In Defense of Freedom-The Early Years
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
THE RADAR WAR Forward
THE RADAR WAR by Gerhard Hepcke Translated into English by Hannah Liebmann Forward The backbone of any military operation is the Army. However for an international war, a Navy is essential for the security of the sea and for the resupply of land operations. Both services can only be successful if the Air Force has control over the skies in the areas in which they operate. In the WWI the Air Force had a minor role. Telecommunications was developed during this time and in a few cases it played a decisive role. In WWII radar was able to find and locate the enemy and navigation systems existed that allowed aircraft to operate over friendly and enemy territory without visual aids over long range. This development took place at a breath taking speed from the Ultra High Frequency, UHF to the centimeter wave length. The decisive advantage and superiority for the Air Force or the Navy depended on who had the better radar and UHF technology. 0.0 Aviation Radio and Radar Technology Before World War II From the very beginning radar technology was of great importance for aviation. In spite of this fact, the radar equipment of airplanes before World War II was rather modest compared with the progress achieved during the war. 1.0 Long-Wave to Short-Wave Radiotelegraphy In the beginning, when communication took place only via telegraphy, long- and short-wave transmitting and receiving radios were used. 2.0 VHF Radiotelephony Later VHF radios were added, which made communication without trained radio operators possible. 3.0 On-Board Direction Finding A loop antenna served as a navigational aid for airplanes. -
The Development of Military Nuclear Strategy And
The Development of Military Nuclear Strategy and Anglo-American Relations, 1939 – 1958 Submitted by: Geoffrey Charles Mallett Skinner to the University of Exeter as a thesis for the degree of Doctor of Philosophy in History, July 2018 This thesis is available for Library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement. I certify that all material in this thesis which is not my own work has been identified and that no material has previously been submitted and approved for the award of a degree by this or any other University. (Signature) ……………………………………………………………………………… 1 Abstract There was no special governmental partnership between Britain and America during the Second World War in atomic affairs. A recalibration is required that updates and amends the existing historiography in this respect. The wartime atomic relations of those countries were cooperative at the level of science and resources, but rarely that of the state. As soon as it became apparent that fission weaponry would be the main basis of future military power, America decided to gain exclusive control over the weapon. Britain could not replicate American resources and no assistance was offered to it by its conventional ally. America then created its own, closed, nuclear system and well before the 1946 Atomic Energy Act, the event which is typically seen by historians as the explanation of the fracturing of wartime atomic relations. Immediately after 1945 there was insufficient systemic force to create change in the consistent American policy of atomic monopoly. As fusion bombs introduced a new magnitude of risk, and as the nuclear world expanded and deepened, the systemic pressures grew. -
Explosive Weapon Effectsweapon Overview Effects
CHARACTERISATION OF EXPLOSIVE WEAPONS EXPLOSIVEEXPLOSIVE WEAPON EFFECTSWEAPON OVERVIEW EFFECTS FINAL REPORT ABOUT THE GICHD AND THE PROJECT The Geneva International Centre for Humanitarian Demining (GICHD) is an expert organisation working to reduce the impact of mines, cluster munitions and other explosive hazards, in close partnership with states, the UN and other human security actors. Based at the Maison de la paix in Geneva, the GICHD employs around 55 staff from over 15 countries with unique expertise and knowledge. Our work is made possible by core contributions, project funding and in-kind support from more than 20 governments and organisations. Motivated by its strategic goal to improve human security and equipped with subject expertise in explosive hazards, the GICHD launched