Implications for the Dynamics of Long-Term Memory

Total Page:16

File Type:pdf, Size:1020Kb

Implications for the Dynamics of Long-Term Memory Proc. Natl. Acad. Sci. USA Vol. 91, pp. 2041-2045, March 1994 Psychology Delayed emergence of effects of memory-enhancing drugs: Implications for the dynamics of long-term memory CESARE MONDADORI, BASTIAN HENGERER, THOMAS DUCRET, AND JUERGEN BORKOWSKI Pharmaceutical Research Division, CIBA-Geigy Limited, Basle, CH-4002, Switzerland Communicated by L. Weiskrantz, November 22, 1993 (receivedfor review April 27, 1993) ABSTRACT Many theories of memory polate that pro- facilitation emerges, we hoped not only to help to character- cessing of information outlasts the earning situation and ize the substances themselves but also to shed light on the involves several different physiological substrates. If such dynamics of discrete phases of memory. The strategy of physiologically distinct mecanism or stages of memory do in examining time dependence of memory effects has a well- fact exist, they should be differentially affected by particular established history for substances that interfere with memory experimental manipulations. Accordingly, a selective improve- retention but has hardly been adopted in studies of memory ment ofthe processes underlying short-term memory should be enhancement. Even with interference treatments, reports of detectable only while the information is encoded in the short- delayed effects [as with cerebral electroshock, for example term mode, and a selective influence on long-term memory (14, 15)] and protein synthesis inhibition (e.g., see refs. should be detectable only from the moment when memory is 16-20) are relatively sparse. Moreover, some memory- based on the long-term trace. Our comparative study of the modulating substances have a wide range of unspecific side time course of the effects of the cholinergic agonist arecoline, effects that complicate interpretation-i.e., direct drug- the -aminobutyric acid type B receptor antagonist CGP induced behavioral effects can interfere with the behavioral 36742, the angiotensin-converting enzyme inhibitor captopril, manifestation of the memory effects at the time of retest. In and the nootropic oxiracetam, four substances with completely the present study, we focused largely on the memory- different primary sites of action, show that the memory- enhancing effect of oxiracetam, with which the risks of enhancing effects consistently come into evidence no sooner interference are minimal given that it has no known acute than 16-24 h after the learning trial. On the one hand, this effects on spontaneous behavior at the dose used; but par- finding suggests that all these substances act by way ofthe same ticular parallel experiments were also carried out with arec- type of mechanism; on the other hand, it demonstrates that the oline, CGP 36742, and captopril. substrate modulated by the compounds forms the basis of memory only after 16-24 h. From the observation that animals also show clear signs of retention during the first 16 h-i.e., DESIGN, METHODS, PROCEDURES before the effects of the substances are measurable-it can be General Design. With oxiracetam four questions were inferred that retention during this time is mediated by other addressed. The first was to determine precisely when the mechanisms that are not influenced by any of the substances. enhancement of retention becomes manifest. Retention was therefore assessed in separate groups of animals at various The group ofpreparations already found to display memory- intervals (1, 2, 4, 8, 16, and 24 h) after the learning trial. The enhancing effects in experimental learning situations is sur- second question was whether the timing of the injection in prisingly large. Even more surprising is the fact that the relation to the learning trial and to the retention test itselfhad primary pharmacological sites of action of these substances an influence on the time ofappearance ofenhanced retention. are very heterogeneous. Among others, the list includes For this purpose, oxiracetam was administered 1, 4, or 8 h cholinergic agonists at the muscarinic and nicotinic receptors before or immediately after the learning trial. The third (1, 2); cholinesterase inhibitors such as physostigmine (3); question was whether the time of day had an influence on calcium-channel blockers such as nimodipine (4); angioten- performance during retention. To this end, retention was sin-converting enzyme (ACE) inhibitors such as captopril (5); always measured simultaneously in a group that had already transmitters such as, e.g., norepinephrine (6); t-aminobu- been subjected to training and treatment 1 day beforehand. tyric acid type B (GABAB) receptor blockers such as CGP Since the corresponding controls were also tested at each 36742 (7); peptides such as vasopressin and corticotropin (8); interval, the experiments included an additional seven glucose (9); and, not least, the large group of so-called treated and seven control groups with retention intervals of nootropics including oxiracetam and piracetam (10, 11). 