This month we're looking at Mason's 1870 Technology and building the boiler for our Mason Bogie models. This is almost a turning point chapter in that this month your model will transform from a bunch of white styrene parts to a part-loco loaded with personal style and the style of Mr. Mason himself. We're talking 'Character' and from this chapter on, character is unavoidable. Your model will begin talking to you. The Model will also begin to be so damn stylish; it will provide the added incentive to finish. Long into the dark of the night you'll hear the cries coming out of the box where your unfinished model is stored: "finish me, finish me finish me...." Copyright 2002 - myLargescale.com/Model Railroads Online, LLC Background - Time to learn a bit more about Mr. Mason, his innovations, patents and design principles. This chapter is brought to us by George Sebastian-Coleman. George was a former Technical Editor to Model Railroader and Garden Railways, and employee of Grandt Line. For the last 30 years, George has made the delightful Mason Bogie a personal pursuit. Construction - This month we build the boiler, we produce the coveted Russia Iron finish, build the domes, headlight and bracket, stack and running boards. Again, like chapter 2, the work of this chapter can be done without having the BBT 2-6-6/0-6-6T drive. -
Transportation on the Minneapolis Riverfront
RAPIDS, REINS, RAILS: TRANSPORTATION ON THE MINNEAPOLIS RIVERFRONT Mississippi River near Stone Arch Bridge, July 1, 1925 Minnesota Historical Society Collections Prepared by Prepared for The Saint Anthony Falls Marjorie Pearson, Ph.D. Heritage Board Principal Investigator Minnesota Historical Society Penny A. Petersen 704 South Second Street Researcher Minneapolis, Minnesota 55401 Hess, Roise and Company 100 North First Street Minneapolis, Minnesota 55401 May 2009 612-338-1987 Table of Contents PROJECT BACKGROUND AND METHODOLOGY ................................................................................. 1 RAPID, REINS, RAILS: A SUMMARY OF RIVERFRONT TRANSPORTATION ......................................... 3 THE RAPIDS: WATER TRANSPORTATION BY SAINT ANTHONY FALLS .............................................. 8 THE REINS: ANIMAL-POWERED TRANSPORTATION BY SAINT ANTHONY FALLS ............................ 25 THE RAILS: RAILROADS BY SAINT ANTHONY FALLS ..................................................................... 42 The Early Period of Railroads—1850 to 1880 ......................................................................... 42 The First Railroad: the Saint Paul and Pacific ...................................................................... 44 Minnesota Central, later the Chicago, Milwaukee and Saint Paul Railroad (CM and StP), also called The Milwaukee Road .......................................................................................... 55 Minneapolis and Saint Louis Railway ................................................................................. -
Baldwin Locomotive Works Location: Philadelphia (Eddystone, PA, in 1912) Operating Dates: 1831-1956 Principals: Matthias W
BUILDERS OF COLORADO OFFICE OF ARCHEOLOGY AND HISTORIC PRESERVATION BIOGRAPHICAL SKETCH COLORADO HISTORICAL SOCIETY Firm: Baldwin Locomotive Works Location: Philadelphia (Eddystone, PA, in 1912) Operating Dates: 1831-1956 Principals: Matthias W. Baldwin Information Jeweler and silversmith Matthias Baldwin founded the Baldwin Locomotive Works in 1831. The original manufacturing plant was on Broad Street in Philadelphia where the company did business for 71 years until moving in 1912 to Eddystone, PA. Baldwin made its reputation building steam locomotives for the Pennsylvania Railroad, the Baltimore & Ohio Railroad, the Atchison, Topeka & Santa Fe, and many of the other North American railroads, as well as for overseas railroads in England, France, India, Haiti and Egypt. Baldwin locomotives found their way onto the tracks of most Colorado railroads, both standard and narrow gauge. Baldwin built a huge number of 4-4-0 American type locomotives, but