Increased Prostacyclin and Thromboxane A2 Biosynthesis in Atherosclerosis (Arachidonic Acid) JAWAHAR L

Total Page:16

File Type:pdf, Size:1020Kb

Increased Prostacyclin and Thromboxane A2 Biosynthesis in Atherosclerosis (Arachidonic Acid) JAWAHAR L Proc. Nati. Acad. Sci. USA Vol. 85, pp. 4511-4515, June 1988 Medical Sciences Increased prostacyclin and thromboxane A2 biosynthesis in atherosclerosis (arachidonic acid) JAWAHAR L. MEHTA*t, DANIEL LAWSON*, PAULETTE MEHTA*, AND TOM SALDEENt *University of Florida, College of Medicine and the Veterans Administration Medical Center, Gainesville, FL 32610; and tUniversity of Uppsala, 751 21 Uppsala, Sweden Communicated by George K. Davis, March 2, 1988 ABSTRACT It has been proposed that atherosclerotic PGI2 metabolite released in the urine of patients with severe arteries produce less prostacyclin (PGI2) than nonatheroscle- atherosclerosis, and they demonstrated increased PGI2 bio- rotic arteries do, thereby predisposing arteries to vasospasm synthesis in these patients relative to normal subjects. and thrombosis in vivo. We reexamined this concept by Since many previous studies employed bioassay or only measuring spontaneous as well as arachidonate-induced PGI2 radioimmunoassay (RIA) for measurement of PGI2, the biosynthesis in aortic segments from nonatherosclerotic and present studies were designed to reexamine the concept of cholesterol-fed atherosclerotic New Zealand White rabbits. altered PGI2 generation in atherosclerosis. We examined the Thromboxane A2 (TXA2) generation was also measured. For- uptake and incorporation of labeled arachidonic acid into the mation of PGI2, as well as TXA2, as measured by radio- phospholipids ofthe vessel wall and subsequent arachidonate immunoassay (RIA) of their metabolites, was increased in release and conversion to major metabolites of and atherosclerotic aortic segments relative to nonatherosclerotic PGI2 segments (P S 0.05) at 0, 5, 10, 15, and 30 min of incubation TXA2 in both normal and atherosclerotic vessels. with arachidonate. Pretreatment of arterial segments with indomethacin inhibited PGI2 as well as TXA2 formation, MATERIALS AND METHODS whereas pretreatment with the selective TXA2 inhibitor OKY- 046 inhibited only TXA2 release, thus confirming the identity Induction of Atherosclerosis. New Zealand White male of icosanoids. To confirm the RIA data, aortic segments were rabbits weighing 2.26-2.70 kg were fed an atherogenic diet of incubated with ['4C]arachidonate prior to stimulation with 1% cholesterol and 5% (wt/wt) lard (Bio-Serve, Frenchtown, unlabeled arachidonate. The uptake of arachidonate was NJ) for 2 weeks, which caused an increase of serum choles- similar, but the release of incorporated ['4C]arachidonate was terol to 981-1368 mg/dl (mean = 1191 mg/dl). Thereafter, significantly (P - 0.05) greater in atherosclerotic segments the rabbits were anesthetized (acepromazine at 0.5 mg/kg, than in nonatherosclerotic ones. Conversions of released Rompun at 3 mg/kg, and ketamine at 50 mg/kg), and their ["4C]arachidonate to 6-keto["4C]prostaglandin Fl and right groins were explored to isolate the right femoral artery. ["'C]thromboxane B2 were similar in the two types of aortic After arteriotomy, a no. 4F Fogarty catheter was inserted and segments. Thus, synthesis of PGI2 as well as TXA2 is increased advanced into the abdominal aorta to the level of the in atherosclerosis, and this alteration in arachidonate metab- diaphragm. The balloon was then inflated and retrieved, olism is related to increased release of arachidonate. resulting in endothelial stripping of the aorta and right iliac artery. The right femoral artery was then ligated, and the Decreased prostacyclin (PG12) biosynthesis and release by incision was closed. The atherogenic diet was thereafter atherosclerotic compared to normal vessels was described by continued for 3 months prior to surgical exposure of the Dembinska-Keic et al. in 1977 (1). These initial observations abdominal aorta. As controls, a group of rabbits underwent in rabbit vessels were subsequently confirmed in the post- aortic stripping, but no atherogenic diet was given either mortem examination of human atherosclerotic vessels by before or after stripping. D'Angelo et al. (2) and Sinzinger et al. (3). Larrue et al. (4) Preparation ofTissues for PGI2 and TXA2 Generation. After reported diminished PGI2 generation by cultured smooth 3-months of atherogenic diet, animals were sacrificed with muscle cells from atherosclerotic rabbit aortae. intravenous pentabarbital infusion and the abdominal aorta Thromboxane A2 (TXA2) production is also increased in was rapidly harvested. The vessel was collected in ice-cold experimental (5) and human atherosclerosis (6-8). Accord- Hanks' balanced salt solution (HBSS) without Ca2+ and ingly, it has been proposed that a relative excess ofTXA2 and Mg2+, pH 7.4, and carefully cleaned of all loose connective deficiency of PG12 may predispose atherosclerotic vessels to tissue and fat. The aorta was then perfused repeatedly with vasospasm and platelet aggregation in vivo (9, 10). HBSS to remove blood clots, remaining platelets, and leu- Although the plasma concentrations of 6-ketoprosta- kocytes until the perfusate contained no leukocytes or glandin Fla (6-keto-PGFia), the stable hydrolysis product of platelets visible by light microscopy. The tissues were then PGI2, are extremely low in normal plasma (-4 pg/ml) (11), it cut into 2-mm ring segments, weighed, and immediately has been reported that these concentrations are increased in placed into 2.0 ml of HBSS containing Ca2+ and Mg2 . patients with atherosclerosis (8, 12). Hirsh et al. (8) reported Approximately 30 mg of tissue (wet weight) was incubated mean plasma concentrations in patients with coronary ath- with 10 ,M arachidonate (Sigma) alone or with the selective erosclerosis of 140 pgfml. In another study (12), mean plasma TXA2 synthetase inhibitor OKY-046 (10 ,M) (Ono Pharma- 6-keto-PGF1a concentrations in similar patients were re- ceutical, Osaka, Japan) or the cyclooxygenase inhibitor ported to be 94 pg/ml (vs. 54 pg/ml in control normal indomethacin (10 (Merck Sharpe & Dohme) at 37°C for subjects). Recently, Fitzgerald et al. (13) measured a major AM) Abbreviations: 6-keto-PGFIa, 6-ketoprostaglandin Fla; PGI2, pros- The publication costs of this article were defrayed in part by page charge tacyclin; TXA2 or TXB2, thromboxane A2 or B2. payment. This article must therefore be hereby marked "advertisement" *To whom reprint requests should be addressed at: University of in accordance with 18 U.S.C. §1734 solely to indicate this fact. Florida, Box J-277, JHMHC, Gainesville, FL 32610. Downloaded by guest on September 29, 2021 4511 4512 Medical Sciences: Mehta et al. Proc. Natl. Acad. Sci. USA 85 (1988) 30 min. The supernate was collected at 0, 5, 15, and 30 min surrounding each 6-keto-PGFia and TXB2 spot was then for measurement of PGI2 and TXA2 metabolites (14). scraped from the plate and resuspended in 5.0 ml of Atom- Incorporation of ['4C]Arachidonate. To confirm the results light liquid scintillation counting fluid (New England Nu- of the PGI2 and TXA2 released into the supernates of aortic clear) and mixed well on a mechanical shaker for 1 hr, and its rings treated with arachidonate, 150-mg samples of aortic radioactivity was measured. rings were incubated with 1.0 puCi of [14C]arachidonate (390 RIAs for PGI2 and TXA2. 