a research project to characterise explosive weapons. The GICHD perceives the debate on explosive weapons in populated areas (EWIPA) as an important humanitarian issue. The aim of this research into explosive weapons characteristics and their immediate, destructive effects on humans and structures, is to help inform the ongoing discussions on EWIPA, intended to reduce harm to civilians. The intention of the research is not to discuss the moral, political or legal implications of using explosive weapon systems in populated areas, but to examine their characteristics, effects and use from a technical perspective. The research project started in January 2015 and was guided and advised by a group of 18 international experts dealing with weapons-related research and practitioners who address the implications of explosive weapons in the humanitarian, policy, advocacy and legal fields. This report and its annexes integrate the research efforts of the characterisation of explosive weapons (CEW) project in 2015-2016 and make reference to key information sources in this domain. -
Scientists, Statesmen and War: the Case of the Scientific Advisory Committee
James Goodchild Ex Historia 46 James Goodchild 1 University of Exeter Scientists, Statesmen and War: The Case of the Scientific Advisory Committee. The now extensive historiography of the Second World War confirms with fascinating certainty that twentieth-century total technological warfare forced developed nation states to marry their statesmen to their scientists. While the long-term marriage itself proved a near cataclysmic affair, the wedding too had many moments of turbulence. This article examines one particular event in twentieth-century British history of scientific and technological institutionalisation. Piecing together previously unconnected primary evidence, this article re-interprets the uneasy beginnings of the Scientific Advisory Committee (SAC) to the War Cabinet established in October 1940. This article further demonstrates that even in an emergency so immense as modern war, science and politics continued to remain as awkward bedfellows. It was during the First World War that the British Government began to appreciate the value of a permanent civil partnership developing between scientists and the state. From the high pinnacles of David Lloyd George’s ‘Garden Suburbs’ – ideas men attached to the Cabinet – down to the nitty-gritty of keeping common men alive through the work of the Medical Research Committee, science began to permeate the Whitehall corridors of power in an unprecedented fashion essentially as a consequence of total war. 2 This scientific incursion was 1 James Goodchild’s ([email protected] ) academic interests are the inter-relations between twentieth-century war, science and technology, and the British state and society. He holds a BA (Hons.) in history and an M.Res (distinction) which specialised in the scientific developments of the Great War. -
The First Americans the 1941 US Codebreaking Mission to Bletchley Park
United States Cryptologic History The First Americans The 1941 US Codebreaking Mission to Bletchley Park Special series | Volume 12 | 2016 Center for Cryptologic History David J. Sherman is Associate Director for Policy and Records at the National Security Agency. A graduate of Duke University, he holds a doctorate in Slavic Studies from Cornell University, where he taught for three years. He also is a graduate of the CAPSTONE General/Flag Officer Course at the National Defense University, the Intelligence Community Senior Leadership Program, and the Alexander S. Pushkin Institute of the Russian Language in Moscow. He has served as Associate Dean for Academic Programs at the National War College and while there taught courses on strategy, inter- national relations, and intelligence. Among his other government assignments include ones as NSA’s representative to the Office of the Secretary of Defense, as Director for Intelligence Programs at the National Security Council, and on the staff of the National Economic Council. This publication presents a historical perspective for informational and educational purposes, is the result of independent research, and does not necessarily reflect a position of NSA/CSS or any other US government entity. This