was perhaps best known for the 2-8-2 Mikado (D&RGW No. 491) and 2-8-0 Consolidation types (D&RGW No. 346 and DSP&P No. 191).1 It was also well known for the unique cab-forward 4-8-8-2 articulated locomotives built for the Southern Pacific Railroad and the massive 2-10-2 engines for the Santa Fe Railroad. One of Baldwin's last new and improved locomotive designs was the 4-8-4 (Northern) locomotive (Santa Fe No. 2911). In 1939, Baldwin offered its first standard line of diesel locomotives, all designed for rail yard service. Two years later, America's entry into World War II destroyed Baldwin's diesel development program when the War Production Board dictated that ALCO (American Locomotive Company) and Baldwin produce only diesel-electric yard switching engines. -
Assessing Steam Locomotive Dynamics and Running Safety by Computer Simulation
TRANSPORT PROBLEMS 2015 PROBLEMY TRANSPORTU Volume 10 Special Edition steam locomotive; balancing; reciprocating; hammer blow; rolling stock and track interaction Dāvis BUŠS Institute of Transportation, Riga Technical University Indriķa iela 8a, Rīga, LV-1004, Latvia Corresponding author. E-mail: [email protected] ASSESSING STEAM LOCOMOTIVE DYNAMICS AND RUNNING SAFETY BY COMPUTER SIMULATION Summary. Steam locomotives are preserved on heritage railways and also occasionally used on mainline heritage trips, but since they are only partially balanced reciprocating piston engines, damage is made to the railway track by dynamic impact, also known as hammer blow. While causing a faster deterioration to the track on heritage railways, the steam locomotive may also cause deterioration to busy mainline tracks or tracks used by high speed trains. This raises the question whether heritage operations on mainline can be done safely and without influencing the operation of the railways. If the details of the dynamic interaction of the steam locomotive's components are examined with computerised calculations they show differences with the previous theories as the smaller components cannot be disregarded in some vibration modes. A particular narrow gauge steam locomotive Gr-319 was analyzed and it was found, that the locomotive exhibits large dynamic forces on the track, much larger than those given by design data, and the safety of the ride is impaired. Large unbalanced vibrations were found, affecting not only the fatigue resistance of the locomotive, but also influencing the crew and passengers in the train consist. Developed model and simulations were used to check several possible parameter variations of the locomotive, but the problems were found to be in the original design such that no serious improvements can be done in the space available for the running gear and therefore the running speed of the locomotive should be limited to reduce its impact upon the track. -
PACIFIC’ Coupling Rods Fitted to Tornado at Darlington Locomotive Works
60163 Tornado 60163 Tornado 60163 Tornado THE A1 STEAM LOCOMOTIVE TRUST Registered Office, All Enquiries: Darlington Locomotive Works, Hopetown Lane, Darlington DL3 6RQ Hotline Answerphone: 01325 4 60163 E-mail: [email protected] Internet address: www.a1steam.com PRESS INFORMATION – PRESS INFORMATION - PRESS INFORMATION PR04/04 Monday 4 October 2004 MAJOR STEP FORWARD AS NEW STEAM LOCOMOTIVE BECOMES A ‘PACIFIC’ Coupling rods fitted to Tornado at Darlington Locomotive Works The A1 Steam Locomotive Trust, the registered charity that is building the first new mainline steam locomotive in Britain for over 40 years, today announced that No. 60163 Tornado is now a Pacific following the fitting of all four coupling rods to its six 6ft8in driving wheels (the name Pacific refers to the 4-6-2 wheel arrangement under the Whyte Notation of steam locomotive wheel arrangements) which now rotate freely together for the first time. Each of the four 7ft 6in rods weighs around two hundredweight and after forging, extensive machining and heat treatment, the four cost around £22,000 to manufacture. These rods are vital components within the £150,000 valve gear and motion