6-Keto-PGFia and TXB2, the mCi/mmol, New England Nuclear; 1 Ci = 37 GBq) for 5 min stable hydrolysis products ofPGI2 and TXA2, were measured at 250C. The rings were then washed twice in 2.0 ml of HBSS by RIA as described previously (14, 15). Lyophilized stan- to remove unincorporated radioactivity. Supernate radioac- dards, tracers, and antisera were obtained from New England tivity was quantified in a liquid scintillation counter (Tracor Nuclear. Cross-reactivity and anti-TXB2 antiserum with Analytic, Elk Grove Village, IL) to measure unincorporated other prostaglandins was less than 2%. Cross-reactivity of [14C]arachidonate. Aortic rings were then resuspended in 2.0 anti-6-keto-PGFia antiserum with other prostaglandins was ml of HBSS. also less than 2%. All measurements were performed in Conversion of [14C]Arachidonate to PGI2 and TXA2. To duplicate and results are expressed as ng/ml of supernate. stimulate the conversion of membrane-bound [14C]arachi- Statistical Analysis. All determinations made in duplicate donate into cyclooxygenase metabolites, 100 uM unlabeled were averaged. Data are expressed as mean + SD. Student's arachidonate was added to the rings, which were incubated t test (paired and unpaired data) was used for statistical at 37TC for 30 min in a shaking water bath. An aliquot of analysis. A P value of 0.05 was considered significant. supernate was then assayed for radioactivity to determine the release of [14C]arachidonate and its metabolites. The aortic rings were then isolated and washed and their radioactivities RESULTS were measured. PGI2 and TXA2 Release. As shown in Fig. 1, PGI2 (mea- To determine the conversion of [14C]arachidonate into sured as 6-keto-PGFia by RIA) released from atherosclerotic the 6-keto-PGFia and thromboxane B2 (TXB2), aortic ring rabbit aortic rings was greater (P - 0.05) than that released supernates, after stimulation with arachidonate, were ex- by normal rabbit aortic rings. This increase was seen at 0, 5, tracted and analyzed by thin-layer chromatography (TLC) as release continued for follows: To each supernate, unlabeled TXB2 and 6-keto- 10, 15, and 30 min of incubation. PGI2 PGFia standards (5 ,ug each) were added as carriers, the pH 15 min and then stabilized. was adjusted with 0.5 M formic acid to 3.5, and the supernate TXA2 (measured as TXB2 by RIA in aortic ring supernates) was extracted twice with 3.0 ml ofethyl acetate. The resulting was also greater (P - 0.05) in atherosclerotic rabbit rings. organic phase contained 75% of the standards. It was evap- Similar to PGI2 release, increased TXA2 release was ob- orated to dryness under a stream of nitrogen and the residue served at all time points. However, in contrast to PGI2 was dissolved in ethyl acetate and spotted onto TLC plates release, TXA2 release continued for the entire 30 min of (Fisher) along with 6-keto-PGFia and TXB2 standards (5 ,ug incubation.
Recommended publications
  • Simultaneous Determination of PUFA-Derived Pro-Resolving Metabolites and Pathway Markers Using Chiral Chromatography and Tandem
    Simultaneous determination of PUFA-derived pro-resolving metabolites and pathway markers using chiral chromatography and tandem mass spectrometry Andy Toewe, Laurence Balas, Thierry Durand, Gerd Geisslinger, Nerea Ferreirós To cite this version: Andy Toewe, Laurence Balas, Thierry Durand, Gerd Geisslinger, Nerea Ferreirós. Simultaneous determination of PUFA-derived pro-resolving metabolites and pathway markers using chiral chro- matography and tandem mass spectrometry. Analytica Chimica Acta, Elsevier Masson, 2018, 1031, pp.185-194. 10.1016/j.aca.2018.05.020. hal-02405326 HAL Id: hal-02405326 https://hal.archives-ouvertes.fr/hal-02405326 Submitted on 11 Dec 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Simultaneous determination of PUFA-derived pro-resolving metabolites and pathway markers using chiral chromatography and tandem mass spectrometry a b b a, c a, * Andy Toewe , Laurence Balas , Thierry Durand , Gerd Geisslinger , Nerea Ferreiros a pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe-University Frankfurt, Germany b Institut des Biomolecules Max Mousseron, IBMM, UMR 5247, University of Montpellier, CNRS, ENSCM, Montepellier, France c Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group TMP, Frankfurt, Germany abstract Lipid mediators play an important role as biological messengers involved in inflammatory processes.
