6-1 Optical Instrumentation-Stop and Window.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

6-1 Optical Instrumentation-Stop and Window.Pdf 6.6. OpticalOptical instrumentationinstrumentation Last chapter ¾ Chromatic Aberration ¾ Third-order (Seidel) Optical Aberrations Spherical aberrations, Coma, Astigmatism, Curvature of Field, Distortion This chapter ¾ Aperture stop, Entrance pupil, Exit pupil ¾ Field stop, Entrance window, Exit window Aperture effects on image ¾ Depth of field, Depth of focus ¾ prism and dispersion ¾ Camera ¾ Magnifier and eyepiece Optical instruments ¾ Microscope ¾ Telescope StopsStops inin OpticalOptical SystemsSystems Larger lens improves the brightness of the image Image of S Two lenses of the same formed at focal length (f), but the same diameter (D) differs place by both lenses SS’ Bundle of rays from S, imaged at S’ More light collected is larger for from S by larger larger lens lens StopsStops inin OpticalOptical SystemsSystems • Brightness of the image is determined primarily by the size of the bundle of rays collected by the system (from each object point) • Stops can be used to reduce aberrations StopsStops inin OpticalOptical SystemsSystems How much of the object we see is determined by: Field of View Q Q’ (not seen) Rays from Q do not pass through system We can only see object points closer to the axis of the system Thus, the Field of view is limited by the system ApertureAperture StopStop • A stop is an opening (despite its name) in a series of lenses, mirrors, diaphragms, etc. • The stop itself is the boundary of the lens or diaphragm • Aperture stop: that element of the optical system that limits the cone of light from any particular object point on the axis of the system ApertureAperture StopStop (AS)(AS) E O Diaphragm E Assume that the Diaphragm is the AS of the system Entrance Pupil (E P) Entrance Pupil (EnnP) The entrance pupil is defined to be the image of the aperture stop in all the lenses preceding it (i.e. to the left of AS - if light travels left to right) E’ How big does the aperture stop look E to someone at O L1 E’E’ = EnP O F1’ 1 EnP – defines the cone of rays accepted by the system E E’ Exit Pupil (E P) Exit Pupil (ExxP) The exit pupil is the image of the aperture stop in the lenses coming after it (i.e. to the right of the AS) E’’ E L1 E”E” = ExP F ’ O 2 E E’’ LocationLocation ofof ApertureAperture StopStop (AS)(AS) • In a complex system, the AS can be found by considering each element in the system • The element which gives the entrance pupil subtending the smallest angle at the object point O is the AS Example, Telescope O eyepiece Objective = AS = EnP Example:Example: FindFind thethe ASAS ofof thethe EyepieceEyepiece f1’ = 6 cm f2’ = 2 cm E Ф2 = 2 cm Ф = 1 cm Ф1 = 1 cm AS O E 9 cm 1 cm 3 cm Diaphragm Example:Example: EyepieceEyepiece Find aperture stop for s = 9 cm in front of L1. To do so, treat each element in turn – find EnP for each (Lens 1, diaphragm, Lens 2) (a) EnP of Lens 1 – no elements to the left tan µ1 = 1/9 defines cone of rays accepted 1 cm µ1 O 9 cm Example:Example: EyepieceEyepiece Find aperture stop for s = 9 cm in front of Diaphragm. (b) EnP of Diaphragm – lens 1 to the left E E’ Look at the system f1’ = 6 cm from behind the slide O 1 1 1 + = 1 s' 6 s'= −1.2cm s' E M = − =1.2 E’ s 9 cm 1 cm ФD’ = 1.2 cm 1.2 cm D Example:Example: EyepieceEyepiece Calculate maximum angle of cone of rays accepted by entrance pupil of diaphragm E’ 0.6 cm O µ2 9 + 1.2 cm tan µ = 0.6/10.2 ≈ 1/17 2 E’ Example:Example: EyepieceEyepiece (c) EnP of Lens 2 – 4 cm to the left of lens 1 Look at the system from behind the slide 1 1 1 + = O 4 s' 6 s'= −12cm s' 12 M = − = = 3 s 4 Ф2’ = 6 cm 9 cm 4 cm Ф2 = 2 cm Example:Example: EyepieceEyepiece Calculate maximum angle of cone of rays accepted by entrance pupil of lens 2. 