publication is distributed free by the National Security Agency. If you would like additional copies, please email [email protected] or write to: Center for Cryptologic History National Security Agency 9800 Savage Road, Suite 6886 Fort George G. Meade, MD 20755 Cover: (Top) Navy Department building, with Washington Monument in center distance, 1918 or 1919; (bottom) Bletchley Park mansion, headquarters of UK codebreaking, 1939 UNITED STATES CRYPTOLOGIC HISTORY The First Americans The 1941 US Codebreaking Mission to Bletchley Park David Sherman National Security Agency Center for Cryptologic History 2016 Second Printing Contents Foreword ................................................................................ -
Merle A. Tuve
NATIONAL ACADEMY OF SCIENCES M E R L E A N T O N Y T UVE 1901—1982 A Biographical Memoir by P H ILI P H . AbELSON Any opinions expressed in this memoir are those of the author(s) and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoir COPYRIGHT 1996 NATIONAL ACADEMIES PRESS WASHINGTON D.C. MERLE ANTONY TUVE June 27, 1901–May 20, 1982 BY PHILIP H. ABELSON ERLE ANTONY TUVE WAS a leading scientist of his times. MHe joined with Gregory Breit in the first use of pulsed radio waves in the measurement of layers in the ionosphere. Together with Lawrence R. Hafstad and Norman P. Heydenburg he made the first and definitive measurements of the proton-proton force at nuclear distances. During World War II he led in the development of the proximity fuze that stopped the buzz bomb attack on London, played a crucial part in the Battle of the Bulge, and enabled naval ships to ward off Japanese aircraft in the western Pacific. Following World War II he served for twenty years as director of the Carnegie Institution of Washington’s Department of Ter- restrial Magnetism, where, in addition to supporting a mul- tifaceted program of research, he personally made impor- tant contributions to experimental seismology, radio astronomy, and optical astronomy. Tuve was a dreamer and an achiever, but he was more than that. He was a man of conscience and ideals. Throughout his life he remained a scientist whose primary motivation was the search for knowledge but a person whose zeal was tempered by a regard for the aspirations of other humans. -
Federal Register/Vol. 84, No. 250/Tuesday, December 31, 2019
Federal Register / Vol. 84, No. 250 / Tuesday, December 31, 2019 / Notices 72339 (vii) Date Report Delivered to ACTION: Arms sales notice. House of Representatives, Transmittal Congress: December 4, 2019 18–39 with attached Policy Justification [FR Doc. 2019–28189 Filed 12–30–19; 8:45 am] SUMMARY: The Department of Defense is and Sensitivity of Technology. publishing the unclassified text of an BILLING CODE 5001–06–P Dated: December 23, 2019. arms sales notification. Aaron T. Siegel, FOR FURTHER INFORMATION CONTACT: Alternate OSD Federal Register Liaison DEPARTMENT OF DEFENSE Karma Job at [email protected] Officer, Department of Defense. or (703) 697–8976. Office of the Secretary BILLING CODE 5001–06–P SUPPLEMENTARY INFORMATION: This [Transmittal No. 18–39] 36(b)(1) arms sales notification is Arms Sales Notification published to fulfill the requirements of section 155 of Public Law 104–164 AGENCY: Defense Security Cooperation dated July 21, 1996. The following is a Agency, Department of Defense. copy of a letter to the Speaker of the VerDate Sep<11>2014 17:30 Dec 30, 2019 Jkt 250001 PO 00000 Frm 00048 Fmt 4703 Sfmt 4703 E:\FR\FM\31DEN1.SGM 31DEN1 khammond on DSKJM1Z7X2PROD with NOTICES 72340 Federal Register / Vol. 84, No. 250 / Tuesday, December 31, 2019 / Notices BILLING CODE 5001–06–C Norway, Poland, Portugal, Spain and Major Defense Equipment (MDE): Transmittal No. 18-39 the United Kingdom Five hundred (500) KMU-556 F/B Joint Notice of Proposed Issuance of Letter of (ii) Total Estimated Value: Direct Attack Munition (JDAM) Kits for GBU-31 2000-lbs Offer Pursuant to Section 36(b)(1) of the Major Defense Equip- $240.5 million ment *. -
Introduction Chapter 1 Organization of Science For