    [Show full text]
  • Antioxidants and Second Messengers of Free Radicals
    antioxidants Antioxidants and Second Messengers of Free Radicals Edited by Neven Zarkovic Printed Edition of the Special Issue Published in Antioxidants www.mdpi.com/journal/antioxidants Antioxidants and Second Messengers of Free Radicals Antioxidants and Second Messengers of Free Radicals Special Issue Editor Neven Zarkovic MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade Special Issue Editor Neven Zarkovic Rudjer Boskovic Institute Croatia Editorial Office MDPI St. Alban-Anlage 66 4052 Basel, Switzerland This is a reprint of articles from the Special Issue published online in the open access journal Antioxidants (ISSN 2076-3921) from 2018 (available at: https://www.mdpi.com/journal/ antioxidants/special issues/second messengers free radicals) For citation purposes, cite each article independently as indicated on the article page online and as indicated below: LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Article Number, Page Range. ISBN 978-3-03897-533-5 (Pbk) ISBN 978-3-03897-534-2 (PDF) c 2019 by the authors. Articles in this book are Open Access and distributed under the Creative Commons Attribution (CC BY) license, which allows users to download, copy and build upon published articles, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons license CC BY-NC-ND. Contents About the Special Issue Editor ...................................... vii Preface to ”Antioxidants and Second Messengers of Free Radicals” ................ ix Neven Zarkovic Antioxidants and Second Messengers of Free Radicals Reprinted from: Antioxidants 2018, 7, 158, doi:10.3390/antiox7110158 ...............
    [Show full text]
  • Cyclooxygenase Pathway
    Cyclooxygenase Pathway Diverse physical, chemical, Phospholipase A Glucocorticoids inflammatory, and 2 mitogenic stimuli NSAIDs NSAIDs Arachidonic Acid Prostaglandin G2 CYCLOOXYGENASE Prostaglandin G2 Prostaglandin H Prostaglandin H Synthase-1 Synthase-2 (COX 1) (COX 2) Prostaglandin H2 PEROXIDASE Prostaglandin H2 Tissue Specific Isomerases Prostacyclin Thromboxane A2 Prostaglandin D2 Prostaglandin E2 Prostaglandin F2α IP TPα, TPβ DP1, DP2 EP1, EP2, EP3, EP4 FPα, FPβ Endothelium, Kidney, Platelets, Vascular Mast Cells, Brain, Brain, Kidney, Vascular Uterus, Airways, Vascular Platelets, Brain Smooth Muscle Cells, Airways, Lymphocytes, Smooth Muscle Cells, Smooth Muscle Cells, Macrophages, Kidney Eosinophils Platelets Eyes Prostacyclin Item No. Product Features Prostacyclin (Prostaglandin I2; PGI2) is formed from arachidonic acid primarily in the vascular endothelium and renal cortex by sequential 515211 6-keto • Sample Types: Culture Medium | Plasma Prostaglandin • Measure 6-keto PGF levels down to 6 pg/ml activities of COX and prostacyclin synthase. PGI2 is non-enzymatically 1α F ELISA Kit • Incubation : 18 hours | Development: 90-120 minutes | hydrated to 6-keto PGF1α (t½ = 2-3 minutes), and then quickly converted 1α Read: Colorimetric at 405-420 nm to the major metabolite, 2,3-dinor-6-keto PGF1α (t½= 30 minutes). Prostacyclin was once thought to be a circulating hormone that regulated • Assay 24 samples in triplicate or 36 samples in duplicate platelet-vasculature interactions, but the rate of secretion into circulation • NOTE: A portion of urinary 6-keto PGF1α is of renal origin coupled with the short half-life indicate that prostacyclin functions • NOTE : It has been found that normal plasma levels of 6-keto PGF may be low locally.