3 cm O µ3 9 + 12 cm tan µ3 = 3/21 = 1/7 Example:Example: EyepieceEyepiece Component Entrance pupil Acceptance cone angle (degrees) Lens 1 tan µ1 = 1/9 6.3 Diaphragm tan µ2 = 1/17 3.4 Lens 2 tan µ3 = 1/7 8.1 Thus µ2 is the smallest angle The diaphragm is the element that limits the cone of rays from O Therefore, Diaphragm = Aperture Stop in this eyepiece Example:Example: EyepieceEyepiece Entrance pupil is the image of the diaphragm in L1. E’ -1 µ2 = tan (1/17) O E’ EnP 9 cm ФD’ = 1.2 cm 1.2 cm D Example:Example: EyepieceEyepiece Exit pupil is the image of the aperture stop (diaphragm) in L2. f2’ = 2 cm E 1 1 1 + = O 3 s' 2 s'= 6cm s' 6 M = − = − = −2 s 3 E Ф2’ = 2 cm 9 cm 1 cm 3 cm ФD = 1 cm Example:Example: EyepieceEyepiece E’ f2’ = 2 cm E Ф ’ = 2 cm ФExP’ = 2 cm O EE PP E x 3 cm 6 cm E’ ФD = 1 cm ChiefChief RayRay • for each bundle of rays, the light ray which passes through the center of the aperture stop is the chief ray • after refraction, the chief ray must also pass through the center of the exit and entrance pupils since they are conjugate to the aperture stop • EnPand ExP are also conjugate planes of the complete system MarginalMarginal RayRay • Those rays (for a given object point) that pass through the edge of the entrance and exit pupils (and aperture stop). Chief Ray from T RayRay tracingtracing withwith pupilspupils andand stopsstops •Proceed toward centre of EnP •Refracted at L1 to pass though centre of AS L •Refracted at L2 to pass (exit) L2 through centre of E P L through centre of ExP L1 Q’’ T P’ P O’ O Q T’ Q’ P’’ Marginal Rays from T,O AS EnP •Must proceed towards edges of EnP ExP •Refracted at L1 to pass through edge of AS •Refracted at L2 to pass (exit) through ExP. ExitExit PupilPupil Defines the bundle of rays at the image Q’’ T O’ α’ O T’ P’’ FieldField StopStop That component of the optical system that limits the field of view FS A θ d A = field of view at distance d θ = angular field of view FieldField StopStop The aperture that controls the field of view by limiting the solid angle formed by chief rays As seen from the centre of the entrance pupil (EnP), the field stop (or its image) subtends the smallest angle. In previous example, the lens L1 is the field stop Entrance Window (E W) Entrance Window (EnnW) The image of the field stop in all elements preceding it Defines the lateral dimension of the object that will be viewed Example: Camera Where is the entrance window? AS FS Exit Window (E W) Exit Window (ExxW) The image of the field stop in all elements following it Defines the lateral dimension of the image that will be viewed Example: Camera Where is the exit window? AS FS Entrance window and Angular field of view Angular field of view in object plane angle subtended by entrance window (EnW) at centre of entrance pupil (EnP) Exit window and Angular field of view Angular field of view in image plane angle subtended by exit window (ExW) at centre of exit pupil (ExP) Field Stop That component whose entrance window (EnW) subtends the smallest angle at the centre of the entrance pupil (EnP) FieldField ofof aa positivepositive thinthin lenslens FS=EnW ld Im ie ag Eye pupil P Q’ t f e f Eye pupil ec ield bje O α α’ F Q P’ Object point must be within cone Entrance pupil (to left of lens) to be seen AS=ExP (small) α = field of view in object space α’ = field of view in image space FieldField ofof aa positivepositive thinthin lenslens FS=EnW P Q’ P F Q P’ Full cone of rays received Entrance pupil AS=E P Entrance pupil from all points on object x (small) Stops,Stops, pupilspupils andand windowswindows inin anan opticaloptical systemsystem α α’ EnP EnW AS FS ExP ExW.