Notes The following abbreviations have been used for the location and designation of documentary sources. Cherwell Papers, Nuffield College, Oxford Public Records Office (PRO): ADM Admiralty AIR Air Ministry AVIA Ministry of Aviation CAB Cabinet Office DEFE Ministry of Defence FD Medical Research Council TTreasury WO War Office Introduction 1. CAB103/205, Science at War, Memo for ACSP, 8 October 1947. Chapter 1 Organization of Science for War 1. Editorial, Nature, 17 June 1915. 2. John Bradley, History and Development of Aircraft Instruments, 1909–1919, PhD thesis, 1994, Science Museum Library. 3. L. F. Haber, The Poisonous Cloud. Chemical Warfare in the First World War, Clarendon Press, Oxford, 1986, p. 273. 4. Monika Renneberg and Mark Walker (eds), Science, Technology and National Socialism, Cambridge University Press, 1994, p. 88. 5. Ibid., p. 9. 6. Ibid., pp. 81–2. 7. Ibid., p. 6. 8. Ibid., pp. 53–8. 9. Ibid., p. 51. 10. David Holloway, Stalin and the Bomb. The Soviet Union and Atomic Energy, 1934–1956, Yale University Press, 1994, p. 146. 11. Ibid., pp. 21, 145. 12. Andrew Brown, ‘Blackett at Cambridge, 1919–1933’, Blackett Centenary Conference, 24 September 1998. 13. Sir Henry Tizard, ‘Science and the Services’, RUSI Jnl., vol. XCI, no. 563, August 1946, p. 338. 188 Notes 189 14. Peter Hennessy and Sir Douglas Hague, ‘How Hitler Reformed Whitehall’, Strathclyde Papers on Government and Politics, no. 41, 1985, p. 8. 15. Ibid., p. 19. 16. Solly Zuckerman, From Apes to Warlords, 1904–46, London, 1978, App. 1, ‘The Tots and Quots’. 17. Anon, Science in War, ‘Penguin Special’, Penguin Books, 1940. -
A History of the National Bureau of Standards
WORLD WAR Ii RESEARCH (1941-45) CHAPTER 'TI! ThE EVENT OF WAR" The second worldwide war was foreshadowed in the Japanese in of Ethiopia in 1935, and Hitler's march into the Rhineland in 1936. Isolated and safeguarded by successive Neutrality Acts passed in 1935, 1936, and 1937, which barred the sale of arms or munitions to any warring nation, America watched the piecemeal fall of small nations, Austria and Czechoslovakia to Hitler, Albania to Musso- lini. With the German attack on Poland in September 1939, Britain and France declared war against the dictators and World War II began. The first amendments to the Neutrality Acts were enacted. By temperament strongly neutral and still in the grip of depression, the Nation had willed belief in Chamberlain's "peace in our time" until shaken by the occupation of Czechoslovakia in the spring of 1939. But cer- tain of war and of America's inevitable involvement was the small band of foreign-born scientists, their spokesman Niels Bohr, who had recently arrived in this country. Shepherding atomic research here, Bohn at once urged restriction in all Allied countries of the publication of further data on the possibility of nuclear fission. Many individual scientists refrained, but control of publication in American scientific journals did not become effec. five until almost a year later, following Hitler's invasion of Denmark and Norway. The National Bureau of Standards, convinced by the physicists on its Advisory Committee on Uranium of the certainty of a general war, began to put its affairs in order. On September 1, 1939, the day Germany marched into Poland, and one week before the President declared a state of limited national emergency, Dr. -
Radio Proximity Fuzes
Radio Proximity Fuzes Residents of the United States born much after 1930 utilizing it in the likely war effort ahead, NBS Director can have little appreciation for what it was like to mobi- Lyman Briggs was placed in charge of a new Advisory lize for total war. In World War II, everyone and every Committee on Uranium to look into this proposal. facet of daily life was affected. All citizens had to learn By 1941 some 90 % of the NBS staff was doing war to live with food and fuel rationing, and no new cars or work. other consumer products made from steel could be The Bureau worked on a great diversity of war purchased. There were blackouts, air raid drills, scrap projects ranging from high technology to evaluating ma- drives, school children buying War Bonds (a 10 cent terials for blackout curtains and blackout masks. A ma- stamp at a time), and, of course, able-bodied men and jor effort carried out with the Navy and the Radiation women taken either into military service or placed in Laboratory at MIT was the development and fielding of critical jobs in industry and elsewhere. Institutions such the Bat, the first combat success with a fully automatic