    [Show full text]
  • Vasoactive Responses of U46619, PGF2 , Latanoprost, and Travoprost
    Vasoactive Responses of U46619, PGF2␣, Latanoprost, and Travoprost in Isolated Porcine Ciliary Arteries Ineta Vysniauskiene, Reto Allemann, Josef Flammer, and Ivan O. Haefliger PURPOSE. To compare the vasoactive properties of the prosta- these responses can be modulated by SQ 29548 (TP-receptor noids U46619 (thromboxane A2 analogue), prostaglandin F2␣ antagonist) or AL-8810 (FP-receptor antagonist). (PGF2␣), latanoprost free acid, and travoprost free acid in isolated porcine ciliary arteries. METHODS. In a myograph system (isometric force measure- MATERIAL AND METHODS ment), quiescent vessels were exposed (cumulatively) to U46619, PGF , latanoprost, or travoprost (0.1 nM–0.1 mM). 2␣ Vessels Preparation Experiments were also conducted in the presence of SQ 29548 (TP-receptor antagonist; 3–10 ␮M) or AL-8810 (FP-receptor Porcine eyes were obtained from an abattoir immediately after death. antagonist; 3–30 ␮M). Contractions were expressed as the In cold modified Krebs-Ringer solution (NaCl 118 mM, KCl 4.7 mM, percentage of 100 mM potassium chloride-induced contrac- CaCl2 2.5 mM, K2PO4 1.2 mM, MgSO4 1.2 mM, NaHCO3 25 mM, tions. glucose 11.1 mM, and EDTA 0.026 mM), ciliary arteries were dissected 5 ␮ RESULTS. In quiescent vessels, contractions (concentration–re- and cut into 2-mm segments. In an organ chamber, two 45- m Ϯ tungsten wires were passed through the vessel’s lumen and attached to sponse curves) induced by (0.1 mM) PGF2␣ (87.9% 3.5%), U46619 (66.7% Ϯ 4.1%), and latanoprost (62.9% Ϯ 3.6%) were a force transducer for isometric force measurements (Myo-Interface; JP more pronounced (P Յ 0.001) than those induced by tra- Trading, Aarhus, Denmark).
    [Show full text]
  • Effect of Prostanoids on Human Platelet Function: an Overview
    International Journal of Molecular Sciences Review Effect of Prostanoids on Human Platelet Function: An Overview Steffen Braune, Jan-Heiner Küpper and Friedrich Jung * Institute of Biotechnology, Molecular Cell Biology, Brandenburg University of Technology, 01968 Senftenberg, Germany; steff[email protected] (S.B.); [email protected] (J.-H.K.) * Correspondence: [email protected] Received: 23 October 2020; Accepted: 23 November 2020; Published: 27 November 2020 Abstract: Prostanoids are bioactive lipid mediators and take part in many physiological and pathophysiological processes in practically every organ, tissue and cell, including the vascular, renal, gastrointestinal and reproductive systems. In this review, we focus on their influence on platelets, which are key elements in thrombosis and hemostasis. The function of platelets is influenced by mediators in the blood and the vascular wall. Activated platelets aggregate and release bioactive substances, thereby activating further neighbored platelets, which finally can lead to the formation of thrombi. Prostanoids regulate the function of blood platelets by both activating or inhibiting and so are involved in hemostasis. Each prostanoid has a unique activity profile and, thus, a specific profile of action. This article reviews the effects of the following prostanoids: prostaglandin-D2 (PGD2), prostaglandin-E1, -E2 and E3 (PGE1, PGE2, PGE3), prostaglandin F2α (PGF2α), prostacyclin (PGI2) and thromboxane-A2 (TXA2) on platelet activation and aggregation via their respective receptors. Keywords: prostacyclin; thromboxane; prostaglandin; platelets 1. Introduction Hemostasis is a complex process that requires the interplay of multiple physiological pathways. Cellular and molecular mechanisms interact to stop bleedings of injured blood vessels or to seal denuded sub-endothelium with localized clot formation (Figure1).