Recommended publications
  • Breaking Down the “Cosine Fourth Power Law”
    Breaking Down The “Cosine Fourth Power Law” By Ronian Siew, inopticalsolutions.com Why are the corners of the field of view in the image captured by a camera lens usually darker than the center? For one thing, camera lenses by design often introduce “vignetting” into the image, which is the deliberate clipping of rays at the corners of the field of view in order to cut away excessive lens aberrations. But, it is also known that corner areas in an image can get dark even without vignetting, due in part to the so-called “cosine fourth power law.” 1 According to this “law,” when a lens projects the image of a uniform source onto a screen, in the absence of vignetting, the illumination flux density (i.e., the optical power per unit area) across the screen from the center to the edge varies according to the fourth power of the cosine of the angle between the optic axis and the oblique ray striking the screen. Actually, optical designers know this “law” does not apply generally to all lens conditions.2 – 10 Fundamental principles of optical radiative flux transfer in lens systems allow one to tune the illumination distribution across the image by varying lens design characteristics. In this article, we take a tour into the fascinating physics governing the illumination of images in lens systems. Relative Illumination In Lens Systems In lens design, one characterizes the illumination distribution across the screen where the image resides in terms of a quantity known as the lens’ relative illumination — the ratio of the irradiance (i.e., the power per unit area) at any off-axis position of the image to the irradiance at the center of the image.
    [Show full text]
  • Geometrical Irradiance Changes in a Symmetric Optical System
    Geometrical irradiance changes in a symmetric optical system Dmitry Reshidko Jose Sasian Dmitry Reshidko, Jose Sasian, “Geometrical irradiance changes in a symmetric optical system,” Opt. Eng. 56(1), 015104 (2017), doi: 10.1117/1.OE.56.1.015104. Downloaded From: https://www.spiedigitallibrary.org/journals/Optical-Engineering on 11/28/2017 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use Optical Engineering 56(1), 015104 (January 2017) Geometrical irradiance changes in a symmetric optical system Dmitry Reshidko* and Jose Sasian University of Arizona, College of Optical Sciences, 1630 East University Boulevard, Tucson 85721, United States Abstract. The concept of the aberration function is extended to define two functions that describe the light irra- diance distribution at the exit pupil plane and at the image plane of an axially symmetric optical system. Similar to the wavefront aberration function, the irradiance function is expanded as a polynomial, where individual terms represent basic irradiance distribution patterns. Conservation of flux in optical imaging systems is used to derive the specific relation between the irradiance coefficients and wavefront aberration coefficients. It is shown that the coefficients of the irradiance functions can be expressed in terms of wavefront aberration coefficients and first- order system quantities. The theoretical results—these are irradiance coefficient formulas—are in agreement with real ray tracing. © 2017 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.OE.56.1.015104] Keywords: aberration theory; wavefront aberrations; irradiance. Paper 161674 received Oct. 26, 2016; accepted for publication Dec. 20, 2016; published online Jan. 23, 2017. 1 Introduction the normalized field H~ and aperture ρ~ vectors.