as the National Bureau of Standards were likewise guided missile (really a bomb with wings and a tail totally involved in the war effort. The Bureau found looking rather like a modern Unmanned Aerial Vehicle itself with a number of very important technical assign- or UAV).The story of the Bat has significant technology ments and, for a change, the resources to carry them out in common with the proximity fuze program; namely, In October 1939, after Albert Einstein and Leo Szilard the use of electromagnetic radiation sources on flying urged the President to launch a major research program ordnance and the interpretation and use of the reflected on the possibility of producing nuclear fission and waves to carry out the mission. -
NATIONAL HISTORIC LANDMARK NOMINATION CAMP EVANS Page 1 1. NAME of PROPERTY Historic Name
NATIONAL HISTORIC LANDMARK NOMINATION NPS Form 10-900 USDI/NPS NRHP Registration Form (Rev. 8-86) OMB No. 1024-0018 CAMP EVANS Page 1 United States Department of the Interior, National Park Service National Register of Historic Places Registration Form 1. NAME OF PROPERTY Historic Name: Camp Evans Other Name/Site Number: U.S. Army Signal Corps Laboratory 2. LOCATION Street & Number: Marconi Road and Monmouth Boulevard Not for publication: N/A City/Town: Wall Township Vicinity: N/A State: New Jersey County: Monmouth Code: 025 Zip Code: 07719 3. CLASSIFICATION Ownership of Property Category of Property Private: Building(s): ___ Public-Local: X District: X_ Public-State: __ Site: ___ Public-Federal: X Structure: ___ Object: ___ Number of Resources within Property Contributing Noncontributing 35 13 buildings sites 1 structures objects 35 14 Total Number of Contributing Resources Previously Listed in the National Register: 51 Name of Related Multiple Property Listing: N/A NPS Form 10-900 USDI/NPS NRHP Registration Form (Rev. 8-86) OMB No. 1024-0018 CAMP EVANS Page 2 United States Department of the Interior, National Park Service National Register of Historic Plaaces Registration Form 4. STATE/FEDERAL AGENCY CERTIFICATION As the designated authority under the National Historic Preservation Act of 1966, as amended, I hereby certify that tthis ____ nomination ____ request for determination of eligibility meets the documentation standards for registering properties in the National Register of Historic Places and meets the procedural and professional requirements set forth in 36 CFR Part 60. In my opinion, the property ____ meets ____ does not meet the Natioonal Register Criteria. -
The Development of E1189, the First British Cavity Magnetron
The development of E1189, the ‘British cavity magnetron’ Abstract: No doubt that the British cavity magnetron originated from the prototype devised at Birmingham by Randall and Boot. What until today has been partially ignored is the subsequent work done by Eric Megaw at GEC, essential to obtain that powerful, versatile and easily reproducible microwave generator that everyone today simply knows as ‘magnetron’. The recent finding of samples and documents coming from the GEC Archives, after the shutdown of the GEC-Marconi, made it possible the full reconstruction of what Megaw really did in those days. Foreword: In 1921 A. W. Hull at General Electric for the first time described static characteristics of a device called magnetron. Actually the tube was a diode, with filament coaxial to the cylindrical plate. The bulb was surrounded by a winding, used to generate a magnetic field. The radial electric field and the superimposed magnetic field forced electrons to follow curved orbits before reaching anode. Hull noted that, gradually increasing the magnetic field, radius of the orbits became smaller and smaller, until electrons could no longer reach the plate, so causing the cut-off of the anode current. Hull also noted that, when biased near to the border between conduction and cut-off, the tube could sustain self-oscillations in a resonant circuit. Fig. 1 – a) Draft of the Hull original diode. b) Diagram of the experimental circuit. c) Ferranti GRD7 was a didactic tube used to demonstrate the operation of Hull diode. d) 2B23 is a magnetically actuated switch. The cylindrical anode magnetron oscillated in the so-called cyclotron mode, as result of a sinusoidal voltage built up between cathode and anode.