Lens Tutorial Is from C
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Breaking Down the “Cosine Fourth Power Law”
Breaking Down The “Cosine Fourth Power Law” By Ronian Siew, inopticalsolutions.com Why are the corners of the field of view in the image captured by a camera lens usually darker than the center? For one thing, camera lenses by design often introduce “vignetting” into the image, which is the deliberate clipping of rays at the corners of the field of view in order to cut away excessive lens aberrations. But, it is also known that corner areas in an image can get dark even without vignetting, due in part to the so-called “cosine fourth power law.” 1 According to this “law,” when a lens projects the image of a uniform source onto a screen, in the absence of vignetting, the illumination flux density (i.e., the optical power per unit area) across the screen from the center to the edge varies according to the fourth power of the cosine of the angle between the optic axis and the oblique ray striking the screen. Actually, optical designers know this “law” does not apply generally to all lens conditions.2 – 10 Fundamental principles of optical radiative flux transfer in lens systems allow one to tune the illumination distribution across the image by varying lens design characteristics. In this article, we take a tour into the fascinating physics governing the illumination of images in lens systems. Relative Illumination In Lens Systems In lens design, one characterizes the illumination distribution across the screen where the image resides in terms of a quantity known as the lens’ relative illumination — the ratio of the irradiance (i.e., the power per unit area) at any off-axis position of the image to the irradiance at the center of the image. -
Appendix A: Symbols and Prefixes
Appendix A: Symbols and Prefixes (Appendix A last revised November 2020) This appendix of the Author's Kit provides recommendations on prefixes, unit symbols and abbreviations, and factors for conversion into units of the International System. Prefixes Recommended prefixes indicating decimal multiples or submultiples of units and their symbols are as follows: Multiple Prefix Abbreviation 1024 yotta Y 1021 zetta Z 1018 exa E 1015 peta P 1012 tera T 109 giga G 106 mega M 103 kilo k 102 hecto h 10 deka da 10-1 deci d 10-2 centi c 10-3 milli m 10-6 micro μ 10-9 nano n 10-12 pico p 10-15 femto f 10-18 atto a 10-21 zepto z 10-24 yocto y Avoid using compound prefixes, such as micromicro for pico and kilomega for giga. The abbreviation of a prefix is considered to be combined with the abbreviation/symbol to which it is directly attached, forming with it a new unit symbol, which can be raised to a positive or negative power and which can be combined with other unit abbreviations/symbols to form abbreviations/symbols for compound units. For example: 1 cm3 = (10-2 m)3 = 10-6 m3 1 μs-1 = (10-6 s)-1 = 106 s-1 1 mm2/s = (10-3 m)2/s = 10-6 m2/s Abbreviations and Symbols Whenever possible, avoid using abbreviations and symbols in paragraph text; however, when it is deemed necessary to use such, define all but the most common at first use. The following is a recommended list of abbreviations/symbols for some important units. -
Introduction to CODE V: Optics
Introduction to CODE V Training: Day 1 “Optics 101” Digital Camera Design Study User Interface and Customization 3280 East Foothill Boulevard Pasadena, California 91107 USA (626) 795-9101 Fax (626) 795-0184 e-mail: [email protected] World Wide Web: http://www.opticalres.com Copyright © 2009 Optical Research Associates Section 1 Optics 101 (on a Budget) Introduction to CODE V Optics 101 • 1-1 Copyright © 2009 Optical Research Associates Goals and “Not Goals” •Goals: – Brief overview of basic imaging concepts – Introduce some lingo of lens designers – Provide resources for quick reference or further study •Not Goals: – Derivation of equations – Explain all there is to know about optical design – Explain how CODE V works Introduction to CODE V Training, “Optics 101,” Slide 1-3 Sign Conventions • Distances: positive to right t >0 t < 0 • Curvatures: positive if center of curvature lies to right of vertex VC C V c = 1/r > 0 c = 1/r < 0 • Angles: positive measured counterclockwise θ > 0 θ < 0 • Heights: positive above the axis Introduction to CODE V Training, “Optics 101,” Slide 1-4 Introduction to CODE V Optics 101 • 1-2 Copyright © 2009 Optical Research Associates Light from Physics 102 • Light travels in straight lines (homogeneous media) • Snell’s Law: n sin θ = n’ sin θ’ • Paraxial approximation: –Small angles:sin θ~ tan θ ~ θ; and cos θ ~ 1 – Optical surfaces represented by tangent plane at vertex • Ignore sag in computing ray height • Thickness is always center thickness – Power of a spherical refracting surface: 1/f = φ = (n’-n)*c -
Section 10 Vignetting Vignetting the Stop Determines Determines the Stop the Size of the Bundle of Rays That Propagates On-Axis an the System for Through Object