    [Show full text]
  • Introduction to CODE V: Optics
    Introduction to CODE V Training: Day 1 “Optics 101” Digital Camera Design Study User Interface and Customization 3280 East Foothill Boulevard Pasadena, California 91107 USA (626) 795-9101 Fax (626) 795-0184 e-mail: [email protected] World Wide Web: http://www.opticalres.com Copyright © 2009 Optical Research Associates Section 1 Optics 101 (on a Budget) Introduction to CODE V Optics 101 • 1-1 Copyright © 2009 Optical Research Associates Goals and “Not Goals” •Goals: – Brief overview of basic imaging concepts – Introduce some lingo of lens designers – Provide resources for quick reference or further study •Not Goals: – Derivation of equations – Explain all there is to know about optical design – Explain how CODE V works Introduction to CODE V Training, “Optics 101,” Slide 1-3 Sign Conventions • Distances: positive to right t >0 t < 0 • Curvatures: positive if center of curvature lies to right of vertex VC C V c = 1/r > 0 c = 1/r < 0 • Angles: positive measured counterclockwise θ > 0 θ < 0 • Heights: positive above the axis Introduction to CODE V Training, “Optics 101,” Slide 1-4 Introduction to CODE V Optics 101 • 1-2 Copyright © 2009 Optical Research Associates Light from Physics 102 • Light travels in straight lines (homogeneous media) • Snell’s Law: n sin θ = n’ sin θ’ • Paraxial approximation: –Small angles:sin θ~ tan θ ~ θ; and cos θ ~ 1 – Optical surfaces represented by tangent plane at vertex • Ignore sag in computing ray height • Thickness is always center thickness – Power of a spherical refracting surface: 1/f = φ = (n’-n)*c
    [Show full text]
  • Section 10 Vignetting Vignetting the Stop Determines Determines the Stop the Size of the Bundle of Rays That Propagates On-Axis an the System for Through Object
    10-1 I and Instrumentation Design Optical OPTI-502 © Copyright 2019 John E. Greivenkamp E. John 2019 © Copyright Section 10 Vignetting 10-2 I and Instrumentation Design Optical OPTI-502 Vignetting Greivenkamp E. John 2019 © Copyright On-Axis The stop determines the size of Ray Aperture the bundle of rays that propagates Bundle through the system for an on-axis object. As the object height increases, z one of the other apertures in the system (such as a lens clear aperture) may limit part or all of Stop the bundle of rays. This is known as vignetting. Vignetted Off-Axis Ray Rays Bundle z Stop Aperture 10-3 I and Instrumentation Design Optical OPTI-502 Ray Bundle – On-Axis Greivenkamp E. John 2018 © Copyright The ray bundle for an on-axis object is a rotationally-symmetric spindle made up of sections of right circular cones. Each cone section is defined by the pupil and the object or image point in that optical space. The individual cone sections match up at the surfaces and elements. Stop Pupil y y y z y = 0 At any z, the cross section of the bundle is circular, and the radius of the bundle is the marginal ray value. The ray bundle is centered on the optical axis. 10-4 I and Instrumentation Design Optical OPTI-502 Ray Bundle – Off Axis Greivenkamp E. John 2019 © Copyright For an off-axis object point, the ray bundle skews, and is comprised of sections of skew circular cones which are still defined by the pupil and object or image point in that optical space.
    [Show full text]
  • Aperture Efficiency and Wide Field-Of-View Optical Systems Mark R
    Aperture Efficiency and Wide Field-of-View Optical Systems Mark R. Ackermann, Sandia National Laboratories Rex R. Kiziah, USAF Academy John T. McGraw and Peter C. Zimmer, J.T. McGraw & Associates Abstract Wide field-of-view optical systems are currently finding significant use for applications ranging from exoplanet search to space situational awareness. Systems ranging from small camera lenses to the 8.4-meter Large Synoptic Survey Telescope are designed to image large areas of the sky with increased search rate and scientific utility. An interesting issue with wide-field systems is the known compromises in aperture efficiency. They either use only a fraction of the available aperture or have optical elements with diameters larger than the optical aperture of the system. In either case, the complete aperture of the largest optical component is not fully utilized for any given field point within an image. System costs are driven by optical diameter (not aperture), focal length, optical complexity, and field-of-view. It is important to understand the optical design trade space and how cost, performance, and physical characteristics are influenced by various observing requirements. This paper examines the aperture efficiency of refracting and reflecting systems with one, two and three mirrors. Copyright © 2018 Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS) – www.amostech.com Introduction Optical systems exhibit an apparent falloff of image intensity from the center to edge of the image field as seen in Figure 1. This phenomenon, known as vignetting, results when the entrance pupil is viewed from an off-axis point in either object or image space.