25, 26, 28, 32, 40, 44, and 48 h. The fourth question was how Despite their different primary sites of action, all of the long the enhanced retention could be seen to persist. This was above-mentioned substances have a similar effect in a simple assessed by using retention intervals of4, 8, and 16 days after one-trial passive avoidance task; if administered, e.g., 1 h the learning trial. before the learning trial, they improve the retention perfor- The generality of the delayed emergence of enhanced mance at retest 24 h later (12, 13). At the time of retention retention was then also studied with the muscarinic agonist testing, the changes induced by the substances have already arecoline, the GABAB receptor blocker CGP 36742, and the been expressed at a stage generally reckoned to be in ACE inhibitor captopril. With these three substances, only long-term memory, but it is not known when these changes immediate posttrial administration was used. To test the occurred. Indeed, it is often implicitly assumed that the possible influence of time of day, the same parallel control facilitatory effects occurred concomitantly with the initial measurements were made as in the experiments with oxirac- learning itself, demonstrable at short retention intervals. By etam. making a comparative study of the time at which memory For all substances, the optimal dosage was first determined in pilot experiments in which dose-response profiles for The publication costs ofthis article were defrayed in part by page charge payment. This article must therefore be hereby marked "advertisement" Abbreviations: ACE, angiotensin-converting enzyme; GABAB, in accordance with 18 U.S.C. §1734 solely to indicate this fact. y-aminobutyric acid type B receptor. 2041 Downloaded by guest on October 1, 2021 2042 Psychology: Mondadori et al. Proc. Natl. Acad Sci. USA 91 (1994) memory enhancement were obtained. Accordingly, the doses retest latencies permitted retests to be carried out within an used were 100 mg of oxiracetam per kg, 0.3 mg of arecoline acceptable time frame (in some cases, five groups had to be per kg, 10 mg of CGP 36742 per kg, and 3 mg of captopril per tested simultaneously); (ii) the conditions were such that only kg. a few animals were included in the analysis, with cutoff Animals. Male mice (MA 01 Tif; 20-22 g) from our own latencies of 150 sec, which enhanced the power of the animal breeding unit were used throughout the experiment. statistical evaluation; and (iii) it provided an optimal baseline They were housed in plastic cages in a room lit from 6 a.m. against which to detect enhancement of retention. to 6 p.m. and had free access to food and water at all times. In all experiments, the animals were randomly assigned to Apparatus and Procedures. The apparatus consisted of an the different groups (n = 25) receiving the drug or saline. All electrifiable grid (50 x 50 cm) of stainless-steel rods (4 mm in administration was i.p. Retests were performed blind. diameter; spaced 13 mm apart), enclosed by gray poly(vinyl Learning was assessed by comparing the drug and saline chloride) (PVC) walls 50 cm high. In the middle of the grid groups with no-shock controls. Drug effects were assessed in was a platform 12 mm high and 67 mm in diameter, which was relation to a group receiving saline injection but otherwise enclosed by a removable gray PVC tube (180 mm high; treated identically to the drug groups. The data deriving from 68-mm inner diameter). The mice were placed one by one on such experiments are comparable to "failure-time data" (21). the platform inside the tube, which was removed after 10 sec. The appropriate statistical procedure to analyze the outcome With a few exceptions, they stepped down from the platform of single sets of experiments is a generalized Wilcoxon test within 10 sec and received a footshock (1 mA; 1 sec). (22). No-shock controls were run in parallel. At a specified interval after training, each animal was again placed on the platform and the step-down latency was recorded ("retest latency") RESULTS up to a maximum cutoff time of 150 sec. The experimental Oxiracetam. Time ofemergence ofretention enhancement. parameters were adjusted to produce minimal indications of If the compound was administered 1 h before the learning learning. There were three reasons for doing so: (i) the short trial, its effect on memory emerged reliably only after a 150- 100- S 0 0 * * 0 ..' 0 10 .-N 0 1 2 4 8 16 20 24 hours 0) .0-..4-. 150- 0) 0 100- 0 *6I0 *6,; ~~~~~~~~~~m~~~~~~~~10: 0 25 26 28 32 40 44 48 hours FIG. 1. Step-down passive avoidance in mice. Effects of pretrial oxiracetam on retention performance at various retention intervals after training and treatment. Oxiracetam was always administered i.p. 1 h before the learning trial. Boxplots represent the retest latencies, in seconds, of the various experimental and control groups. Hatched box, saline control; open box, oxiracetam (100 mg/kg, i.p.); stippled box, no-shock controls.