10-1 I and Instrumentation Design Optical OPTI-502 © Copyright 2019 John E. Greivenkamp E. John 2019 © Copyright Section 10 Vignetting 10-2 I and Instrumentation Design Optical OPTI-502 Vignetting Greivenkamp E. John 2019 © Copyright On-Axis The stop determines the size of Ray Aperture the bundle of rays that propagates Bundle through the system for an on-axis object. As the object height increases, z one of the other apertures in the system (such as a lens clear aperture) may limit part or all of Stop the bundle of rays. This is known as vignetting. Vignetted Off-Axis Ray Rays Bundle z Stop Aperture 10-3 I and Instrumentation Design Optical OPTI-502 Ray Bundle – On-Axis Greivenkamp E. John 2018 © Copyright The ray bundle for an on-axis object is a rotationally-symmetric spindle made up of sections of right circular cones. Each cone section is defined by the pupil and the object or image point in that optical space. The individual cone sections match up at the surfaces and elements. Stop Pupil y y y z y = 0 At any z, the cross section of the bundle is circular, and the radius of the bundle is the marginal ray value. The ray bundle is centered on the optical axis. 10-4 I and Instrumentation Design Optical OPTI-502 Ray Bundle – Off Axis Greivenkamp E. John 2019 © Copyright For an off-axis object point, the ray bundle skews, and is comprised of sections of skew circular cones which are still defined by the pupil and object or image point in that optical space. -
Aperture Efficiency and Wide Field-Of-View Optical Systems Mark R
Aperture Efficiency and Wide Field-of-View Optical Systems Mark R. Ackermann, Sandia National Laboratories Rex R. Kiziah, USAF Academy John T. McGraw and Peter C. Zimmer, J.T. McGraw & Associates Abstract Wide field-of-view optical systems are currently finding significant use for applications ranging from exoplanet search to space situational awareness. Systems ranging from small camera lenses to the 8.4-meter Large Synoptic Survey Telescope are designed to image large areas of the sky with increased search rate and scientific utility. An interesting issue with wide-field systems is the known compromises in aperture efficiency. They either use only a fraction of the available aperture or have optical elements with diameters larger than the optical aperture of the system. In either case, the complete aperture of the largest optical component is not fully utilized for any given field point within an image. System costs are driven by optical diameter (not aperture), focal length, optical complexity, and field-of-view. It is important to understand the optical design trade space and how cost, performance, and physical characteristics are influenced by various observing requirements. This paper examines the aperture efficiency of refracting and reflecting systems with one, two and three mirrors. Copyright © 2018 Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS) – www.amostech.com Introduction Optical systems exhibit an apparent falloff of image intensity from the center to edge of the image field as seen in Figure 1. This phenomenon, known as vignetting, results when the entrance pupil is viewed from an off-axis point in either object or image space. -
Paper Code and Title: H01RS Residential Space Designing Module Code and Name: H01RS19 Light – Measurement, Related Terms and Units Name of the Content Writer: Dr
Paper Code and Title: H01RS Residential Space Designing Module Code and Name: H01RS19 Light – measurement, related terms and units Name of the Content Writer: Dr. S. Visalakshi Rajeswari LIGHT – MEASUREMENT, RELATED TERMS AND UNITS Introduction Light is that part of the electromagnetic spectrum which will stimulate a response in the receptors of the eye. Its frequency usually expressed as wavelength determines the colour of light and its amplitude determines its intensity. Accommodation from the individual’s part enables focusing of vision. Hence the need to study lighting in interiors. Especially when activities are carried out indoors it is necessary to provide some sort of artificial illumination. In such circumstances, the designer should be aware of what (lighting) is provided and the satisfaction the ‘user’ derives out of it. 1. The radiant energy spectrum Vs visible spectrum Light is visually evaluated radiant energy (electromagnetic), which moves at a constant speed in vacuum. The entire radiant energy spectrum consists of waves of radiant energy that vary in wavelength of a wide range; an array of all rays - cosmic, gamma, UV, infra red, radar, x rays, the visible spectrum, FM, TV- and radio broadcast waves and power transmission. The portion of the radiant energy which is seen as light, identified as the spectrum visible to the human eye ranges from about 380 (400) to 780 (700) mµ (referred to as nanometers or millimicrons). A nanometer (nm) is a unit of wavelength equal to 10 -9 m. Light can thus be thought of as the aspect of radiant energy that is visible. Colour perception is attributed to the varying wavelengths noticeable within the spectrum of visible light. -
A Practical Guide to Panoramic Multispectral Imaging
