Download PDF (1878K)

Total Page:16

File Type:pdf, Size:1020Kb

Download PDF (1878K) 2018, 65 (2), 227-238 Note Definitive diagnosis of mandibular hypoplasia, deafness, progeroid features and lipodystrophy (MDPL) syndrome caused by a recurrent de novo mutation in the POLD1 gene Haruka Sasaki1), 2), Kumiko Yanagi3) *, Satoshi Ugi4), Kunihisa Kobayashi1), Kumiko Ohkubo5), Yuji Tajiri6), Hiroshi Maegawa4), Atsunori Kashiwagi7) and Tadashi Kaname3) * 1) Department of Endocrinology and Diabetes Mellitus, Fukuoka University Chikushi Hospital, Chikushino, Fukuoka 818-8502, Japan 2) Division of Diabetic Medicine, Bunyukai Hara Hospital, Ohnojo, Fukuoka 816-0943, Japan 3) Department of Genome Medicine, National Research Institute for Child Health, Setagaya, Tokyo 157-8535, Japan 4) Department of Medicine, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan 5) Department of Laboratory Medicine, School of Medicine, Fukuoka University, Jonan-ku, Fukuoka 814-0180, Japan 6) Division of Endocrinology and Metabolism, Kurume University School of Medicine, Kurume, Fukuoka 830-0111, Japan 7) Diabetes Center, Seikokai Kusatsu General Hospital, Kusatsu, Shiga 525-8585, Japan Abstract. Segmental progeroid syndromes with lipodystrophy are extremely rare, heterogeneous, and complex multi-system disorders that are characterized by phenotypic features of premature aging affecting various tissues and organs. In this study, we present a “sporadic/isolated” Japanese woman who was ultimately diagnosed with mandibular hypoplasia, deafness, progeroid features, and progressive lipodystrophy (MDPL) syndrome (MIM #615381) using whole exome sequencing analysis. She had been suspected as having atypical Werner syndrome and/or progeroid syndrome based on observations spanning a 30-year period; however, repeated genetic testing by Sanger sequencing did not identify any causative mutation related to various subtypes of congenital partial lipodystrophy (CPLD) and/or mandibular dysplasia with lipodystrophy (MAD). Recently, MDPL syndrome has been described as a new entity showing progressive lipodystrophy. Furthermore, polymerase delta 1 (POLD1) gene mutations on chromosome 19 have been identified in patients with MDPL syndrome. To date, 21 cases with POLD1-related MDPL syndrome have been reported worldwide, albeit almost entirely of European origin. Here, we identified a de novo mutation in exon 15 (p.Ser605del) of the POLD1 gene in a Japanese case by whole exome sequencing. To the best of our knowledge, this is the first identified case of MDPL syndrome in Japan. Our results provide further evidence that mutations in POLD1 are responsible for MDPL syndrome and serve as a common genetic determinant across different ethnicities. Key words: Lipodystrophy, Mandibular hypoplasia, Progeroid features, POLD1 mutation, Japanese case CONGENITAL LIPODYSTROPHIES comprise a severe insulin resistance, glucose intolerance, diabetes, very rare group of heterogeneous disorders that affect dyslipidemia, and fatty liver disease [1-6]. Recently, the adipose tissue distributions and are characterized by genetic origins of some cases have been clarified. A pro‐ varying degrees of body fat loss (complete and/or partial) totypic example is Werner syndrome, which is a rare and various profound metabolic derangements such as autosomal recessive syndrome (MIM #277700) charac‐ terized by a variety of clinical signs of premature aging Submitted Jul. 12, 2017; Accepted Oct. 23, 2017 as EJ17-0287 that has been shown to be caused by biallelic germline Released online in J-STAGE as advance publication Dec. 2, 2017 mutations in the Werner helicase gene (WRN: encoding a Correspondence to: Haruka Sasaki, MD, PhD., Fukuoka Univer‐ RecQ DNA helicase/exonuclease) [7]. Mandibular dys‐ sity, 1-2-6-1202, Momochihama, Sawara-ku, Fukuoka 814-0001, Japan. plasia associated with