Recommended publications
  • NOOTROPIL® Piracetam
    NOOTROPIL® Piracetam QUALITATIVE AND QUANTITATIVE COMPOSITION Each film-coated tablet contains 800 mg or 1200 mg of piracetam. Each ml of oral solution contains 200 mg of piracetam EXCIPIENTS NOOTROPIL 800 mg and 1200 mg film-coated tablet: Core: Macrogol 6000 - Colloidal anhydrous silica - Magnesium stearate - Sodium croscarmellose Film-coating: Hydroxypropylmethylcellulose - Titanium dioxide (E171) - Macrogol 400 - Macrogol 6000. NOOTROPIL 200 mg/ml oral solution: Glycerol (85%) - Saccharin sodium - Apricot flavour - Caramel flavour - Methyl parahydroxybenzoate - Propyl parahydroxybenzoate - Sodium acetate - Glacial acetic acid - Purified water. PHARMACEUTICAL FORM NOOTROPIL Tablet 800 and 1200 mg: white, oblong, film-coated tablet, with a bisect line, marked N/N on one side and plain on the other side NOOTROPIL Oral Solution 20%: clear colourless solution INDICATIONS 1. Studies carried out in the elderly suffering from loss of memory, vertigo, a lack of concentration or of alertness, changes of mood, a deterioration in behaviour and personal negligence, demonstrate an improvement in symptoms. These symptoms can also provide an early warning of the onset of pathological ageing such as Alzheimer’s Disease, an Alzheimer type of senile dementia, or the dementia produced by multiple cerebral infarcts. 2. NOOTROPIL is advocated in the treatment of sickle-cell vaso-occlusive crises. 3. Studies have shown some improvement in children with learning difficulties associated with the written word, particularly with textual understanding which cannot be explained by intellectual backwardness, inadequate education or by the family environment. The administration of NOOTROPIL does not replace other measures also well adapted to correct these learning difficulties, such as remedial teaching. DOSAGE AND ADMINISTRATION Oral formulations 1 NOOTROPIL should be administered orally, and may be taken with or without food.