    [Show full text]
  • Activation of the Murine EP3 Receptor for PGE2 Inhibits Camp Production and Promotes Platelet Aggregation
    Activation of the murine EP3 receptor for PGE2 inhibits cAMP production and promotes platelet aggregation Jean-Etienne Fabre, … , Thomas M. Coffman, Beverly H. Koller J Clin Invest. 2001;107(5):603-610. https://doi.org/10.1172/JCI10881. Article The importance of arachidonic acid metabolites (termed eicosanoids), particularly those derived from the COX-1 and COX-2 pathways (termed prostanoids), in platelet homeostasis has long been recognized. Thromboxane is a potent agonist, whereas prostacyclin is an inhibitor of platelet aggregation. In contrast, the effect of prostaglandin E2 (PGE2) on platelet aggregation varies significantly depending on its concentration. Low concentrations of PGE2 enhance platelet aggregation, whereas high PGE2 levels inhibit aggregation. The mechanism for this dual action of PGE2 is not clear. This study shows that among the four PGE2 receptors (EP1–EP4), activation of EP3 is sufficient to mediate the proaggregatory actions of low PGE2 concentration. In contrast, the prostacyclin receptor (IP) mediates the inhibitory effect of higher PGE2 concentrations. Furthermore, the relative activation of these two receptors, EP3 and IP, regulates the intracellular level of cAMP and in this way conditions the response of the platelet to aggregating agents. Consistent with these findings, loss of the EP3 receptor in a model of venous inflammation protects against formation of intravascular clots. Our results suggest that local production of PGE2 during an inflammatory process can modulate ensuing platelet responses. Find the latest version: https://jci.me/10881/pdf Activation of the murine EP3 receptor for PGE2 inhibits cAMP production and promotes platelet aggregation Jean-Etienne Fabre,1 MyTrang Nguyen,1 Krairek Athirakul,2 Kenneth Coggins,1 John D.
    [Show full text]
  • Antiplatelet Effects of Prostacyclin Analogues: Which One to Choose in Case of Thrombosis Or Bleeding? Sylwester P
    INTERVENTIONAL CARDIOLOGY Cardiology Journal 20XX, Vol. XX, No. X, XXX–XXX DOI: 10.5603/CJ.a2020.0164 Copyright © 20XX Via Medica REVIEW ARTICLE ISSN 1897–5593 eISSN 1898–018X Antiplatelet effects of prostacyclin analogues: Which one to choose in case of thrombosis or bleeding? Sylwester P. Rogula1*, Hubert M. Mutwil1*, Aleksandra Gąsecka1, Marcin Kurzyna2, Krzysztof J. Filipiak1 11st Chair and Department of Cardiology, Medical University of Warsaw, Poland 2Department of Pulmonary Circulation, Thromboembolic Diseases and Cardiology, Center of Postgraduate Education Medical, European Health Center Otwock, Poland Abstract Prostacyclin and analogues are successfully used in the treatment of pulmonary arterial hypertension (PAH) due to their vasodilatory effect on pulmonary arteries. Besides vasodilatory effect, prostacyclin analogues inhibit platelets, but their antiplatelet effect is not thoroughly established. The antiplatelet effect of prostacyclin analogues may be beneficial in case of increased risk of thromboembolic events, or undesirable in case of increased risk of bleeding. Since prostacyclin and analogues differ regarding their potency and form of administration, they might also inhibit platelets to a different extent. This review summarizes the recent evidence on the antiplatelet effects of prostacyclin and analogue in the treatment of PAH, this is important to consider when choosing the optimal treatment regimen in tailoring to an individual patients’ needs. (Cardiol J 20XX; XX, X: xx–xx) Key words: prostacyclin analogues, pulmonary arterial hypertension, platelets, antiplatelet effect, thrombosis, bleeding Introduction tiproliferative effects [4]. The main indication for PGI2 and analogues is advanced pulmonary arterial Since 1935 when prostaglandin was isolated hypertension (PAH) and peripheral vascular disor- for the first time [1], many scientists have focused ders [5].