lipodystrophy (MAD) type A E-mail: [email protected] (MIM #248370) and type B (MIM #608612) comprise *These authors equally contributed to this work. another type of rare autosomal recessive syndrome, ©The Japan Endocrine Society 228 Sasaki et al. Table 1 Classification of genetic subtypes of lipodystrophy Clinical subtype/Eponym Gene Chromosome Locus Inheritance transmission OMIM Generalized CGLD1 AGPAT2 11q13 AR #608594 CGLD2 BSCL2 9q34.3 AR #269700 CGLD3 CAV1 11q13 AR #612526 CGLD4 PTRF 17q21.2 AR #613327 MAD-A type LMNA 1q22 AR #248370 Partial CPLD1/Köbberling variety NK NK AD #608600 CPLD2/Dunnigan variety LMNA 1q22 AD #151660 CPLD3 PPARγ 3p25.2 AD #604367 CPLD4 PLIN1 15q26.1 AD #613877 CPLD5 CIDEC 3p25.3 AR #615238 CPLD6 LIPE 19q13.2 AD #615980 CPLD7 AKT2 19q13.3 AD #125853 CPLD8 ADRA2A 10q25.2 AD #104210 MAD-B type ZMPSTE24 1q34.2 AR #608612 HGPS LMNA 1q22 Heterozygous/de novo #176670 SHORT syndrome PIK3R1 5q13.1 AD #269880 Werner syndrome WRN 8p12 AR #277700 Nestor-Gullermo progeria syndrome BANF1 11q13.1 AR #614008 PRAAS/JMP PMMB8 6p21.32 AR #256040 MDPL syndrome POLD1 19q13.33 Heterozygous/de novo #615381 CGLD, congenital generalized lipodystrophy; CPLD, congenital partial lipodystrophy; MAD, mandibuloacral dysplasia; MDPL, mandibular hypoplasia, deafness, progeroid features, lipodystrophy; HGPS, Hutchinson-Gilford Progeria syndrome; PRSSA, proteasome- associated autoinflammatory syndrome; JMP, joint contractures, muscle atrophy, microcytic anemia and panniculitis-induced lipodystrophy; AD, autosomal dominant; AR, autosomal recessive; OMIM, Online of Mendelian Inheritance in Man; NK, not known resulting in lipodystrophy and progeroid features caused disease through repeated Sanger sequencing [10]. by mutations of the lamin A/C gene (LMNA) in type A Notably, a new causal factor of progressive lipodystro‐ and the zinc metalloprotease (ZNPTSTE24) gene in type phy associated with MDPL syndrome has been identified B [8, 9]. However, many others remain to be elucidated [11-17]. Mutations in the polymerase delta 1 (POLD1) [1-4]. Currently, the comprehensive definition and classi‐ gene have been detected in several patients with MDPL, fication of lipodystrophy is a work in progress with up to suggesting that MDPL is the result of POLD1 gene 20 loci described as being associated with infrequent li‐ mutation. Furthermore, the reported clinical features of podystrophy syndromes [2, 4, 5] (Table 1). MDPL possessing POLD1 gene mutations were very Recently, we reported a case of congenital partial lipo‐ similar to and overlapped with those of our case. This dystrophy with mandibular hypoplasia, deafness, and prompted us to question whether our case in fact repre‐ progeroid features (MDPL) syndrome as a novel subtype sented MDPL syndrome caused by a POLD1 gene muta‐ of lipodystrophy, distinct from known types of congeni‐ tion, as no mutation had yet been detected. Therefore, in tal partial lipodystrophy (CPLD) and/or MAD, because the current study we investigated the complete POLD1 we could not detect any gene mutations related to such a gene in our patient along with her parents and elder MDPL syndrome caused by a POLD1 mutation 229 brother using whole exome sequencing analysis. In addi‐ infusion was 167 mg/dL (RV: 73 ± 13.4) [18]. Antibod‐ tion, we summarized 21 previously reported cases with ies to insulin or the insulin receptor as well as mitochon‐ MDPL syndrome in the literature and compared them drial DNA mutations (A3243G, A8296G, A8344G, with classical Werner syndrome. T8356C G8361A, and G8363A) were all negative. She was suspected to have “atypical progeroid syndrome Case Description (Werner syndrome)” [19, 20], although no definitive diagnosis was obtained. There was no family history of A Japanese female (currently more than 46 years old) any similar disorders (Fig. 1). When she was 33 years was born at full term to non-consanguineous parents with old (Wt 30.8 kg, Ht 142.7 cm, body mass index [BMI] a normal birth appearance (weight [Wt] 3.65 kg, height 15.1 kg/m2), she presented with an overall paucity of [Ht] 49.5 cm). Her parents first noted her muscle spasms subcutaneous fat (total fat mass 14.9% by bioimped‐ and fat loss in her limbs during later infancy, and she ance). She had prominent eyes with conjunctival telean‐ subsequently developed poorly overall. Bilateral sensori‐ giectasia, but no juvenile cataracts. Her menarche had neural hearing loss was detected, and she required hear‐ occurred at age 13 followed by regular cycles for five ing aids before puberty. At 14 years of age, she was years. In addition, she showed mild hirsutism in the admitted to the university hospital for her short stature lower extremities and acanthosis nigricans in the axillae (Wt 28.6 kg, Ht 139.2 cm; both <3.0 SD, despite hyper‐ and neck regions with alopecia aerate of the scalp. She phagia) and frequent muscle cramps. Subcutaneous fat developed oligo-/amenorrhea owing to polycystic ovary loss was noted predominantly on her facial cheeks and syndrome (POCS) with abnormal sex hormone levels, extremities with pigmentation over a wide area. An oral including low sex hormone binding globulin (SHBG), glucose tolerance test (O-GTT: 1.7 g glucose/kg) showed elevated luteinizing hormone (LH)/follicular-stimulating normal glucose tolerance with increased insulin resis‐ hormone (FSH) ratio on GnRH stimulation test, and a tance (homeostatic model assessment-insulin resistance multi-cystic pattern on magnetic resonance imaging (MRI). [HOMA-IR] score of 5.3, reference value [RV]: <1.6; Furthermore, both abdominal computed tomography fasting plasma glucose [FPG] and immunoreactive insu‐ (CT) and MRI confirmed marked visceral fat accumula‐ lin [F-IRI] of 74 mg/dL and 29 μU/mL, respectively). An tion (visceral and
Recommended publications
  • DNA Damage in the Oligodendrocyte Lineage and Its Role in Brain Aging
    HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Mech Ageing Manuscript Author Dev. Author Manuscript Author manuscript; available in PMC 2018 January 01. Published in final edited form as: Mech Ageing Dev. 2017 January ; 161(Pt A): 37–50. doi:10.1016/j.mad.2016.05.006. DNA damage in the oligodendrocyte lineage and its role in brain aging Kai-Hei Tse1,2 and Karl Herrup1 1 Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong Abstract Myelination is a recent evolutionary addition that significantly enhances the speed of transmission in the neural network. Even slight defects in myelin integrity impair performance and enhance the risk of neurological disorders. Indeed, myelin degeneration is an early and well-recognized neuropathology that is age associated, but appears before cognitive decline. Myelin is only formed by fully differentiated oligodendrocytes, but the entire oligodendrocyte lineage are clear targets of the altered chemistry of the aging brain. As in neurons, unrepaired DNA damage accumulates in the postmitotic oligodendrocyte genome during normal aging, and indeed may be one of the upstream causes of cellular aging - a fact well illustrated by myelin co-morbidity in premature aging syndromes arising from deficits in DNA repair enzymes. The clinical and experimental evidence from Alzheimer's disease, progeroid syndromes, ataxia-telangiectasia and other conditions strongly suggest that oligodendrocytes may in fact be uniquely vulnerable to oxidative DNA damage. If this damage remains unrepaired, as is increasingly true in the aging brain, myelin gene transcription and oligodendrocyte differentiation is impaired. Delineating the relationships between early myelin loss and DNA damage in brain aging will offer an additional dimension outside the neurocentric view of neurodegenerative disease.
    [Show full text]
  • The Progeria Syndrome Fact Sheet
    HUTCHINSON-GILFORD PROGERIA SYNDROME FREQUENTLY ASKED QUESTIONS WHAT IS PROGERIA? Hutchinson-Gilford Progeria Syndrome “Progeria” or “HGPS” is a rare, fatal genetic condition characterized by an appearance of accelerated aging in children. Its name is derived from the Greek and means "prematurely old." While there are different forms of Progeria*, the classic type is Hutchinson- Gilford Progeria Syndrome, which was named after the doctors who first described it in England: in 1886 by Dr. Jonathan Hutchinson, and in 1897 by Dr. Hastings Gilford. HOW COMMON IS PROGERIA? Progeria affects approximately 1 in 4 - 8 million newborns. It affects both sexes equally and all races. In the past 15 years, children with Progeria have been reported all over the world , including in: Algeria Cuba Ireland Peru Sweden Argentina Denmark Israel Philippines Switzerland Australia Dominican Italy Poland Turkey Austria Republic Japan Portugal United States Belgium Egypt Libya Puerto Rico Venezuela Brazil England Mexico Romania Vietnam Canada France Morocco South Africa Yugoslavia China Germany Netherlands South Korea Columbia India Pakistan Spain WHAT ARE THE FEATURES OF PROGERIA? Although they are born looking healthy, most children with Progeria begin to display many characteristics of Progeria within the first year of life. Progeria signs include growth failure, loss of body fat and hair, aged-looking skin, stiffness of joints, hip dislocation, generalized atherosclerosis, cardiovascular (heart) disease and stroke. The children have a remarkably similar appearance, despite differing ethnic backgrounds. Children with Progeria die of atherosclerosis (heart disease) at an average age of thirteen years (with a range of about 8 – 21 years). WHAT DOES PROGERIA HAVE TO DO WITH AGING? Children with Progeria are genetically predisposed to premature, progressive heart disease.
    [Show full text]
  • Atypical Progeroid Syndrome ID: 20-0188; April 2021 (P.E262K LMNA) DOI: 10.1530/EDM-20-0188
    ID: 20-0188 -20-0188 M Yukina and others Atypical progeroid syndrome ID: 20-0188; April 2021 (p.E262K LMNA) DOI: 10.1530/EDM-20-0188 Atypical progeroid syndrome (p.E262K LMNA mutation): a rare cause of short stature and osteoporosis Correspondence Marina Yukina, Nurana Nuralieva, Ekaterina Sorkina, Ekaterina Troshina, should be addressed Anatoly Tiulpakov, Zhanna Belaya and Galina Melnichenko to E Sorkina Email Endocrinology Research Centre, Moscow, Russia [email protected] Summary Lamin A/C (LMNA) gene mutations cause a heterogeneous group of progeroid disorders, including Hutchinson–Gilford progeria syndrome, mandibuloacral dysplasia, atypical progeroid syndrome (APS) and generalized lipodystrophy- associated progeroid syndrome (GLPS). All of those syndromes are associated with some progeroid features, lipodystrophyandmetaboliccomplicationsbutvarydifferentlydependingonaparticularmutationandevenpatients carrying the same gene variant are known to have clinical heterogeneity. We report a new 30-year-old female patient from Russia with an APS and generalized lipodystrophy (GL) due to the heterozygous de novo LMNA p.E262K mutation and compare her clinical and metabolic features to those of other described patients with APS. Despite many health issues, short stature, skeletal problems, GL and late diagnosis of APS, our patient seems to be relatively metabolically healthy for her age when compared to previously described patients with APS. Learning points: • Atypicalprogeroidsyndromes(APS)arerareandheterogenicwithdifferentageofonsetanddegreeofmetabolic
    [Show full text]
  • Molecular Basis of Progeroid Syndromes–S–S– the Wwthe Erner Andanderner Hutchinson-Gilford Syndromes
    Proc. Indian natn Sci Acad. B69 No. 4 pp 625-640 (2003) Molecular Basis of Progeroid Syndromes–s–s– the WWthe erner andanderner Hutchinson-Gilford Syndromes JUNKO OSHIMA*, NANCY B HANSON and GEORGE M MARTIN Department of Pathology, University of W ashington, Seattle, WA 98195, USA (Received on 17 July 2003; Accepted after r evision on 6 August 2003) Segmental progeroid syndromes are members of a group of disorders in which affected individuals present various featur es suggestive of accelerated aging. The two best-known examples are the Werner syndro m e (WS; “Progeria of the adult”) and the Hutchinson-Gilford Progeria syndrome (HGPS; “Progeria of child- hood”). The gene responsible for WS, WRN, was identified in 1996 and encodes a multifunctional nuclear protein with exonuclease and helicase domains. WS patients and cells isolated from the WS patients show various genomic instability phenotypes, including an incr eased incidence of cancer. The WRN protein is thought to play a crucial role in optimizing the regulation of DNA repair processes. Recently, a novel r ecurr ent mutation in the LMNA gene has been shown to be responsible for HGPS. LMNA encodes nuclear intermediate filaments, lamins A and C; mutant lamins are thought to result in nuclear fragility. Ther e ar e at least six other disor ders caused by LMNA mutations, most of which affect cells and tissues of mesenchymal origins, including atypical forms of WS. The pathophysiologies of these and certain other progeroid syndromes indicate an important role for DNA damage in the genesis of common age- related disorders. Key WWKey ords: WWords: erner syndrome, WRN, RecQ, Hutchinson-Gilford Progeria syndrome, LMNA, Lamin, Genomic instability, Aging, Human Introduction of WS, previously based upon clinical criteria, can Segmental progeroid syndromes encompass a now be confirmed by molecular biological methods.
    [Show full text]
  • 1. Progeria 101: Frequently Asked Questions
    1. PROGERIA 101: FREQUENTLY ASKED QUESTIONS 1. Progeria 101: Frequently Asked Questions What is Hutchinson-Gilford Progeria Syndrome? What is PRF’s history and mission? What causes Progeria? How is Progeria diagnosed? Are there different types of Progeria? Is Progeria contagious or inherited? What is Hutchinson-Gilford Progeria Syndrome (HGPS or Progeria)? Progeria is also known as Hutchinson-Gilford Progeria Syndrome (HGPS). Genetic testing for It was first described in 1886 by Dr. Jonathan Hutchinson and in 1897 by Progeria can be Dr. Hastings Gilford. Progeria is a rare, fatal, “premature aging” syndrome. It’s called a syndrome performed from a because all the children have very similar symptoms that “go together”. The small sample of blood children have a remarkably similar appearance, even though Progeria affects children of all different ethnic backgrounds. Although most babies with (1-2 tsp) or sometimes Progeria are born looking healthy, they begin to display many characteristics from a sample of saliva. of accelerated aging by 18-24 months of age, or even earlier. Progeria signs include growth failure, loss of body fat and hair, skin changes, stiffness of joints, hip dislocation, generalized atherosclerosis, cardiovascular (heart) disease, and stroke. Children with Progeria die of atherosclerosis (heart disease) or stroke at an average age of 13 years (with a range of about 8-21 years). Remarkably, the intellect of children with Progeria is unaffected, and despite the physical changes in their young bodies, these extraordinary children are intelligent, courageous, and full of life. 1.2 THE PROGERIA HANDBOOK What is PRF’s history and mission? The Progeria Research Foundation (PRF) was established in the United States in 1999 by the parents of a child with Progeria, Drs.
    [Show full text]
  • Human Radiosensitivity and Radiosusceptibility: What Are the Differences?
    International Journal of Molecular Sciences Review Human Radiosensitivity and Radiosusceptibility: What Are the Differences? Laura El-Nachef 1, Joelle Al-Choboq 1, Juliette Restier-Verlet 1, Adeline Granzotto 1, Elise Berthel 1,2, Laurène Sonzogni 1,Mélanie L. Ferlazzo 1, Audrey Bouchet 1 , Pierre Leblond 3, Patrick Combemale 3, Stéphane Pinson 4, Michel Bourguignon 1,5 and Nicolas Foray 1,* 1 Inserm, U1296 unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 28, rue Laennec, 69008 Lyon, France; [email protected] (L.E.-N.); [email protected] (J.A.-C.); Juliette.Restier–[email protected] (J.R.-V.); [email protected] (A.G.); [email protected] (E.B.); [email protected] (L.S.); [email protected] (M.L.F.); [email protected] (A.B.); [email protected] (M.B.) 2 Neolys Diagnostics, 67960 Entzheim, France 3 Centre Léon-Bérard, 28, rue Laennec, 69008 Lyon, France; [email protected] (P.L.); [email protected] (P.C.) 4 Hospices Civils de Lyon, Quai des Célestins, 69002 Lyon, France; [email protected] 5 Université Paris Saclay Versailles St Quentin en Yvelines, 78035 Versailles, France * Correspondence: [email protected]; Tel.: +33-4-78-78-28-28 Abstract: The individual response to ionizing radiation (IR) raises a number of medical, scientific, and societal issues. While the term “radiosensitivity” was used by the pioneers at the beginning Citation: El-Nachef, L.; Al-Choboq, of the 20st century to describe only the radiation-induced adverse tissue reactions related to cell J.; Restier-Verlet, J.; Granzotto, A.; death, a confusion emerged in the literature from the 1930s, as “radiosensitivity” was indifferently Berthel, E.; Sonzogni, L.; Ferlazzo, used to describe the toxic, cancerous, or aging effect of IR.
    [Show full text]
  • Early Onset Diabetes in Two Children Due to Progeria, a Monogenic Disease of DNA Repair
    CASE REPORT DO I: 10.4274/jcrpe.galenos.2019.2019.0126 J Clin Res Pediatr Endocrinol 2020;12(3):315-318 Early Onset Diabetes in Two Children due to Progeria, a Monogenic Disease of DNA Repair Martin Holder¹, Valerie Schwitzgebel² ¹Klinikum Stuttgart, Olgahospital, Department of Pediatric Endocrinology and Diabetology, Stuttgart, Germany ²Hopital des Enfants, Endocrinologie et Diabetologie Pediatriques, Geneve, Switzerland What is already known on this topic? Less is known about type 2 like diabetes mellitus in children and adolescents with progeria-syndrome although they have a high risk of developing diabetes mellitus. What this study adds? Early and regular screening for diabetes mellitus are mandatory. Treatment with metformin at an early stage should be recommended to prevent early symptoms of diabetes and potentially delay the clinical course of progeria Abstract Progeria syndrome is a rare disorder in childhood which causes accelerated systemic aging. Due to the accelerated aging process, disorders which normally occur only in old age will appear in these children at a much younger age. We report two children with progeria syndrome, in whom fulminant diabetes mellitus manifested at a very early age. Keywords: Progeria syndrome, diabetes mellitus, metformin, prevention. Introduction cardiovascular disease can occur. Additionally, they may have audiologic, dental, and ophthalmologic issues Progeria syndrome is a group of very rare genetic disorders that impair their lives. Less is known about metabolic which are characterized by premature aging and classified complications in children with progeria syndrome. In by various names based on causative etiology: Hutchinson- WS, also known as adult progeroid syndrome, type 2 like Gilford progeria syndrome (HGPS), Néstor-Guillermo progeria diabetes mellitus is one of the clinical manifestations of syndrome, atypical progeria syndromes, restrictive dermopathy, the disease and attention must give to the differential mandibuloacral dysplasia, Werner syndrome (WS), Bloom diagnosis (1).
    [Show full text]
  • Werner and Hutchinson–Gilford Progeria Syndromes: Mechanistic Basis of Human Progeroid Diseases
    REVIEWS MECHANISMS OF DISEASE Werner and Hutchinson–Gilford progeria syndromes: mechanistic basis of human progeroid diseases Brian A. Kudlow*¶, Brian K. Kennedy* and Raymond J. Monnat Jr‡§ Abstract | Progeroid syndromes have been the focus of intense research in part because they might provide a window into the pathology of normal ageing. Werner syndrome and Hutchinson–Gilford progeria syndrome are two of the best characterized human progeroid diseases. Mutated genes that are associated with these syndromes have been identified, mouse models of disease have been developed, and molecular studies have implicated decreased cell proliferation and altered DNA-damage responses as common causal mechanisms in the pathogenesis of both diseases. Progeroid syndromes are heritable human disorders with therefore termed segmental, as opposed to global, features that suggest premature ageing1. These syndromes progeroid syndromes. Among the segmental progeroid have been well characterized as clinical disease entities, syndromes, the syndromes that most closely recapitu- and in many instances the associated genes and causative late the features of human ageing are Werner syndrome mutations have been identified. The identification of (WS), Hutchinson–Gilford progeria syndrome (HGPS), genes that are associated with premature-ageing-like Cockayne syndrome, ataxia-telangiectasia, and the con- syndromes has increased our understanding of molecu- stitutional chromosomal disorders of Down, Klinefelter lar pathways that protect cell viability and function, and
    [Show full text]
  • Diabetes Mellitus Coexisted with Progeria: a Case Report of Atypical Werner Syndrome with Novel LMNA Mutations and Literature Review
    2019, 66 (11), 961-969 Original Diabetes mellitus coexisted with progeria: a case report of atypical Werner syndrome with novel LMNA mutations and literature review Guangyu He, Zi Yan, Lin Sun, You Lv, Weiying Guo, Xiaokun Gang* and Guixia Wang* The First Hospital of Jilin University, Changchun Jilin, 130021, China Abstract. Werner syndrome (WS) is a rare, adult-onset progeroid syndrome. Classic WS is caused by WRN mutation and partial atypical WS (AWS) is caused by LMNA mutation. A 19-year-old female patient with irregular menstruation and hyperglycemia was admitted. Physical examination revealed characteristic faces of progeria, graying and thinning of the hair scalp, thinner and atrophic skin over the hands and feet, as well as lipoatrophy of the extremities, undeveloped breasts at Tanner stage 3, and short stature. The patient also suffered from severe insulin-resistant diabetes mellitus, hyperlipidemia, fatty liver, and polycystic ovarian morphology. Possible WS was considered and both WRN and LMNA genes were analyzed. A novel missense mutation p.L140Q (c.419T>A) in the LMNA gene was identified and confirmed the diagnosis of AWS. Her father was a carrier of the same mutation. We carried out therapy for lowering blood glucose and lipid and improving insulin resistance, et al. The fasting glucose, postprandial glucose and triglyceride level was improved after treatment for 9 days. Literature review of AWS was performed to identify characteristics of the disease. Diabetes mellitus is one of the clinical manifestations of WS and attention must give to the differential diagnosis. Gene analysis is critical in the diagnosis of WS. According to the literature, classic and atypical WS differ in incidence, pathogenic gene, and clinical manifestations.
    [Show full text]
  • DNA Replication Timing Alterations Identify Common Markers Between Distinct Progeroid Diseases
    DNA replication timing alterations identify common PNAS PLUS markers between distinct progeroid diseases Juan Carlos Rivera-Muliaa, Romain Despratb, Claudia Trevilla-Garciaa, Daniela Cornacchiac, Hélène Schwererd, Takayo Sasakia, Jiao Simaa, Tyler Fellsa, Lorenz Studerc, Jean-Marc Lemaitreb,d,1, and David M. Gilberta,e,1 aDepartment of Biological Science, Florida State University, Tallahassee, FL 32306; bPlateforme de Reprogrammation Cellulaire (SAFE-iPSC) Stem Cell Core Facility, Infrastructure Nationale d’Ingénierie des Cellules Souches Pluripotentes et Cellules Différenciées (INGESTEM), Centres Hospitaliers Universitaires de Montpellier, Hopital Saint Eloi, F3400 Montpellier, France; cThe Center for Stem Cell Biology, Memorial Sloan-Kettering Institute, New York, NY 10065; dInstitute of Regenerative Medicine and Biotherapies, U1183 INSERM, Université de Montpellier, F3400 Montpellier, France; and eCenter for Genomics and Personalized Medicine, Florida State University, Tallahassee, FL 32306 Edited by Terry L. Orr-Weaver, Whitehead Institute, Cambridge, MA, and approved November 8, 2017 (received for review June 30, 2017) Progeroid syndromes are rare genetic disorders that phenotypi- the mechanisms linking the cellular defects to pathophysiological cally resemble natural aging. Different causal mutations have been manifestations of the disease. identified, but no molecular alterations have been identified that Previously, we demonstrated that the temporal order of ge- are in common to these diseases. DNA replication timing (RT) is a
    [Show full text]
  • Genes and Diseases
    Genes and Diseases Harvey Ras oncogene Leukemia, chronic myeloid Myotonic dystrophy Retinoblastoma Severe combined immunodeficiency Narcolepsy From NCBI: Tuberous sclerosis Neurofibromatosis http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=gnd Von Hippel-Lindau syndrome Male-Specific Diseases Niemann–Pick disease Alport syndrome Parkinson disease Genes and Disease is a collection of articles that The Digestive System Male pattern baldness Phenylketonuria discuss genes and the diseases that they cause. These Colon cancer Prostate cancer Prader-Willi syndrome genetic disorders are organized by the parts of the Crohn's disease SRY: Sex determination Refsum disease body that they affect. As some diseases affect various Cystic fibrosis Rett syndrome body systems, they appear in more than one chapter. Diabetes, type 1 Muscle and Bone Spinal muscular atrophy Glucose galactose malabsorption Achondroplasia Spinocerebellar ataxia With each genetic disorder, the underlying Pancreatic cancer Amyotrophic lateral sclerosis Tangier disease mutation(s) is discussed, along with clinical features Wilson's disease Charcot–Marie–Tooth syndrome Tay-Sachs disease and links to key websites. You can browse through Zellweger syndrome Cockayne syndrome Tuberous sclerosis the articles online, and you can also download a Diastrophic dysplasia Von Hippel-Lindau syndrome printable file (PDF) of each chapter. Ear, Nose, and Throat Duchenne muscular dystrophy Williams syndrome Deafness Ellis-van Creveld syndrome Wilson's disease From Genes and Disease you can delve into many Neurofibromatosis Fibrodysplasia ossificans progressiva Zellweger syndrome online related resources with free and full access. For Pendred syndrome Marfan syndrome example, you can visit the human genome to see the Myotonic dystrophy Nutritional and Metabolic Diseases location of the genes implicated in each disorder.
    [Show full text]
  • A Case of Werner's Syndrome L
    POSTGRAD. MED. J. (I962), 38, 286 Postgrad Med J: first published as 10.1136/pgmj.38.439.286 on 1 May 1962. Downloaded from A CASE OF WERNER'S SYNDROME L. ILLIS, B.Sc., M.B., B.S. Academic Registrar, National Hospitalfor Nervous Diseases, Queen Square, London, W.C.I Formerly Senior House Officer, Neurological Unit, Brook Hospital, London, S.E.i8 IN 1904 Werner described' Cataract in connection In the two cases in which it has been reported, with scleroderma ' occurring in four brothers and the blood group is A Rh+ve (Ellison and Pugh, sisters. The name ' Werner's syndrome ' was 1955, and the present case). In two cases (Deuchar, attached to this disease complex by Oppenheimer 1956, and the present case) the patients had claw and Kugel (I934) who reported the first post- feet and absent ankle jerks. There is usually a mortem findings in 1941. Many authors since low 24-hour urinary ketosteroid and corti- then have emphasized that the skin changes are costeroid excretion (Bauer and Conn, I953; not those of true scleroderma (e.g. Thannhauser, Boyd and Grant, I959; and present case) which 1945) and have described other features of the rises on response to ACTH, though Ellison and syndrome. Pugh (1955) report figures of 4,725 mg./24 hrs. About 70 cases have been reported in the and 1.7 g./litre for I7-ketosteroid excretion in literature and from these a general picture of the their two cases, and Waxman, Kelley and Motulsky disease emerges but with marked individual (I96I) report that adrenal and probably pituitary variation.
    [Show full text]