    [Show full text]
  • Treatment Protocol Copyright © 2018 Kostoff Et Al
    Prevention and reversal of Alzheimer's disease: treatment protocol Copyright © 2018 Kostoff et al PREVENTION AND REVERSAL OF ALZHEIMER'S DISEASE: TREATMENT PROTOCOL by Ronald N. Kostoffa, Alan L. Porterb, Henry. A. Buchtelc (a) Research Affiliate, School of Public Policy, Georgia Institute of Technology, USA (b) Professor Emeritus, School of Public Policy, Georgia Institute of Technology, USA (c) Associate Professor, Department of Psychiatry, University of Michigan, USA KEYWORDS Alzheimer's Disease; Dementia; Text Mining; Literature-Based Discovery; Information Technology; Treatments Prevention and reversal of Alzheimer's disease: treatment protocol Copyright © 2018 Kostoff et al CITATION TO MONOGRAPH Kostoff RN, Porter AL, Buchtel HA. Prevention and reversal of Alzheimer's disease: treatment protocol. Georgia Institute of Technology. 2018. PDF. https://smartech.gatech.edu/handle/1853/59311 COPYRIGHT AND CREATIVE COMMONS LICENSE COPYRIGHT Copyright © 2018 by Ronald N. Kostoff, Alan L. Porter, Henry A. Buchtel Printed in the United States of America; First Printing, 2018 CREATIVE COMMONS LICENSE This work can be copied and redistributed in any medium or format provided that credit is given to the original author. For more details on the CC BY license, see: http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License<http://creativecommons.org/licenses/by/4.0/>. DISCLAIMERS The views in this monograph are solely those of the authors, and do not represent the views of the Georgia Institute of Technology or the University of Michigan. This monograph is not intended as a substitute for the medical advice of physicians. The reader should regularly consult a physician in matters relating to his/her health and particularly with respect to any symptoms that may require diagnosis or medical attention.
    [Show full text]
  • (19) United States (12) Patent Application Publication (10) Pub
    US 20130289061A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2013/0289061 A1 Bhide et al. (43) Pub. Date: Oct. 31, 2013 (54) METHODS AND COMPOSITIONS TO Publication Classi?cation PREVENT ADDICTION (51) Int. Cl. (71) Applicant: The General Hospital Corporation, A61K 31/485 (2006-01) Boston’ MA (Us) A61K 31/4458 (2006.01) (52) U.S. Cl. (72) Inventors: Pradeep G. Bhide; Peabody, MA (US); CPC """"" " A61K31/485 (201301); ‘4161223011? Jmm‘“ Zhu’ Ansm’ MA. (Us); USPC ......... .. 514/282; 514/317; 514/654; 514/618; Thomas J. Spencer; Carhsle; MA (US); 514/279 Joseph Biederman; Brookline; MA (Us) (57) ABSTRACT Disclosed herein is a method of reducing or preventing the development of aversion to a CNS stimulant in a subject (21) App1_ NO_; 13/924,815 comprising; administering a therapeutic amount of the neu rological stimulant and administering an antagonist of the kappa opioid receptor; to thereby reduce or prevent the devel - . opment of aversion to the CNS stimulant in the subject. Also (22) Flled' Jun‘ 24’ 2013 disclosed is a method of reducing or preventing the develop ment of addiction to a CNS stimulant in a subj ect; comprising; _ _ administering the CNS stimulant and administering a mu Related U‘s‘ Apphcatlon Data opioid receptor antagonist to thereby reduce or prevent the (63) Continuation of application NO 13/389,959, ?led on development of addiction to the CNS stimulant in the subject. Apt 27’ 2012’ ?led as application NO_ PCT/US2010/ Also disclosed are pharmaceutical compositions comprising 045486 on Aug' 13 2010' a central nervous system stimulant and an opioid receptor ’ antagonist.
    [Show full text]
  • Aniracetam Reduces Glutamate Receptor Desensitization and Slows
    Proc. Natl. Acad. Sci. USA Vol. 88, pp. 10936-10940, December 1991 Neurobiology Aniracetam reduces glutamate receptor desensitization and slows the decay of fast excitatory synaptic currents in the hippocampus (non-N-methyl-D-aspartate receptor/synapse) JEFFRY S. ISAACSON*t AND ROGER A. NICOLLtt *Physiology Graduate Program and the Departments of SPharmacology and tPhysiology, University of California, San Francisco, CA 94143-0450 Communicated by Floyd E. Bloom, September 16, 1991 ABSTRACT Aniracetam is a nootropic drug that has been and DL-2-amino-5-phosphonovaleric acid (50 ,uM) were shown to selectively enhance quisqualate receptor-mediated added to the medium to block y-aminobutyric acid type A responses inXenopus oocytes injected with brain mRNA and in (GABAA) receptors and NMDA receptors, respectively. In hippocampal pyramidal cells [Ito, I., Tanabe, S., Kohda, A. & the majority of experiments examining iontophoretic re- Sugiyama, H. (1990) J. Physiol. (London) 424, 533-544]. We sponses, tetrodotoxin (0.5-1 1uM) was included to block have used patch clamp recording techniques in hippocampal sodium-dependent action potentials. Currents were recorded slices to elucidate the mechanism for this selective action. We with an Axopatch 1B amplifier from neurons in the CA1 and find that aniracetam enhances glutamate-evoked currents in CA3 pyramidal cell layers and granule cell layer of the whole-cell recordings and, in outside-out patches, strongly dentate gyrus using the "blind" whole-cell recording tech- reduces glutamate receptor desensitization. In addition, nique (15, 16). Patch electrodes (tip diameter = 2 Ium) aniracetam selectively prolongs the time course and increases contained (in mM) either a CsF (110 CsF, 10 CsCl, 10 Hepes, the peak amplitude of fast synaptic currents.