assemblies, which are now the focus of work on Tornado at the Trust’s Darlington Locomotive Works. The Trust has also started work on the fitting of the rest of the outside motion. The bushes for the connecting rods are currently being machined at Ian Howitt Ltd, Wakefield and one side of the locomotive has now been fitted with a mock-up of parts of its valve gear. This is to enable accurate measurements to be taken to set the length of the eccentric rod as the traditional method of heating the rod to stretch/shrink it used when the original Peppercorn A1s were built in 1948/9 is no longer recommended as it can affect the rod’s metallurgical properties. -
RED RAVEN, the LINKED-BOGIE PROTOTYPE Ara Mekhtarian, Joseph Horvath, C.T. Lin Department of Mechanical Engineering, California
RED RAVEN, THE LINKED-BOGIE PROTOTYPE Ara Mekhtarian, Joseph Horvath, C.T. Lin Department of Mechanical Engineering, California State University, Northridge California, USA Abstract RedRAVEN is a pioneered autonomous robot utilizing the innovative Linked-Bogie dynamic frame, which minimizes platform tilt and movement, and improves traction while maintaining all the vehicle’s wheels in contact with uneven surfaces at all times. Its unique platform design makes the robot extremely maneuverable since it allows the vehicle’s horizontal center of gravity to line up with the center of its differential-drive axle. Where conventional differential-drive vehicles use one or more caster wheels either in front or in the rear of the driving axle to balance the vehicle’s platform, the Linked-Bogie design utilizes caster wheels both in the front and in the rear of the driving axle. Without using any springs or shock absorbers, the dynamic frame allows for compensation of uneven surfaces by allowing each wheel to move independently. The compact and lightweight ground vehicle also features a driving-wheel neutralizing mechanism, a rigid aluminum frame, and a translucent polycarbonate weatherproofing shell. INTRODUCTION 1. Horizontal Center of Gravity Red RAVEN, the grand award (HCG) winner of the 2011 Intelligent Ground Vehicle (IGV) Competition, is mechanically Unless a differential drive vehicle designed to navigate through an autonomous can balance the weight of its platform on the course fast and efficiently. The Cal State two driving wheels similar to a Segway, an Northridge IGV Team designed the vehicle additional and floating or caster wheel is with the innovative Linked-Bogie dynamic required to support the platform weight. -
T H E G E N E R a T
Newsletter of THE PALMERSTON NORTH MODEL ENGINEERING CLUB INC Managers of the “MARRINER RESERVE RAILWAY” Please address all correspondence to :- 22b Haydon St, Palmerston North. PRESIDENT SECRETARY TREASURER EDITOR Richard Lockett Stuart Anderson Murray Bold Doug Chambers (06) 323-0948 (06) 357-7794 (06) 355-7000 (06) 354-9379 July 2010 [email protected] [email protected] [email protected] [email protected] No 358 PNMEC Home Page www.pnmec.org.nz Email:- [email protected] TRACK RUNNING T This is held on the FIRST and THIRD Sunday of each month, from 1 pm to 4 pm Summer and 1 pm to 3 pm during the Winter. All club members are welcome to attend and help out with loco coaling, watering and passenger marshalling - none of the tasks being at all H Visiting club members are always welcome at the track, at the monthly meeting, or if just visiting and wishing to make contact with members, please phone one of the above office bearers. E Sender:- PNMEC Place 22b Haydon St, stamp Palmerston North here G E N E This Months Featured Model R A T O R - 2 - explained that unfortunately the chassis is now REPORT on the too heavy to bring in for the members to see. Bruce Geange had the tracks and chassis for June Meeting. his Caterpillar RD8 Another good turn out of members on a cold and wet wintery evening. Richard Lockett gave a very good talk on the setting up of milling machines, the vices to hold the work and setting up the jobs. -
The Lord Nelson Case Gary M