    [Show full text]
  • Nikon Binocular Handbook
    THE COMPLETE BINOCULAR HANDBOOK While Nikon engineers of semiconductor-manufactur- FINDING THE ing equipment employ our optics to create the world’s CONTENTS PERFECT BINOCULAR most precise instrumentation. For Nikon, delivering a peerless vision is second nature, strengthened over 4 BINOCULAR OPTICS 101 ZOOM BINOCULARS the decades through constant application. At Nikon WHAT “WATERPROOF” REALLY MEANS FOR YOUR NEEDS 5 THE RELATIONSHIP BETWEEN POWER, Sport Optics, our mission is not just to meet your THE DESIGN EYE RELIEF, AND FIELD OF VIEW The old adage “the better you understand some- PORRO PRISM BINOCULARS demands, but to exceed your expectations. ROOF PRISM BINOCULARS thing—the more you’ll appreciate it” is especially true 12-14 WHERE QUALITY AND with optics. Nikon’s goal in producing this guide is to 6-11 THE NUMBERS COUNT QUANTITY COUNT not only help you understand optics, but also the EYE RELIEF/EYECUP USAGE LENS COATINGS EXIT PUPIL ABERRATIONS difference a quality optic can make in your appre- REAL FIELD OF VIEW ED GLASS AND SECONDARY SPECTRUMS ciation and intensity of every rare, special and daily APPARENT FIELD OF VIEW viewing experience. FIELD OF VIEW AT 1000 METERS 15-17 HOW TO CHOOSE FIELD FLATTENING (SUPER-WIDE) SELECTING A BINOCULAR BASED Nikon’s WX BINOCULAR UPON INTENDED APPLICATION LIGHT DELIVERY RESOLUTION 18-19 BINOCULAR OPTICS INTERPUPILLARY DISTANCE GLOSSARY DIOPTER ADJUSTMENT FOCUSING MECHANISMS INTERNAL ANTIREFLECTION OPTICS FIRST The guiding principle behind every Nikon since 1917 product has always been to engineer it from the inside out. By creating an optical system specific to the function of each product, Nikon can better match the product attri- butes specifically to the needs of the user.
    [Show full text]
  • A Practical Guide to Panoramic Multispectral Imaging
    A PRACTICAL GUIDE TO PANORAMIC MULTISPECTRAL IMAGING By Antonino Cosentino 66 PANORAMIC MULTISPECTRAL IMAGING Panoramic Multispectral Imaging is a fast and mobile methodology to perform high resolution imaging (up to about 25 pixel/mm) with budget equipment and it is targeted to institutions or private professionals that cannot invest in costly dedicated equipment and/or need a mobile and lightweight setup. This method is based on panoramic photography that uses a panoramic head to precisely rotate a camera and shoot a sequence of images around the entrance pupil of the lens, eliminating parallax error. The proposed system is made of consumer level panoramic photography tools and can accommodate any imaging device, such as a modified digital camera, an InGaAs camera for infrared reflectography and a thermal camera for examination of historical architecture. Introduction as thermal cameras for diagnostics of historical architecture. This article focuses on paintings, This paper describes a fast and mobile methodo‐ but the method remains valid for the documenta‐ logy to perform high resolution multispectral tion of any 2D object such as prints and drawings. imaging with budget equipment. This method Panoramic photography consists of taking a can be appreciated by institutions or private series of photo of a scene with a precise rotating professionals that cannot invest in more costly head and then using special software to align dedicated equipment and/or need a mobile and seamlessly stitch those images into one (lightweight) and fast setup. There are already panorama. excellent medium and large format infrared (IR) modified digital cameras on the market, as well as scanners for high resolution Infrared Reflec‐ Multispectral Imaging with a Digital Camera tography, but both are expensive.