    [Show full text]
  • Cognitive Functions Enhancers Racetams
    Central nervous system stimulants • compounds stimulating mental functions and physical performance 1. Phenylethylamine and phenylisopropylamine derivatives 2. Modafinil 3. Purine alkaloids 4. Compounds with tropane scaffold ● different concept to those of Ashutosh Kar, Medicinal Chemistry, Anshan, Tunbridge Wells, UK, 2006, Chapter 8, pp. 194-209 © Oldřich Farsa 2011 1. Phenylethylamine and phenylisopropylamine derivatives • natural catecholamines analogues OH H HO N NH R 2 CH HO 3 amphetamine R = H noradrenaline R = CH3 adrenaline Phenylethylamine and phenylisopropylamine derivatives = indirect adrenergics – do not interact directly with adrenergic receptors in the brain but inhibit reuptake of catecholamines or increse their release from synapses; some of them act similarly also in serotoninergic system •centrally stimulating and anorectic effects -OH group in α-position toward the aromatic ring is missing or O is the part of a cycle (morpholine) -OH group on the benzene ring are missing or etherified phenylethylamine moiety can also be a part of a cycle R1 R1 R2 N H 1. Phenylethylamine and phenylisopropylamine derivatives Compounds used as therapeutics H H N H C 2 3 N O (R,S)-1-phenyl-2-aminopropane 2-phenyl-3- amphetamine methylmorpholine phenmethrazine •supression of fatigue, feelings of hunger and thirst, increase of performance •mobilization of energy reserves of organism •indications: narcolepsy, obesity (obsolete) •overdosage: total exhausting, dehydratation, circulation breakdown •see further centrally acting anobesics (anorectics)
    [Show full text]
  • NPS) Via Online Drugsmarkten
    Een studie naar de motieven achter de aankoop van New Psychoactive Substances (NPS) via online drugsmarkten Masterproef neergelegd tot het behalen van de graad van Master in de Criminologische Wetenschappen door (01404422) Noninckx Robi Academiejaar 2017-2018 Promotor : Commissaris : Colman Charlotte Bawin Frédérique INHOUDSOPGAVE Afkortingenlijst ...................................................................................................................... III Woord vooraf .......................................................................................................................... IV DEEL I: INLEIDING EN METHODOLOGIE .................................................................... 1 1.1. Situering van het fenomeen NPS 1 1.2. Probleemstelling 3 1.3. Opzet 4 1.3.1. Doelstelling 4 1.3.2. Onderzoeksvragen 6 1.4. Methodologie 7 1.4.1. Literatuurstudie 7 1.4.2. Kwalitatief luik 10 DEEL II: NEW PSYCHOACTIVE SUBSTANCES........................................................... 17 2.1. Definitie 17 2.2. Categorisering en verschillende soorten NPS 19 2.2.1. Stoffen die niet (meer) toebehoren tot de categorie NPS 19 2.2.2. Stoffen die wel toebehoren tot de categorie NPS 22 2.3. Beleidsmatig en wettelijk kader 35 2.3.1. Internationaal niveau: de Verenigde Naties 35 2.3.2. Regionaal niveau: de Europese Unie 38 2.3.3. Nationaal niveau: het wettelijk en beleidsmatig kader in België 41 DEEL III: DE HANDEL VAN NPS VIA ONLINE DRUGSMARKTEN ........................ 47 3.1. Clearnetmarkets 47 3.2. Darknetmarkets of Cryptomarkets 48 3.3. NPS op online drugsmarkten 51 3.3.1. De handel van NPS op het clearnet 51 3.3.2. De handel van NPS op het darknet 56 I DEEL IV: HET GEBRUIK VAN NPS EN DE NPS-GEBRUIKER ................................. 58 4.1. Het gebruik van NPS in de literatuur 59 4.1.1. De prevalentie van het NPS-gebruik 59 4.1.2.