Document généré le 28 sept. 2021 14:10 Ontario History Justice Delayed is Justice Denied The Lord Nelson Case Gary M. Gibson Volume 108, numéro 2, fall 2016 Résumé de l'article En 1811, William et James Crooks de Niagara ont construit la goélette Lord URI : https://id.erudit.org/iderudit/1050593ar Nelson. Un an plus tard, ce navire a été saisi par la marine des États-Unis pour DOI : https://doi.org/10.7202/1050593ar avoir enfreint la loi américaine, ce qui a déclenché un cas unique dans l’histoire des relations entre les États-Unis, la Grande Bretagne et le Canada. Aller au sommaire du numéro Bien que la confiscation du navire a été déclarée illégale par une Cour américaine, le règlement était retardé par les actions (ou bien l’inaction) d’autres Cours américaines, du Congrès, des gouvernements canadiens et Éditeur(s) provinciaux, du gouvernement britannique, ainsi que par des guerres, des rébellions, des crimes, des disputes internationales et des tribunaux. Ce n’est The Ontario Historical Society qu’en 1930 que 25 descendants des deux frères ont finalement reçu une compensation monétaire. ISSN 0030-2953 (imprimé) 2371-4654 (numérique) Découvrir la revue Citer cet article Gibson, G. M. (2016). Justice Delayed is Justice Denied: The Lord Nelson Case. Ontario History, 108(2), 156–188. https://doi.org/10.7202/1050593ar Copyright © The Ontario Historical Society, 2016 Ce document est protégé par la loi sur le droit d’auteur. L’utilisation des services d’Érudit (y compris la reproduction) est assujettie à sa politique d’utilisation que vous pouvez consulter en ligne. -
Trains Galore
Neil Thomas Forrester Hugo Marsh Shuttleworth (Director) (Director) (Director) Trains Galore 15th & 16th December at 10:00 Special Auction Services Plenty Close Off Hambridge Road NEWBURY RG14 5RL Telephone: 01635 580595 Email: [email protected] Bob Leggett Graham Bilbe Dominic Foster www.specialauctionservices.com Toys, Trains & Trains Toys & Trains Figures Due to the nature of the items in this auction, buyers must satisfy themselves concerning their authenticity prior to bidding and returns will not be accepted, subject to our Terms and Conditions. Additional images are available on request. If you are happy with our service, please write a Google review Buyers Premium with SAS & SAS LIVE: 20% plus Value Added Tax making a total of 24% of the Hammer Price the-saleroom.com Premium: 25% plus Value Added Tax making a total of 30% of the Hammer Price 7. Graham Farish and Peco N Gauge 13. Fleischmann N Gauge Prussian Train N Gauge Goods Wagons and Coaches, three cased Sets, two boxed sets 7881 comprising 7377 T16 Graham Farish coaches in Southern Railway steam locomotive with five small coaches and Livery 0633/0623 (2) and a Graham Farish SR 7883 comprising G4 steam locomotive with brake van, together with Peco goods wagons tender and five freight wagons, both of the private owner wagons and SR all cased (24), KPEV, G-E, boxes G (2) Day 1 Tuesday 15th December at 10:00 G-E, Cases F (28) £60-80 Day 1 Tuesday 15th December at 10:00 £60-80 14. Fleischmann N Gauge Prussian Train Sets, two boxed sets 7882 comprising T9 8177 steam locomotive and five coaches and 7884 comprising G8 5353 steam locomotive with tender and six goods wagons, G-E, Boxes F (2) £60-80 1. -
Union Pacific 844 4-8-4 FEF “Northern”
True Sound Project for Zimo Sounds designed by Heinz Daeppen US Steam Page 1 Version 160328 Union Pacific 844 4-8-4 FEF “Northern” The Prototype The category FEF locomotives of the Union Pacific Railroad (UP), also known as class 800, are steam locomotives with the wheel arrangement 2'D2 '(Northern). In the total of 45 locomotives, there are three series of delivery or subclasses FEF 1 FEF 2 and FEF-3, where the FEF-2 and -3 differ in driving axels and cylinder diameter to the FEF-1. The last locomotive of this series, no. 844, was the last steam locomotive built for UP. It was never taken out of service and is kept operational by the UP today. In the late 1930s, the pulling loads on train operations were so large that the 2'D1 locomotives Class 7000 reached its limits. After the failure of such a locomotive, which