    [Show full text]
  • Technical Aspects and Clinical Usage of Keplerian and Galilean Binocular Surgical Loupe Telescopes Used in Dentistry Or Medicine
    Surgical and Dental Ergonomic Loupes Magnification and Microscope Design Principles Technical Aspects and Clinical Usage of Keplerian and Galilean Binocular Surgical Loupe Telescopes used in Dentistry or Medicine John Mamoun, DMD1, Mark E. Wilkinson, OD2 , Richard Feinbloom3 1Private Practice, Manalapan, NJ, USA 2Clinical Professor of Opthalmology at the University of Iowa Carver College of Medicine, Department of Ophthalmology and Visual Sciences, Iowa City, IA, USA, and the director, Vision Rehabilitation Service, University of Iowa Carver Family Center for Macular Degeneration 3President, Designs for Vision, Inc., Ronkonkoma, NY Open Access Dental Lecture No.2: This Article is Public Domain. Published online, December 2013 Abstract Dentists often use unaided vision, or low-power telescopic loupes of 2.5-3.0x magnification, when performing dental procedures. However, some clinically relevant microscopic intra-oral details may not be visible with low magnification. About 1% of dentists use a surgical operating microscope that provides 5-20x magnification and co-axial illumination. However, a surgical operating microscope is not as portable as a surgical telescope, which are available in magnifications of 6-8x. This article reviews the technical aspects of the design of Galilean and Keplerian telescopic binocular loupes, also called telemicroscopes, and explains how these technical aspects affect the clinical performance of the loupes when performing dental tasks. Topics include: telescope lens systems, linear magnification, the exit pupil, the depth of field, the field of view, the image inverting Schmidt-Pechan prism that is used in the Keplerian telescope, determining the magnification power of lens systems, and the technical problems with designing Galilean and Keplerian loupes of extremely high magnification, beyond 8.0x.
    [Show full text]
  • TELESCOPE to EYE ADAPTION for MAXIMUM VISION at DIFFERENT AGES. the Physiological Change of the Human Eye with Age Is Surely
    TELESCOPE TO EYE ADAPTION FOR MAXIMUM VISION AT DIFFERENT AGES. The physiological change of the human eye with age is surely contributing to the poorer shooting performance of older shooters. This is regardless of the fact that the refractive deviation of the eyes is generally faithfully corrected with lenses or surgery (laser procedures) and hopefully optometrically restored again to 6/6 effectiveness. Also, blurred eye lenses (cataracts) get replaced in the over sixty group. So, what then is the reason for seeing “poorer” through the telescope after the above? The table below speaks volumes about this. The iris opening (pupil size) of the eye determines the amount of light (the eye pupil in mm diameter) that enters the eye under specific light conditions. This amount of light, actually photons in the sight spectrum that contains the energy to activate the retina photoreceptors, again determines the clarity of the information / image interpreted by the brain via the retina's interaction. As we grow older, less light is entering the eye because the iris dilator muscle adaptability weakens as well as slows down. Average eye pupil diameter change versus age Day iris Night iris Age in years opening in opening in mm mm 20 4.7 8 30 4.3 7 40 3.9 6 50 3.5 5 60 3.1 4.1 70 2.7 3.2 80 2.3 2.5 The following calculations, based on the values in the table above, show how drastic these eye pupil changes are on our sight due to the less light that enters the eye.