    [Show full text]
  • Neuroenhancement in Healthy Adults, Part I: Pharmaceutical
    l Rese ca arc ni h li & C f B o i o l e Journal of a t h n Fond et al., J Clinic Res Bioeth 2015, 6:2 r i c u s o J DOI: 10.4172/2155-9627.1000213 ISSN: 2155-9627 Clinical Research & Bioethics Review Article Open Access Neuroenhancement in Healthy Adults, Part I: Pharmaceutical Cognitive Enhancement: A Systematic Review Fond G1,2*, Micoulaud-Franchi JA3, Macgregor A2, Richieri R3,4, Miot S5,6, Lopez R2, Abbar M7, Lancon C3 and Repantis D8 1Université Paris Est-Créteil, Psychiatry and Addiction Pole University Hospitals Henri Mondor, Inserm U955, Eq 15 Psychiatric Genetics, DHU Pe-psy, FondaMental Foundation, Scientific Cooperation Foundation Mental Health, National Network of Schizophrenia Expert Centers, F-94000, France 2Inserm 1061, University Psychiatry Service, University of Montpellier 1, CHU Montpellier F-34000, France 3POLE Academic Psychiatry, CHU Sainte-Marguerite, F-13274 Marseille, Cedex 09, France 4 Public Health Laboratory, Faculty of Medicine, EA 3279, F-13385 Marseille, Cedex 05, France 5Inserm U1061, Idiopathic Hypersomnia Narcolepsy National Reference Centre, Unit of sleep disorders, University of Montpellier 1, CHU Montpellier F-34000, Paris, France 6Inserm U952, CNRS UMR 7224, Pierre and Marie Curie University, F-75000, Paris, France 7CHU Carémeau, University of Nîmes, Nîmes, F-31000, France 8Department of Psychiatry, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Eschenallee 3, 14050 Berlin, Germany *Corresponding author: Dr. Guillaume Fond, Pole de Psychiatrie, Hôpital A. Chenevier, 40 rue de Mesly, Créteil F-94010, France, Tel: (33)178682372; Fax: (33)178682381; E-mail: [email protected] Received date: January 06, 2015, Accepted date: February 23, 2015, Published date: February 28, 2015 Copyright: © 2015 Fond G, et al.
    [Show full text]
  • WO 2016/001643 Al 7 January 2016 (07.01.2016) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2016/001643 Al 7 January 2016 (07.01.2016) P O P C T (51) International Patent Classification: (74) Agents: GILL JENNINGS & EVERY LLP et al; The A61P 25/28 (2006.01) A61K 31/194 (2006.01) Broadgate Tower, 20 Primrose Street, London EC2A 2ES A61P 25/16 (2006.01) A61K 31/205 (2006.01) (GB). A23L 1/30 (2006.01) (81) Designated States (unless otherwise indicated, for every (21) International Application Number: kind of national protection available): AE, AG, AL, AM, PCT/GB20 15/05 1898 AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, (22) International Filing Date: DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, 29 June 2015 (29.06.2015) HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (25) Filing Language: English KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (26) Publication Language: English PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (30) Priority Data: SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, 141 1570.3 30 June 2014 (30.06.2014) GB TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. 1412414.3 11 July 2014 ( 11.07.2014) GB (84) Designated States (unless otherwise indicated, for every (71) Applicant: MITOCHONDRIAL SUBSTRATE INVEN¬ kind of regional protection available): ARIPO (BW, GH, TION LIMITED [GB/GB]; 39 Glasslyn Road, London GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, N8 8RJ (GB).
    [Show full text]
  • September 25, 2020 Guangzhou Wondfo Biotech Co., Ltd. Joe Shia
    September 25, 2020 Guangzhou Wondfo Biotech Co., Ltd. ℅ Joe Shia Manager LSI International 504 E Diamond Ave., Suite I Gaithersburg, MD 20877 Re: K202567 Trade/Device Name: Wondfo T-Dip® Multi-Drug Urine Test Panel Wondfo T-Dip® Multi-Drug Urine Test Panel Rx Regulation Number: 21 CFR 862.3100 Regulation Name: Amphetamine test system Regulatory Class: Class II Product Code: NFT, NGL, PTH, NFV, NFY, PTG, NGG, LCM, QBF, QAW, NFW Dated: September 2, 2020 Received: September 4, 2020 Dear Joe Shia: We have reviewed your Section 510(k) premarket notification of intent to market the device referenced above and have determined the device is substantially equivalent (for the indications for use stated in the enclosure) to legally marketed predicate devices marketed in interstate commerce prior to May 28, 1976, the enactment date of the Medical Device Amendments, or to devices that have been reclassified in accordance with the provisions of the Federal Food, Drug, and Cosmetic Act (Act) that do not require approval of a premarket approval application (PMA). You may, therefore, market the device, subject to the general controls provisions of the Act. Although this letter refers to your product as a device, please be aware that some cleared products may instead be combination products. The 510(k) Premarket Notification Database located at https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm identifies combination product submissions. The general controls provisions of the Act include requirements for annual registration, listing of devices, good manufacturing practice, labeling, and prohibitions against misbranding and adulteration. Please note: CDRH does not evaluate information related to contract liability warranties.
    [Show full text]
  • IJBCP International Journal of Basic & Clinical Pharmacology Role Of
    Print ISSN: 2319-2003 | Online ISSN: 2279-0780 IJBCP International Journal of Basic & Clinical Pharmacology doi: 10.5455/2319-2003.ijbcp20131022 Research Article Role of piracetam on cognitive function in epilepsy and with antiepileptics in rats Siddharth R. Chaudhari1, Priti P. Dhande2*, Vijaya A. Pandit2 1Bristol-Myers Squibb India Pvt. ABSTRACT Ltd, Mumbai-13, Maharashtra, Background: To study extent of cognitive impairment by epilepsy & India 2Department of Pharmacology, antiepileptic treatment and evaluate the role of piracetam on it. Bharati Vidyapeeth (DU) Methods: 48 animals were divided into 6 groups: I-Control, II- Topiramate, III- Medical College, Pune- 43, Topiramate+Piracetam, IV-Valproate, V-Valproate+Piracetam, VI-Piracetam. Maharashtra, India Baseline cognitive functions were measured using Cook’s pole climbing apparatus (CPCA) and Elevated plus maze (EPM). In CPCA, on completion of Received: 10 August 2013 training, number of avoidances (NOA) out of 10 trials were noted while in Accepted: 18 August 2013 EPM, transfer latency (TL) was measured. Kindling was induced by 30mg/kg Pentylenetetrazol (PTZ), i.p. to all groups (except Group I) on alternate days till *Correspondence to: seizures developed. Groups were treated with respective drugs orally for 21 days and cognitive functions measured again. Dr. Priti P. Dhande, Email: [email protected] Results: Significant decrease in NOA & increase in TL was observed after PTZ kindling. Topiramate further significantly impaired NOA and TL whereas © 2013 Chaudhari SR et al. This Valproate significantly reduced NOA in CPCA but increase in TL was not is an open-access article significant. Treatment with Piracetam significantly increased Topiramate, Valproate and PTZ kindling induced decrease in NOA as also significantly distributed under the terms of the Creative Commons reduced Topiramate and PTZ kindling induced increase in TL.