    [Show full text]
  • Misoprostol Induces Relaxation of Human Corpus Cavernosum Smooth Muscle: Comparison to Prostaglandin E1
    International Journal of Impotence Research (2000) 12, 107±110 ß 2000 Macmillan Publishers Ltd All rights reserved 0955-9930/00 $15.00 www.nature.com/ijir Misoprostol induces relaxation of human corpus cavernosum smooth muscle: comparison to prostaglandin E1 RB Moreland1, NN Kim1, A Nehra2, BG Parulkar3 and A Traish1,4* 1Department of Urology, Boston University School of Medicine, Boston, MA 02118, USA; 2Department of Urology, Mayo Clinic and Foundation, Rochester, MN 55905, USA; 3Department of Urology, University of Massachusetts Medical Center, Worcester, MA 01604, USA; and 4Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA Prostaglandin E1 (PGE1) relaxes trabecular smooth muscle by interacting with speci®c G-protein coupled receptors on human corpus cavernosum smooth muscle and increasing intracellular synthesis of cAMP. Misoprostol (CytotecTM), is an oral prostaglandin E analogue. The purpose of this study was to compare the functional activity of misoprostol with PGE1 in human corpus cavernosum and cultured human corpus cavernosum smooth muscle cells. Misoprostol, misoprostol free acid or PGE1 induced dose-dependent relaxations in strips of human corpus cavernosum. At concentrations greater than 1076 M, tissue recontraction was observed with all three agents. This was abrogated by pretreatment with the thromboxane A2 receptor antagonist SQ29,548. From these observations, we conclude that misoprostol is activated by human corpus cavernosum in situ and relaxes phenylephrine-precontrated tissue
    [Show full text]
  • Thromboxane B2 Production by Fetal and Neonatal Platelets: Effect of Idiopathic Respiratory Distress Syndrome and Birth Asphyxia
    756 KAAPA ET AL. 0031-3998/84/1808-0756$02.00/0 PEOIATRIC RESEARCH Vol. 18, No.8, 1984 Copyright © 1984 International Pediatric Research Foundation, Inc. Printed in U.S.A. Thromboxane B2 Production by Fetal and Neonatal Platelets: Effect of Idiopathic Respiratory Distress Syndrome and Birth Asphyxia 24 PEKKA KAAPA/ ) LASSE VIINIKKA, AND OLAVI YLIKORKALA Departments ofPediatrics and ClinicalChemistry, University ofOulu, Oulu, and Department ofObstetric and Gynecology, University of Helsinki, Helsinki, Finland Summary asphyxia and IRDS, deficient platelet function may be clinically significant, since these conditions are frequently accompanied To study the production of proaggregatory thromboxane A1 by a hemorrhagic tendency (6). (TxA1) by fetal and neonatal platelets, blood specimens were TxA2, the main derivative ofarach idonic acid in the platelets collected from umbilical cords immediately after delivery at term is the most potent endogenous proaggregatory agent which also (n = 22), from newborn infants during the first 10 days of life (n causes vasoconstriction (5). It is produced and released during = 85), from infants between 1 and 3 months of age (n = 14), and platelet aggregation and rapidly converted to its stable metabolite from healthy adults (n = 18). The blood samples were allowed TxB (4,5). Although the significance ofTxA in adults has been to clot spontaneously at +37°C for 60 min, and the concentrations 2 2 exhaustively studied (4), little is known about TxA2 in the human of thromboxane B2 (TxB1), a stable metabolite of TxA1, in the fetus and neonate although birth causes profound adaptations in sera were measured by radioimmunoassay and expressed as 6 platelet vascular functions (3).
    [Show full text]
  • Differences in Thromboxane Production Between Neonatal and Adult Platelets in Response to Arachidonic Acid and Epinephrine
    NEONATAL PLATELET THROMBOXANE FORMATION 823 003 1-3998/84/1809-0823$02.00/0 PEDIATRIC RESEARCH Vol. 18, No. 9, 1984 Copyright O 1984 International Pediatric Research Foundation, Inc. Prinred in (I.S. A. Differences in Thromboxane Production between Neonatal and Adult Platelets in Response to Arachidonic Acid and Epinephrine MARIE J. STUART, JON DUSSE, DAVID A. CLARK AND RONALD W. WALENGA Divisions of Pediatric Hematology-Oncology and Neonatology, Department of Pediatrics, State University of New York, Upstate Medical Center, Syracuse, New York 13210 Summary An impairment in platelet function is well recognized in the neonate, and includes abnormalities in the release of storage pool In this study, we have investigated the possible role of the pro- adenine nucleotides, and aggregation responses to a variety of aggregatory arachidonic acid (AA) metabolite thromboxane, in stimuli (2, 3, 10). A previous evaluation of exogenous [I4C]AA the impaired function of neonatal platelets. In platelet-rich metabolism in the platelet of the neonate did not suggest that plasma thromboxane production (measured by radioimmunoas- neonatal platelet dysfunction is related to any specific abnor- say of thromboxane B2) was not different between neonates and mality in this pathway (1 3). We observed an increased release of adults when stimulated by thrombin (at 0.1 or 1.0 U/ml) or endogenous AA from neonatal platelet membrane phospholip- collagen (70 pg/ml) although neonatal platelets produced de- ids, and decreased activity of neonatal platelet cyclooxygenase. creased thromboxane (TBXZ) postepinephrine stimulation. In These two effects counteracted each other resulting in similar response to 1 U/ml thrombin, adult and neonatal platelet-rich conversion of prelabeled arachidonic acid to TXBz in adult and plasmas produced mean values of 3.41 + 0.35 (SEM) and 3.11 f 0.49 pmol of TXB2/106 platelets, respectively.