    [Show full text]
  • Part 4: Filed and Aperture, Stop, Pupil, Vignetting Herbert Gross
    Optical Engineering Part 4: Filed and aperture, stop, pupil, vignetting Herbert Gross Summer term 2020 www.iap.uni-jena.de 2 Contents . Definition of field and aperture . Numerical aperture and F-number . Stop and pupil . Vignetting Optical system stop . Pupil stop defines: 1. chief ray angle w 2. aperture cone angle u . The chief ray gives the center line of the oblique ray cone of an off-axis object point . The coma rays limit the off-axis ray cone . The marginal rays limit the axial ray cone stop pupil coma ray marginal ray y field angle image w u object aperture angle y' chief ray 4 Definition of Aperture and Field . Imaging on axis: circular / rotational symmetry Only spherical aberration and chromatical aberrations . Finite field size, object point off-axis: - chief ray as reference - skew ray bundels: y y' coma and distortion y p y'p - Vignetting, cone of ray bundle not circular O' field of marginal/rim symmetric view ray RAP' chief ray - to distinguish: u w' u' w tangential and sagittal chief ray plane O entrance object exit image pupil plane pupil plane 5 Numerical Aperture and F-number image . Classical measure for the opening: plane numerical aperture (half cone angle) object in infinity NA' nsinu' DEnP/2 u' . In particular for camera lenses with object at infinity: F-number f f F# DEnP . Numerical aperture and F-number are to system properties, they are related to a conjugate object/image location 1 . Paraxial relation F # 2n'tanu' . Special case for small angles or sine-condition corrected systems 1 F # 2NA' 6 Generalized F-Number .
    [Show full text]
  • The F-Word in Optics
    The F-word in Optics F-number, was first found for fixing photographic exposure. But F/number is a far more flexible phenomenon for finding facts about optics. Douglas Goodman finds fertile field for fixes for frequent confusion for F/#. The F-word of optics is the F-number,* also known as F/number, F/#, etc. The F- number is not a natural physical quantity, it is not defined and used consistently, and it is often used in ways that are both wrong and confusing. Moreover, there is no need to use the F-number, since what it purports to describe can be specified rigorously and unambiguously with direction cosines. The F-number is usually defined as follows: focal length F-number= [1] entrance pupil diameter A further identification is usually made with ray angle. Referring to Figure 1, a ray from an object at infinity that is parallel to the axis in object space intersects the front principal plane at height Y and presumably leaves the rear principal plane at the same height. If f is the rear focal length, then the angle of the ray in image space θ′' is given by y tan θ'= [2] f In this equation, as in the others here, a sign convention for angles heights and magnifications is not rigorously enforced. Combining these equations gives: 1 F−= number [3] 2tanθ ' For an object not at infinity, by analogy, the F-number is often taken to be the half of the inverse of the tangent of the marginal ray angle. However, Eq. 2 is wrong.
    [Show full text]
  • Lens Tutorial Is from C
    �is version of David Jacobson’s classic lens tutorial is from c. 1998. I’ve typeset the math and fixed a few spelling and grammatical errors; otherwise, it’s as it was in 1997. — Jeff Conrad 17 June 2017 Lens Tutorial by David Jacobson for photo.net. �is note gives a tutorial on lenses and gives some common lens formulas. I attempted to make it between an FAQ (just simple facts) and a textbook. I generally give the starting point of an idea, and then skip to the results, leaving out all the algebra. If any part of it is too detailed, just skip ahead to the result and go on. It is in 6 parts. �e first gives formulas relating object (subject) and image distances and magnification, the second discusses f-stops, the third discusses depth of field, the fourth part discusses diffraction, the fifth part discusses the Modulation Transfer Function, and the sixth illumination. �e sixth part is authored by John Bercovitz. Sometime in the future I will edit it to have all parts use consistent notation and format. �e theory is simplified to that for lenses with the same medium (e.g., air) front and rear: the theory for underwater or oil immersion lenses is a bit more complicated. Object distance, image distance, and magnification �roughout this article we use the word object to mean the thing of which an image is being made. It is loosely equivalent to the word “subject” as used by photographers. In lens formulas it is convenient to measure distances from a set of points called principal points.
    [Show full text]