    [Show full text]
  • Effects of the Histamine H3 Receptor Antagonist ABT-239 on Cognition
    Pharmacological Reports Copyright © 2012 2012, 64, 13161325 by Institute of Pharmacology ISSN 1734-1140 Polish Academy of Sciences EffectsofthehistamineH3 receptorantagonist ABT-239oncognitionandnicotine-induced memoryenhancementinmice MartaKruk1,JoannaMiszkiel2,AndrewC.McCreary3, EdmundPrzegaliñski2,Ma³gorzataFilip2,4,Gra¿ynaBia³a1 1 DepartmentofPharmacologyandPharmacodynamics,MedicalUniversityofLublin,ChodŸki4A, PL20-093Lublin,Poland 2 LaboratoryofDrugAddictionPharmacology,InstituteofPharmacology,PolishAcademyofSciences,Smêtna12, PL31-343Kraków,Poland 3 BrainsOn-Line,deMudden16,9747AWGroningen,TheNetherlands 4 DepartmentofToxicology,FacultyofPharmacy,JagiellonianUniversity,CollegeofMedicine,Medyczna9, PL30-688Kraków,Poland Correspondence: Gra¿ynaBia³a,e-mail:[email protected] Abstract: Background: The strong correlation between central histaminergic and cholinergic pathways on cognitive processes has been re- ported extensively. However, the role of histamine H3 receptor mechanisms interacting with nicotinic mechanisms has not previ- ouslybeen extensivelyinvestigated. Methods: The current study was conducted to determine the interactions of nicotinic and histamine H3 receptor systems with regard to learning and memory function using a modified elevated plus-maze test in mice. In this test, the latency for mice to move from the open arm to the enclosed arm (i.e., transfer latency) was used as an index of memory. We tested whether ABT-239 (4-(2-{2-[(2R)-2- methylpyrrolidinyl]ethyl}-benzofuran-5-yl), an H3 receptor antagonist/inverse
    [Show full text]
  • BULGARIA New Development, Trends and In-Depth Information on Selected Issues
    Focal Point Logo 2013 NATIONAL REPORT (2012 data) TO THE EMCDDA by the Reitox National Focal Point BULGARIA New Development, Trends and in-depth information on selected issues REITOX Part A: New Developments and Trends 1. Drug policy: legislation, strategies and economic analysis 2. Drug use in the general population and specific targeted-groups 3. Prevention 4. Problem Drug Use 5. Drug-related treatment: treatment demand and treatment availability 6. Health correlates and consequences 7. Responses to Health Correlates and Consequences 8. Social correlates and social reintegration 9. Drug-related crime, prevention of drug related crime and prison 10. Drug Markets 2 1. Drug policy: legislation, strategies and economic analysis Within the framework of this section the following main topics will be reviewed: Legislative framework; National action plan, strategy, evaluation and coordination; Economic analysis; Legislative framework Acts, regulations, directives or guidelines in the sphere of drug addictions and drugs (supply and demand) In 2012 a total of nine amendments of the legislative regulation of the Republic of Bulgaria were adopted, including the adoption of two regulations and of seven amendments of the acts and legal regulations in the sphere of addictions. 1. On 20.06.2012 Regulation № 2 was adopted of the terms and conditions of implementing programmes for treatment with agonists and agonist-antagonists of individuals dependent on opioids. 1 By virtue of this regulation the following items are laid down: The terms and conditions for issuing an authorization for the implementation of programmes for treatment with agonists and agonist-antagonists of individuals dependent on opioids. The requirements for the individuals who can lead programmes and the requirements for the healthcare facilities where the programmes can be implemented.
    [Show full text]