    [Show full text]
  • Prostacyclin Synthesis by COX-2 Endothelial Cells
    Roles of Cyclooxygenase (COX)-1 and COX-2 in Prostanoid Production by Human Endothelial Cells: Selective Up-Regulation of Prostacyclin Synthesis by COX-2 This information is current as of October 2, 2021. Gillian E. Caughey, Leslie G. Cleland, Peter S. Penglis, Jennifer R. Gamble and Michael J. James J Immunol 2001; 167:2831-2838; ; doi: 10.4049/jimmunol.167.5.2831 http://www.jimmunol.org/content/167/5/2831 Downloaded from References This article cites 36 articles, 23 of which you can access for free at: http://www.jimmunol.org/content/167/5/2831.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on October 2, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2001 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Roles of Cyclooxygenase (COX)-1 and COX-2 in Prostanoid Production by Human Endothelial Cells: Selective Up-Regulation of Prostacyclin Synthesis by COX-21 Gillian E. Caughey,2* Leslie G.
    [Show full text]
  • Cytokines, Angiogenic, and Antiangiogenic Factors and Bioactive Lipids in Preeclampsia
    Nutrition 31 (2015) 1083–1095 Contents lists available at ScienceDirect Nutrition journal homepage: www.nutritionjrnl.com Review Cytokines, angiogenic, and antiangiogenic factors and bioactive lipids in preeclampsia Undurti N. Das M.D., F.A.M.S., F.R.S.C. * UND Life Sciences, Federal Way, WA 98003, USA and Department of Medicine, GVP Hospital and BioScience Research Centre, Campus of Gayatri Vidya Parishad College of Engineering, Visakhapatnam, India article info abstract Article history: Preeclampsia is a low-grade systemic inflammatory condition in which oxidative stress and Received 21 October 2014 endothelial dysfunction occurs. Plasma levels of soluble receptor for vascular endothelial growth Accepted 19 March 2015 factor (VEGFR)-1, also known as sFlt1 (soluble fms-like tyrosine kinase 1), an antiangiogenic factor have been reported to be elevated in preeclampsia. It was reported that pregnant mice deficient in Keywords: catechol-O-methyltransferase (COMT) activity show a preeclampsia-like phenotype due to a Preeclampsia deficiency or absence of 2-methoxyoestradiol (2-ME), a natural metabolite of estradiol that is Lipoxins elevated during the third trimester of normal human pregnancy. Additionally, autoantibodies (AT1- Oxidative stress 2-Methoxyestradiol AAs) that bind and activate the angiotensin II receptor type 1 a (AT1 receptor) also have a role in Polyunsaturated fatty acids preeclampsia. None of these abnormalities are consistently seen in all the patients with pre- Vascular endothelial growth factor eclampsia and some of them are not specific to pregnancy. Preeclampsia could occur due to an Endoglin imbalance between pro- and antiangiogenic factors. VEGF, an angiogenic factor, is necessary for the Soluble fms-like tyrosine kinase 1 transport of polyunsaturated fatty acids (PUFAs) to endothelial cells.
    [Show full text]