happened to be pulling a train containing the official car of the US President, ALCO was commissioned to build a stronger engine, which could pull 20 coaches with 90 mph (145 km/h) on the flat. The first 20 locomotives were delivered 1937. They got the numbers 800-819 and the name FEF, which stood for "four-eight-four" (the wheel arrangement 4-8-4 in the Whyte notation). They had a driving wheels of 77 inches (1956 mm). The first driving axel was displaced laterally, so that despite a solid wheelbase of 6.7 m the locomotive could still handle the same radius curves . Despite the size of the locomotives only two cylinders were used, as was almost always common in the United States. -
Variable Valve Timing Intelligent System.Pdf
VARIABLE VALVE TIMING INTELLIGENT SYSTEM deepaksubudhi456@ gmail.com WHAT IS VVT ? • Variable Valve Timing (VVT) ,is a generic term for an automobile piston engine technology • VVT allows the lift or duration or timing (some or all) of the intake or exhaust valves (or both) to be changed while the engine is in operation • Two stroke engines use a power valve system to get similar results to VVT. HISTORY • The earliest variable valve timing systems came into existence in the nineteenth century on steam engines. Stephenson valve gear, as used on early steam locomotives supported variable cutoff, that is, changes to the time at which the admission of steam to the cylinders is cut off during the power stroke. Early approaches to variable cutoff coupled variations in admission cutoff with variations in exhaust cutoff. Admission and exhaust cutoff were decoupled with the development of the Corliss valve. These were widely used in constant speed variable load stationary engines, with admission cutoff, and therefore torque, mechanically controlled by a centrifugal governor. As poppet valves came into use, simplified valve gear using a camshaft came into use. With such engines, variable cutoff could be achieved with variable profile cams that were shifted along the camshaft by the governor. • The earliest Variable valve timing systems on internal combustion engines were on the Lycoming R-7755 hyper engine, which had cam profiles that were selectable by the pilot. This allowed the pilot to choose full take off and pursuit power or economical cruising speed, depending on what was needed. WHAT IS VVT-i • The VVT-i system is designed to control the intake camshaft with in a range of 50°(of Crankshaft Angle ) to provide valve timing i.e. -
Class 2F Dock Tank Manual.Pdf
www.MeshTools.co.uk 1 Contents Background………………………………………………………………………………………………... 2 Technical Data……………………………………………………………………………………………. 3 Controls…………………………………………………………………………………………………….. 4 Liveries………………………………………………………………………………………………………. 11 Scenarios…………………………………………………………………………………………………… 14 Reskinning/Sound Policy……………………………………………………………………………… 14 Head codes………………………………………………………………………………………………… 15 Credits……………………………………………………………………………………………………….. 17 Background In 1928 Sir Henry Fowler introduced these small 2F 0-6-0T dock tanks for use in dockyards and depots with very tight radius curves. The design was prepared at Horwich but featured a number of Derby features such as cab, bunker and boiler fittings as well as a Derby boiler which made the engine look distinctly like the Fowler 3F 0-6-0 “Jinty”. The engines were built at Derby and the first five of the class were sent to Scotland while the remaining 5 were dispatched to Fleetwood and Birkenhead. The class was able to negotiate curves of two and a half chains by use of a very short wheelbase and a Cartazzi self-centring axlebox on the rear axle. Due to this arrangement inside Stephenson valve gear was somewhat impractical so outside Walschaerts valve gear was provided with short travel slide valves above the cylinders. Withdrawals of the class began in 1959 with the final member 47165 being retired in 1964. www.MeshTools.co.uk 2 Technical data – LMS 2F 0-6-0T Dock tank: Introduced: 1928 Power Classification: 2F Configuration: 0-6-0T Total Built: 10 Length: 27' 6" Width: 8' 8" Height: