Genes and Diseases

Total Page:16

File Type:pdf, Size:1020Kb

Genes and Diseases Genes and Diseases Harvey Ras oncogene Leukemia, chronic myeloid Myotonic dystrophy Retinoblastoma Severe combined immunodeficiency Narcolepsy From NCBI: Tuberous sclerosis Neurofibromatosis http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=gnd Von Hippel-Lindau syndrome Male-Specific Diseases Niemann–Pick disease Alport syndrome Parkinson disease Genes and Disease is a collection of articles that The Digestive System Male pattern baldness Phenylketonuria discuss genes and the diseases that they cause. These Colon cancer Prostate cancer Prader-Willi syndrome genetic disorders are organized by the parts of the Crohn's disease SRY: Sex determination Refsum disease body that they affect. As some diseases affect various Cystic fibrosis Rett syndrome body systems, they appear in more than one chapter. Diabetes, type 1 Muscle and Bone Spinal muscular atrophy Glucose galactose malabsorption Achondroplasia Spinocerebellar ataxia With each genetic disorder, the underlying Pancreatic cancer Amyotrophic lateral sclerosis Tangier disease mutation(s) is discussed, along with clinical features Wilson's disease Charcot–Marie–Tooth syndrome Tay-Sachs disease and links to key websites. You can browse through Zellweger syndrome Cockayne syndrome Tuberous sclerosis the articles online, and you can also download a Diastrophic dysplasia Von Hippel-Lindau syndrome printable file (PDF) of each chapter. Ear, Nose, and Throat Duchenne muscular dystrophy Williams syndrome Deafness Ellis-van Creveld syndrome Wilson's disease From Genes and Disease you can delve into many Neurofibromatosis Fibrodysplasia ossificans progressiva Zellweger syndrome online related resources with free and full access. For Pendred syndrome Marfan syndrome example, you can visit the human genome to see the Myotonic dystrophy Nutritional and Metabolic Diseases location of the genes implicated in each disorder. Diseases of the Eye Adrenoleukodystrophy Best disease Neonatal Diseases Diabetes, type 1 You can also find related gene sequences in different Glaucoma Achondroplasia Gaucher disease organisms. And for the very latest information, you Gyrate atrophy of the choroid and retina Angelman syndrome Glucose galactose malabsorption can search for complete research articles, and look in Retinoblastoma Cockayne syndrome Hereditary hemochromatosis other books in the NCBI Bookshelf. Cystic fibrosis Lesch-Nyhan syndrome Female-Specific Diseases DiGeorge syndrome Maple syrup urine disease Currently over 80 genetic disorders have been Breast and ovarian cancer Fragile X syndrome Menkes syndrome summarized, and the content of Genes and Disease is Rett syndrome Marfan syndrome Niemann–Pick disease continually growing. Prader-Willi syndrome Obesity Glands and Hormones Severe combined immunodeficiency Pancreatic cancer Blood and Lymph Diseases Adrenal hyperplasia, congenital Waardenburg syndrome Phenylketonuria Anemia, sickle cell Adrenoleukodystrophy Werner syndrome Prader-Willi syndrome Burkitt lymphoma Autoimmune polyglandular syndrome Williams syndrome Porphyria Gaucher disease Breast and ovarian cancer Zellweger syndrome Refsum disease Hemophilia A Cockayne syndrome Tangier disease Leukemia, chronic myeloid Diabetes, type 1 The Nervous System Tay-Sachs disease Niemann–Pick disease Diastrophic dysplasia Adrenoleukodystrophy Wilson's disease Paroxysmal nocturnal hemoglobinuria Multiple endocrine neoplasia Alzheimer disease Zellweger syndrome Porphyria Pendred syndrome Amyotrophic lateral sclerosis Thalassemia Angelman syndrome Respiratory Diseases The Heart and Blood Vessels Ataxia telangiectasia Alpha-1-antitrypsin deficiency Cancers Ataxia telangiectasia Charcot–Marie–Tooth syndrome Asthma Breast and ovarian cancer Atherosclerosis Cockayne syndrome Cystic fibrosis Burkitt lymphoma Long QT syndrome Deafness Lung carcinoma, small cell Colon cancer Von Hippel-Lindau syndrome Duchenne muscular dystrophy Leukemia, chronic myeloid Williams syndrome Epilepsy Skin and Connective Tissue Lung carcinoma, small cell Essential tremor Male pattern baldness Malignant melanoma Diseases of the Immune System Familial Mediterranean fever Diastrophic dysplasia Multiple endocrine neoplasia Asthma Fragile X syndrome Ellis-van Creveld syndrome Neurofibromatosis Ataxia telangiectasia Friedreich's ataxia Marfan syndrome The p53 tumor suppressor protein Autoimmune polyglandular syndrome Gaucher disease Malignant melanoma Pancreatic cancer Burkitt lymphoma Huntington disease Menkes syndrome Polycystic kidney disease Diabetes, type 1 Lesch-Nyhan syndrome Porphyria Prostate cancer DiGeorge syndrome Maple syrup urine disease Immunodeficiency with hyper-IgM Menkes syndrome Science Honors Program Computers & Chemistry Spring 2007 Genes and Diseases. Pick a disease from the list given out in class. Try to find a genetic disease that is caused by a mutation in a single gene. Many of the diseases in the list are caused by multiple genes, which may be located on multiple chromosomes. Go to the Genes and Diseases reference from NCBI (http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=gnd) to find out about the genetic disorder. What disease did you choose: _________________________________________________________________ What Chromosome(s) is the gene(s) on? ________________________________________________________ What protein(s) does the gene(s) code for? ______________________________________________________ __________________________________________________________________________________________ __________________________________________________________________________________________ Using PubMed or OMIM, give the titles of at least two recently published papers that relate to disease and its gene(s). __________________________________________________________________________________________ __________________________________________________________________________________________ Briefly describe the disease: _________________________________________________________________ __________________________________________________________________________________________ __________________________________________________________________________________________ __________________________________________________________________________________________ __________________________________________________________________________________________ __________________________________________________________________________________________ __________________________________________________________________________________________ __________________________________________________________________________________________ __________________________________________________________________________________________ __________________________________________________________________________________________ .
Recommended publications
  • Circle Applicable Codes
    IDENTIFYING INFORMATION (please print legibly) Individual’s Name: DOB: Last 4 Digits of Social Security #: CIRCLE APPLICABLE CODES ICD-10 ICD-10 ICD-9 DIAGNOSTIC ICD-9 DIAGNOSTIC PRIMARY ICD-9 CODES CODE CODE PRIMARY ICD-9 CODES CODE CODE Abetalipoproteinemia 272.5 E78.6 Hallervorden-Spatz Syndrome 333.0 G23.0 Acrocephalosyndactyly (Apert’s Syndrome) 755.55 Q87.0 Head Injury, unspecified – Age of onset: 959.01 S09.90XA Adrenaleukodystrophy 277.86 E71.529 Hemiplegia, unspecified 342.9 G81.90 Arginase Deficiency 270.6 E72.21 Holoprosencephaly 742.2 Q04.2 Agenesis of the Corpus Callosum 742.2 Q04.3 Homocystinuria 270.4 E72.11 Agenesis of Septum Pellucidum 742.2 Q04.3 Huntington’s Chorea 333.4 G10 Argyria/Pachygyria/Microgyria 742.2 Q04.3 Hurler’s Syndrome 277.5 E76.01 or 758.33 Aicardi Syndrome 333 G23.8 Hyperammonemia Syndrome 270.6 E72.4 Alcohol Embryo and Fetopathy 760.71 F84.5 I-Cell Disease 272.2 E77.0 Anencephaly 655.0 Q00.0 Idiopathic Torsion Dystonia 333.6 G24.1 Angelman Syndrome 759.89 Q93.5 Incontinentia Pigmenti 757.33 Q82.3 Asperger Syndrome 299.8 F84.5 Infantile Cerebral Palsy, unspecified 343.9 G80.9 Ataxia-Telangiectasia 334.8 G11.3 Intractable Seizure Disorder 345.1 G40.309 Autistic Disorder (Childhood Autism, Infantile 299.0 F84.0 Klinefelter’s Syndrome 758.7 Q98.4 Psychosis, Kanner’s Syndrome) Biotinidase Deficiency 277.6 D84.1 Krabbe Disease 333.0 E75.23 Canavan Disease 330.0 E75.29 Kugelberg-Welander Disease 335.11 G12.1 Carpenter Syndrome 759.89 Q87.0 Larsen’s Syndrome 755.8 Q74.8 Cerebral Palsy, unspecified 343.69 G80.9
    [Show full text]
  • 2018 Etiologies by Frequencies
    2018 Etiologies in Order of Frequency by Category Hereditary Syndromes and Disorders Count CHARGE Syndrome 958 Down syndrome (Trisomy 21 syndrome) 308 Usher I syndrome 252 Stickler syndrome 130 Dandy Walker syndrome 119 Cornelia de Lange 102 Goldenhar syndrome 98 Usher II syndrome 83 Wolf-Hirschhorn syndrome (Trisomy 4p) 68 Trisomy 13 (Trisomy 13-15, Patau syndrome) 60 Pierre-Robin syndrome 57 Moebius syndrome 55 Trisomy 18 (Edwards syndrome) 52 Norrie disease 38 Leber congenital amaurosis 35 Chromosome 18, Ring 18 31 Aicardi syndrome 29 Alstrom syndrome 27 Pfieffer syndrome 27 Treacher Collins syndrome 27 Waardenburg syndrome 27 Marshall syndrome 25 Refsum syndrome 21 Cri du chat syndrome (Chromosome 5p- synd) 16 Bardet-Biedl syndrome (Laurence Moon-Biedl) 15 Hurler syndrome (MPS I-H) 15 Crouzon syndrome (Craniofacial Dysotosis) 13 NF1 - Neurofibromatosis (von Recklinghausen dis) 13 Kniest Dysplasia 12 Turner syndrome 11 Usher III syndrome 10 Cockayne syndrome 9 Apert syndrome/Acrocephalosyndactyly, Type 1 8 Leigh Disease 8 Alport syndrome 6 Monosomy 10p 6 NF2 - Bilateral Acoustic Neurofibromatosis 6 Batten disease 5 Kearns-Sayre syndrome 5 Klippel-Feil sequence 5 Hereditary Syndromes and Disorders Count Prader-Willi 5 Sturge-Weber syndrome 5 Marfan syndrome 3 Hand-Schuller-Christian (Histiocytosis X) 2 Hunter Syndrome (MPS II) 2 Maroteaux-Lamy syndrome (MPS VI) 2 Morquio syndrome (MPS IV-B) 2 Optico-Cochleo-Dentate Degeneration 2 Smith-Lemli-Opitz (SLO) syndrome 2 Wildervanck syndrome 2 Herpes-Zoster (or Hunt) 1 Vogt-Koyanagi-Harada
    [Show full text]
  • Diseases of the Digestive System (KOO-K93)
    CHAPTER XI Diseases of the digestive system (KOO-K93) Diseases of oral cavity, salivary glands and jaws (KOO-K14) lijell Diseases of pulp and periapical tissues 1m Dentofacial anomalies [including malocclusion] Excludes: hemifacial atrophy or hypertrophy (Q67.4) K07 .0 Major anomalies of jaw size Hyperplasia, hypoplasia: • mandibular • maxillary Macrognathism (mandibular)(maxillary) Micrognathism (mandibular)( maxillary) Excludes: acromegaly (E22.0) Robin's syndrome (087.07) K07 .1 Anomalies of jaw-cranial base relationship Asymmetry of jaw Prognathism (mandibular)( maxillary) Retrognathism (mandibular)(maxillary) K07.2 Anomalies of dental arch relationship Cross bite (anterior)(posterior) Dis to-occlusion Mesio-occlusion Midline deviation of dental arch Openbite (anterior )(posterior) Overbite (excessive): • deep • horizontal • vertical Overjet Posterior lingual occlusion of mandibular teeth 289 ICO-N A K07.3 Anomalies of tooth position Crowding Diastema Displacement of tooth or teeth Rotation Spacing, abnormal Transposition Impacted or embedded teeth with abnormal position of such teeth or adjacent teeth K07.4 Malocclusion, unspecified K07.5 Dentofacial functional abnormalities Abnormal jaw closure Malocclusion due to: • abnormal swallowing • mouth breathing • tongue, lip or finger habits K07.6 Temporomandibular joint disorders Costen's complex or syndrome Derangement of temporomandibular joint Snapping jaw Temporomandibular joint-pain-dysfunction syndrome Excludes: current temporomandibular joint: • dislocation (S03.0) • strain (S03.4) K07.8 Other dentofacial anomalies K07.9 Dentofacial anomaly, unspecified 1m Stomatitis and related lesions K12.0 Recurrent oral aphthae Aphthous stomatitis (major)(minor) Bednar's aphthae Periadenitis mucosa necrotica recurrens Recurrent aphthous ulcer Stomatitis herpetiformis 290 DISEASES OF THE DIGESTIVE SYSTEM Diseases of oesophagus, stomach and duodenum (K20-K31) Ill Oesophagitis Abscess of oesophagus Oesophagitis: • NOS • chemical • peptic Use additional external cause code (Chapter XX), if desired, to identify cause.
    [Show full text]
  • Blueprint Genetics Craniosynostosis Panel
    Craniosynostosis Panel Test code: MA2901 Is a 38 gene panel that includes assessment of non-coding variants. Is ideal for patients with craniosynostosis. About Craniosynostosis Craniosynostosis is defined as the premature fusion of one or more cranial sutures leading to secondary distortion of skull shape. It may result from a primary defect of ossification (primary craniosynostosis) or, more commonly, from a failure of brain growth (secondary craniosynostosis). Premature closure of the sutures (fibrous joints) causes the pressure inside of the head to increase and the skull or facial bones to change from a normal, symmetrical appearance resulting in skull deformities with a variable presentation. Craniosynostosis may occur in an isolated setting or as part of a syndrome with a variety of inheritance patterns and reccurrence risks. Craniosynostosis occurs in 1/2,200 live births. Availability 4 weeks Gene Set Description Genes in the Craniosynostosis Panel and their clinical significance Gene Associated phenotypes Inheritance ClinVar HGMD ALPL Odontohypophosphatasia, Hypophosphatasia perinatal lethal, AD/AR 78 291 infantile, juvenile and adult forms ALX3 Frontonasal dysplasia type 1 AR 8 8 ALX4 Frontonasal dysplasia type 2, Parietal foramina AD/AR 15 24 BMP4 Microphthalmia, syndromic, Orofacial cleft AD 8 39 CDC45 Meier-Gorlin syndrome 7 AR 10 19 EDNRB Hirschsprung disease, ABCD syndrome, Waardenburg syndrome AD/AR 12 66 EFNB1 Craniofrontonasal dysplasia XL 28 116 ERF Craniosynostosis 4 AD 17 16 ESCO2 SC phocomelia syndrome, Roberts syndrome
    [Show full text]
  • Zellweger Syndrome: Biochemical and Morphological Studies on Two Patients Treated with Clofibrate
    003 1-3998/85/19 12-1356$02.00/0 PEDIATRIC RESEARCH Vol. 19, No. 12, 1985 Copyright O 1985 International Pediatric Research Foundation, Inc. Printed in (I.S. A. Zellweger Syndrome: Biochemical and Morphological Studies on Two Patients Treated with Clofibrate PAUL B. LAZAROW, VIRGINIA BLACK, HELEN SHIO, YUKIO FUJIKI, AMIYA K. HAJRA, NABANITA S. DATTA, BABU S. BANGARU, AND JOSEPH DANCIS The Rockefiller University, 1230 York Avenue, New York, New York 10021 [P.B.L., H.S., Y.F.] Departments of Cell Biology [V.B.] and Pediatrics [B.S.B., J.D.], New York University School of Medicine, 550 First Avenue, New York, NY 10016; and Neuroscience Laboratory, The University of Michigan, Ann Arbor, Michigan 48109 [A.K.H., N.S.D.] ABSTRACT. Two infants with Zellweger syndrome (cer- genetic change, which is implied by the observed autosomal ebro-hepato-renal syndrome) have been studied bio- recessive mode of inheritance (2)? The functions of peroxisomes chemically and morphologically. Peroxisomal enzymes in- include respiration (forming HZ02)(12), fatty acid catabolism volved in respiration, fatty acid @-oxidation,and plasmal- (13, 14), and the initial steps in plasmalogen biosynthesis (15). ogen biosynthesis were assessed. In liver, catalase was The peroxisomal fatty acid P-oxidation system acts on saturated present in normal amounts but was located in the cell and unsaturated fatty acyl-CoAs with chainlengths from 6 to 26 cytosol. Dihydroxyacetone phosphate acyltransferase ac- (14, 16, 17), the sidechain of cholesterol (18), dicarboxylic fatty tivity was less than one-tenth of normal. The amount of acids (l9), and glutaryl-CoA (20).
    [Show full text]
  • MECHANISMS in ENDOCRINOLOGY: Novel Genetic Causes of Short Stature
    J M Wit and others Genetics of short stature 174:4 R145–R173 Review MECHANISMS IN ENDOCRINOLOGY Novel genetic causes of short stature 1 1 2 2 Jan M Wit , Wilma Oostdijk , Monique Losekoot , Hermine A van Duyvenvoorde , Correspondence Claudia A L Ruivenkamp2 and Sarina G Kant2 should be addressed to J M Wit Departments of 1Paediatrics and 2Clinical Genetics, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, Email The Netherlands [email protected] Abstract The fast technological development, particularly single nucleotide polymorphism array, array-comparative genomic hybridization, and whole exome sequencing, has led to the discovery of many novel genetic causes of growth failure. In this review we discuss a selection of these, according to a diagnostic classification centred on the epiphyseal growth plate. We successively discuss disorders in hormone signalling, paracrine factors, matrix molecules, intracellular pathways, and fundamental cellular processes, followed by chromosomal aberrations including copy number variants (CNVs) and imprinting disorders associated with short stature. Many novel causes of GH deficiency (GHD) as part of combined pituitary hormone deficiency have been uncovered. The most frequent genetic causes of isolated GHD are GH1 and GHRHR defects, but several novel causes have recently been found, such as GHSR, RNPC3, and IFT172 mutations. Besides well-defined causes of GH insensitivity (GHR, STAT5B, IGFALS, IGF1 defects), disorders of NFkB signalling, STAT3 and IGF2 have recently been discovered. Heterozygous IGF1R defects are a relatively frequent cause of prenatal and postnatal growth retardation. TRHA mutations cause a syndromic form of short stature with elevated T3/T4 ratio. Disorders of signalling of various paracrine factors (FGFs, BMPs, WNTs, PTHrP/IHH, and CNP/NPR2) or genetic defects affecting cartilage extracellular matrix usually cause disproportionate short stature.
    [Show full text]
  • A Novel De Novo 20Q13.32&Ndash;Q13.33
    Journal of Human Genetics (2015) 60, 313–317 & 2015 The Japan Society of Human Genetics All rights reserved 1434-5161/15 www.nature.com/jhg ORIGINAL ARTICLE Anovelde novo 20q13.32–q13.33 deletion in a 2-year-old child with poor growth, feeding difficulties and low bone mass Meena Balasubramanian1, Edward Atack2, Kath Smith2 and Michael James Parker1 Interstitial deletions of the long arm of chromosome 20 are rarely reported in the literature. We report a 2-year-old child with a 2.6 Mb deletion of 20q13.32–q13.33, detected by microarray-based comparative genomic hybridization, who presented with poor growth, feeding difficulties, abnormal subcutaneous fat distribution with the lack of adipose tissue on clinical examination, facial dysmorphism and low bone mass. This report adds to rare publications describing constitutional aberrations of chromosome 20q, and adds further evidence to the fact that deletion of the GNAS complex may not always be associated with an Albright’s hereditary osteodystrophy phenotype as described previously. Journal of Human Genetics (2015) 60, 313–317; doi:10.1038/jhg.2015.22; published online 12 March 2015 INTRODUCTION resuscitation immediately after birth and Apgar scores were 9 and 9 at 1 and Reports of isolated subtelomeric deletions of the long arm of 10 min, respectively, of age. Birth parameters were: weight ~ 1.56 kg (0.4th–2nd chromosome 20 are rare, but a few cases have been reported in the centile), length ~ 40 cm (o0.4th centile) and head circumference ~ 28.2 cm o fi literature over the past 30 years.1–13 Traylor et al.12 provided an ( 0.4th centile).
    [Show full text]
  • Waardenburg's Syndrome and Familial Periodic Paralysis C
    Postgraduate Medical Journal (June 1971) 47, 354-360. Postgrad Med J: first published as 10.1136/pgmj.47.548.354 on 1 June 1971. Downloaded from CLINICAL REVIEW Waardenburg's syndrome and familial periodic paralysis C. H. TAY A.M., M.B., B.S., M.R.C.P.(Glas.) Senior Medical Registrar and Clinical Teacher, Medical Unit II, Department of Clinical Medicine, University of Singapore, Outram Road General Hospital, Singapore, 3 Summary McKenzie, 1958; Fisch, 1959; Arnvig, 1958; Nine members in three generations of a Chinese Partington, 1959; Di George, Olmsted & Harley, family were found to have Waardenburg's syndrome 1960; Campbell, Campbell & Swift, 1962; Chew, comprising, mainly, lateral displacement of the inner Chen & Tan, 1968). canthi, broadening of the nasal root and hyper- It is also known as a variant of the first arch trichosis of the eyebrows. Other minor features were syndrome (McKenzie, 1958; Campbell et al., 1962) also found. and later other minor characteristics of the syndrome Two patients had in addition, hypokalemic periodic were added: (1) abnormal depigmentation of the paralysis of the familial type, one had prominent skin (Klein, 1950; Mende, 1926; Partington, 1959; frontal bossing and another, bilateral cleft lips and Campbell et al, 1962), (2) pigmentary changes of the palate. These associated anomalies have not been fundi (Waardenburg, 1951; Di George et al., 1960)Protected by copyright. previously documented and the presence of two auto- and (3) abnormal facial appearance to maldevelop- somal dominant genetic defects in this family is of ment of the maxilla and mandible (Fisch, 1959; particular interest. Campbell et al., 1962).
    [Show full text]
  • Peroxisomal Bifunctional Enzyme Deficiency
    Peroxisomal bifunctional enzyme deficiency. P A Watkins, … , A B Moser, M E Beard J Clin Invest. 1989;83(3):771-777. https://doi.org/10.1172/JCI113956. Research Article Peroxisomal function was evaluated in a male infant with clinical features of neonatal adrenoleukodystrophy. Very long chain fatty acid levels were elevated in both plasma and fibroblasts, and beta-oxidation of very long chain fatty acids in cultured fibroblasts was significantly impaired. Although the level of the bile acid intermediate trihydroxycoprostanoic acid was slightly elevated in plasma, phytanic acid and L-pipecolic acid levels were normal, as was plasmalogen synthesis in cultured fibroblasts. The latter three parameters distinguish this case from classical neonatal adrenoleukodystrophy. In addition, electron microscopy and catalase subcellular distribution studies revealed that, in contrast to neonatal adrenoleukodystrophy, peroxisomes were present in the patient's tissues. Immunoblot studies of peroxisomal beta- oxidation enzymes revealed that the bifunctional enzyme (enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase) was deficient in postmortem liver samples, whereas acyl-CoA oxidase and the mature form of beta-ketothiolase were present. Density gradient centrifugation of fibroblast homogenates confirmed that intact peroxisomes were present. Immunoblots of fibroblasts peroxisomal fractions showed that they contained acyl-CoA oxidase and beta-ketothiolase, but bifunctional enzyme was not detected. Northern analysis, however, revealed that mRNA coding for the bifunctional enzyme was present in the patient's fibroblasts. These results indicate that the primary biochemical defect in this patient is a deficiency of peroxisomal bifunctional enzyme. It is of interest that the phenotype of this patient resembled neonatal adrenoleukodystrophy and would not have been […] Find the latest version: https://jci.me/113956/pdf Peroxisomal Bifunctional Enzyme Deficiency Paul A.
    [Show full text]
  • Hearing Loss in Waardenburg Syndrome: a Systematic Review
    Clin Genet 2016: 89: 416–425 © 2015 John Wiley & Sons A/S. Printed in Singapore. All rights reserved Published by John Wiley & Sons Ltd CLINICAL GENETICS doi: 10.1111/cge.12631 Review Hearing loss in Waardenburg syndrome: a systematic review Song J., Feng Y., Acke F.R., Coucke P., Vleminckx K., Dhooge I.J. Hearing J. Songa,Y.Fenga, F.R. Ackeb, loss in Waardenburg syndrome: a systematic review. P. Couckec,K.Vleminckxc,d Clin Genet 2016: 89: 416–425. © John Wiley & Sons A/S. Published by and I.J. Dhoogeb John Wiley & Sons Ltd, 2015 aDepartment of Otolaryngology, Xiangya Waardenburg syndrome (WS) is a rare genetic disorder characterized by Hospital, Central South University, Changsha, People’s Republic of China, hearing loss (HL) and pigment disturbances of hair, skin and iris. b Classifications exist based on phenotype and genotype. The auditory Department of Otorhinolaryngology, cDepartment of Medical Genetics, Ghent phenotype is inconsistently reported among the different Waardenburg types University/Ghent University Hospital, and causal genes, urging the need for an up-to-date literature overview on Ghent, Belgium, and dDepartment for this particular topic. We performed a systematic review in search for articles Biomedical Molecular Biology, Ghent describing auditory features in WS patients along with the associated University, Ghent, Belgium genotype. Prevalences of HL were calculated and correlated with the different types and genes of WS. Seventy-three articles were included, describing 417 individual patients. HL was found in 71.0% and was Key words: genotype – hearing loss – predominantly bilateral and sensorineural. Prevalence of HL among the inner ear malformation – phenotype – different clinical types significantly differed (WS1: 52.3%, WS2: 91.6%, Waardenburg syndrome WS3: 57.1%, WS4: 83.5%).
    [Show full text]
  • Molecular Basis of Progeroid Syndromes–S–S– the Wwthe Erner Andanderner Hutchinson-Gilford Syndromes
    Proc. Indian natn Sci Acad. B69 No. 4 pp 625-640 (2003) Molecular Basis of Progeroid Syndromes–s–s– the WWthe erner andanderner Hutchinson-Gilford Syndromes JUNKO OSHIMA*, NANCY B HANSON and GEORGE M MARTIN Department of Pathology, University of W ashington, Seattle, WA 98195, USA (Received on 17 July 2003; Accepted after r evision on 6 August 2003) Segmental progeroid syndromes are members of a group of disorders in which affected individuals present various featur es suggestive of accelerated aging. The two best-known examples are the Werner syndro m e (WS; “Progeria of the adult”) and the Hutchinson-Gilford Progeria syndrome (HGPS; “Progeria of child- hood”). The gene responsible for WS, WRN, was identified in 1996 and encodes a multifunctional nuclear protein with exonuclease and helicase domains. WS patients and cells isolated from the WS patients show various genomic instability phenotypes, including an incr eased incidence of cancer. The WRN protein is thought to play a crucial role in optimizing the regulation of DNA repair processes. Recently, a novel r ecurr ent mutation in the LMNA gene has been shown to be responsible for HGPS. LMNA encodes nuclear intermediate filaments, lamins A and C; mutant lamins are thought to result in nuclear fragility. Ther e ar e at least six other disor ders caused by LMNA mutations, most of which affect cells and tissues of mesenchymal origins, including atypical forms of WS. The pathophysiologies of these and certain other progeroid syndromes indicate an important role for DNA damage in the genesis of common age- related disorders. Key WWKey ords: WWords: erner syndrome, WRN, RecQ, Hutchinson-Gilford Progeria syndrome, LMNA, Lamin, Genomic instability, Aging, Human Introduction of WS, previously based upon clinical criteria, can Segmental progeroid syndromes encompass a now be confirmed by molecular biological methods.
    [Show full text]
  • Zellweger Spectrum Disorder
    ZELLWEGER SPECTRUM DISORDER What is it? Zellweger Spectrum Disorder (ZSD) was recently viewed as 3 separate diseases but today is categorized as set of disorders that form a spectrum, or continuum, of 1 disease. This spectrum can range from mild Infantile Refsum Disease (IRD), to moderate Neonatal Adrenoleukodystrophy (NALD), to severe Zellweger Syndrome (ZS) ZSD is also known as peroxisome biogenesis disorders (PBDs). These disorders are caused by a loss of function in important parts of your cells called “peroxisomes,” which are responsible for breaking down fats and chemicals and getting rid of waste so that your body can function properly. This disorder can affect many parts of the body from the eyes to the liver. The various body systems and functions as described below. Nutrition Malabsorption of nutrients can lead to poor growth, feeding problems, and deficiency in fat-soluble vitamins. Hearing Varying degree of hearing loss requires the child receive a yearly evaluation . Vision Vision loss is the most common problem. Neurological Improper development of the white matter in the brain (leukodystrophy) results in nerve damage and can potentially affect their development. Damage to the nerves that send information from the brain to the rest of the body (peripheral neuropathy) can often cause numbness or weakness in the hands and/or feet. Walking abnormality is the main neurological complication in adults with ZSDs. In people with mild forms of ZSDs, nerve damage to the muscles, skin, and internal organs usually begins during adolescence. Kidney Kidney issues occur in children 4 years and older and include kidney stones, kidney cyst, and kidney failure.
    [Show full text]