A PRACTICAL GUIDE TO PANORAMIC MULTISPECTRAL IMAGING By Antonino Cosentino 66 PANORAMIC MULTISPECTRAL IMAGING Panoramic Multispectral Imaging is a fast and mobile methodology to perform high resolution imaging (up to about 25 pixel/mm) with budget equipment and it is targeted to institutions or private professionals that cannot invest in costly dedicated equipment and/or need a mobile and lightweight setup. This method is based on panoramic photography that uses a panoramic head to precisely rotate a camera and shoot a sequence of images around the entrance pupil of the lens, eliminating parallax error. The proposed system is made of consumer level panoramic photography tools and can accommodate any imaging device, such as a modified digital camera, an InGaAs camera for infrared reflectography and a thermal camera for examination of historical architecture. Introduction as thermal cameras for diagnostics of historical architecture. This article focuses on paintings, This paper describes a fast and mobile methodo‐ but the method remains valid for the documenta‐ logy to perform high resolution multispectral tion of any 2D object such as prints and drawings. imaging with budget equipment. This method Panoramic photography consists of taking a can be appreciated by institutions or private series of photo of a scene with a precise rotating professionals that cannot invest in more costly head and then using special software to align dedicated equipment and/or need a mobile and seamlessly stitch those images into one (lightweight) and fast setup. There are already panorama. excellent medium and large format infrared (IR) modified digital cameras on the market, as well as scanners for high resolution Infrared Reflec‐ Multispectral Imaging with a Digital Camera tography, but both are expensive. -
Radiometric and Photometric Measurements with TAOS Photosensors Contributed by Todd Bishop March 12, 2007 Valid
TAOS Inc. is now ams AG The technical content of this TAOS application note is still valid. Contact information: Headquarters: ams AG Tobelbaderstrasse 30 8141 Unterpremstaetten, Austria Tel: +43 (0) 3136 500 0 e-Mail: [email protected] Please visit our website at www.ams.com NUMBER 21 INTELLIGENT OPTO SENSOR DESIGNER’S NOTEBOOK Radiometric and Photometric Measurements with TAOS PhotoSensors contributed by Todd Bishop March 12, 2007 valid ABSTRACT Light Sensing applications use two measurement systems; Radiometric and Photometric. Radiometric measurements deal with light as a power level, while Photometric measurements deal with light as it is interpreted by the human eye. Both systems of measurement have units that are parallel to each other, but are useful for different applications. This paper will discuss the differencesstill and how they can be measured. AG RADIOMETRIC QUANTITIES Radiometry is the measurement of electromagnetic energy in the range of wavelengths between ~10nm and ~1mm. These regions are commonly called the ultraviolet, the visible and the infrared. Radiometry deals with light (radiant energy) in terms of optical power. Key quantities from a light detection point of view are radiant energy, radiant flux and irradiance. SI Radiometryams Units Quantity Symbol SI unit Abbr. Notes Radiant energy Q joule contentJ energy radiant energy per Radiant flux Φ watt W unit time watt per power incident on a Irradiance E square meter W·m−2 surface Energy is an SI derived unit measured in joules (J). The recommended symbol for energy is Q. Power (radiant flux) is another SI derived unit. It is the derivative of energy with respect to time, dQ/dt, and the unit is the watt (W). -
Radiometry and Photometry
Radiometry and Photometry Wei-Chih Wang Department of Power Mechanical Engineering National TsingHua University W. Wang Materials Covered • Radiometry - Radiant Flux - Radiant Intensity - Irradiance - Radiance • Photometry - luminous Flux - luminous Intensity - Illuminance - luminance Conversion from radiometric and photometric W. Wang Radiometry Radiometry is the detection and measurement of light waves in the optical portion of the electromagnetic spectrum which is further divided into ultraviolet, visible, and infrared light. Example of a typical radiometer 3 W. Wang Photometry All light measurement is considered radiometry with photometry being a special subset of radiometry weighted for a typical human eye response. Example of a typical photometer 4 W. Wang Human Eyes Figure shows a schematic illustration of the human eye (Encyclopedia Britannica, 1994). The inside of the eyeball is clad by the retina, which is the light-sensitive part of the eye. The illustration also shows the fovea, a cone-rich central region of the retina which affords the high acuteness of central vision. Figure also shows the cell structure of the retina including the light-sensitive rod cells and cone cells. Also shown are the ganglion cells and nerve fibers that transmit the visual information to the brain. Rod cells are more abundant and more light sensitive than cone cells. Rods are 5 sensitive over the entire visible spectrum. W. Wang There are three types of cone cells, namely cone cells sensitive in the red, green, and blue spectral range. The approximate spectral sensitivity functions of the rods and three types or cones are shown in the figure above 6 W. Wang Eye sensitivity function The conversion between radiometric and photometric units is provided by the luminous efficiency function or eye sensitivity function, V(λ). -
The International System of Units (SI) - Conversion Factors For
NIST Special Publication 1038 The International System of Units (SI) – Conversion Factors for General Use Kenneth Butcher Linda Crown Elizabeth J. Gentry Weights and Measures Division Technology Services NIST Special Publication 1038 The International System of Units (SI) - Conversion Factors for General Use Editors: Kenneth S. Butcher Linda D. Crown Elizabeth J. Gentry Weights and Measures Division Carol Hockert, Chief Weights and Measures Division Technology Services National Institute of Standards and Technology May 2006 U.S. Department of Commerce Carlo M. Gutierrez, Secretary Technology Administration Robert Cresanti, Under Secretary of Commerce for Technology National Institute of Standards and Technology William Jeffrey, Director Certain commercial entities, equipment, or materials may be identified in this document in order to describe an experimental procedure or concept adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the entities, materials, or equipment are necessarily the best available for the purpose. National Institute of Standards and Technology Special Publications 1038 Natl. Inst. Stand. Technol. Spec. Pub. 1038, 24 pages (May 2006) Available through NIST Weights and Measures Division STOP 2600 Gaithersburg, MD 20899-2600 Phone: (301) 975-4004 — Fax: (301) 926-0647 Internet: www.nist.gov/owm or www.nist.gov/metric TABLE OF CONTENTS FOREWORD.................................................................................................................................................................v -
The F-Word in Optics
The F-word in Optics F-number, was first found for fixing photographic exposure. But F/number is a far more flexible phenomenon for finding facts about optics. Douglas Goodman finds fertile field for fixes for frequent confusion for F/#. The F-word of optics is the F-number,* also known as F/number, F/#, etc. The F- number is not a natural physical quantity, it is not defined and used consistently, and it is often used in ways that are both wrong and confusing. Moreover, there is no need to use the F-number, since what it purports to describe can be specified rigorously and unambiguously with direction cosines. The F-number is usually defined as follows: focal length F-number= [1] entrance pupil diameter A further identification is usually made with ray angle. Referring to Figure 1, a ray from an object at infinity that is parallel to the axis in object space intersects the front principal plane at height Y and presumably leaves the rear principal plane at the same height. If f is the rear focal length, then the angle of the ray in image space θ′' is given by y tan θ'= [2] f In this equation, as in the others here, a sign convention for angles heights and magnifications is not rigorously enforced. Combining these equations gives: 1 F−= number [3] 2tanθ ' For an object not at infinity, by analogy, the F-number is often taken to be the half of the inverse of the tangent of the marginal ray angle. However, Eq. 2 is wrong. -
“No-Parallax” Point in Panorama Photography Version 1.0, February 6, 2006 Rik Littlefield ([email protected])
Theory of the “No-Parallax” Point in Panorama Photography Version 1.0, February 6, 2006 Rik Littlefield ([email protected]) Abstract In using an ordinary camera to make panorama photographs, there is a special “no- parallax point” around which the camera must be rotated in order to keep foreground and background points lined up perfectly in overlapping frames. Arguments about the location of this point are both frequent and confusing. The purpose of this article is to eliminate the confusion. It explains in simple terms that the aperture determines the perspective of an image by selecting the light rays that form it. Therefore the center of perspective and the no-parallax point are located at the apparent position of the aperture, called the “entrance pupil”. Contrary to intuition, this point can be moved by modifying just the aperture, while leaving all refracting lens elements and the sensor in the same place. Likewise, the angle of view must be measured around the no-parallax point and thus the angle of view is affected by the aperture location, not just by the lens and sensor as is commonly believed. Physical vignetting may cause the entrance pupil to move, depending on angle, and should be avoided for perfect stitches. In general, the no- parallax point is different from the “nodal point” of optical designers, despite frequent use (misuse) of that term among panorama photographers. Introduction In using an ordinary camera to make panorama photographs, there is a special “no- parallax point”1 around which the camera must be rotated in order to keep foreground and background points lined up perfectly in overlapping frames.