Howlite and Utexite from the Carboniferous Gypsum And
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Rocks and Minerals in This Station-Based Event
Gary Vorwald NYS Rock & Mineral Supervisor Paul J. Gelinas JHS [email protected] Event Description Participants will demonstrate their knowledge of rocks and minerals in this station-based event. A team of up to 2 Approximate time: 40 – 50 Minutes Event Parameters Each team may bring: one magnifying glass One 3-ring binder (1 inch) containing information in any form from any source Materials MUST be 3-hole punched and inserted into the rings (sheet protectors allowed) The Competition Station Event: 15-24 stations with samples & questions Equal time intervals will be allotted for each station. When the signal is given, participants will begin work at their initial station. Participants may not move to the next station until prompted to do so, may not skip stations, nor return to any previously-visited station Mineral and Rock Stations The Competition HCl will not be provided, nor may it be brought to, or be used during the competition. Written descriptions as to how a specimen might react were it to be tested with HCl may be provided. The Competition Identification will be limited to specimens appearing on the Official Science Olympiad Rock and Mineral List (see www.soinc.org) Other rocks or minerals may be used to illustrate key concepts. Tournament Directors may include up to five additional specimens important to their own state. If additional specimens are to be included, all teams must be notified no later than 3 weeks prior to the competition. 2017 Rock & Mineral List Available at: https://www. soinc.org Students should place list in front of notebook Minerals are organized by mineral family Consists of: 59 Minerals 7 Metamorphic Rocks 10 Igneous Rocks 17 Sedimentary Rocks (or varieties) Minerals Native Elements 31. -
Strontium Borate) Mineral
STUDIES ON TUNELLITE (STRONTIUM BORATE) MINERAL Hüseyin GÜLENSOY and T. TEBERDAR İstanbul University, Faculty of Chemistry SUMMARY. — In these studies, the physical, chemical and mineralogical properties of the tunellite found associated with the boron mines in Turkey, which have long been known, have been investigated and the chemical compositon determined. The thermal decomposition of tunellite mineral has been studied both by dynamic and static methods. The results obtained with the methods above were checked with those obtained by Röntgenographic analysis and with the DTA studies. As a result of these studies, it has been observed that the tunellite mineral was transformed into veatchite mineral, after losing 4 molecules of its crystal water. INTRODUCTION AND HISTORY Boron minerals which are gaining ever-increasing importance in the world industry occur widespread in the northwest part of Turkey. Boron occurrences of the country are generally located in the vicinity of Bigadiç, Balıkesir, Mustafakemalpaşa, Emet and Eskişehir. Borate ores encountered in these mines are generally, ulexite and colemanite. The reserves and the grade of the ore are con- sidered favorable for economic production. Associated with the colemanite and ulexite produced from these mines, some other boron minerals are also found and the most important of these are inyoite, meyerhofferite, tertschite and howlite. These secondary minerals are locally found interbedded in the clay seams, as thin beds or nodules. In some mines, a new mineral, showing the composition of strontium borate, is found in association with colemanite and ulexite; this new mineral, which sometimes shows a prismatic struc- ture, is also found to occur closely mixed with clay having bentonite texture. -
STUDIES of BORATE MINERAI,S (ID: X-RAY CRYSTALLOG- RAPHY of INYOITE and MEYERHOFFERITE; X-RAY and MORPHOLOGICAL CRYSTALLOGRAPHY of 2Cao-3Bzo .9H2O*
STUDIES OF BORATE MINERAI,S (ID: X-RAY CRYSTALLOG- RAPHY OF INYOITE AND MEYERHOFFERITE; X-RAY AND MORPHOLOGICAL CRYSTALLOGRAPHY OF 2CaO-3Bzo .9H2O* C. L. Cunrsr, [/. S. GeologicalSuraey, Washington25, D. C. Ansrnacr fnyoite is monoclinic,P21/a, ao:10.63, bo:fi.A6, co:8.40rA, F:114.02,. 2CaO'3BrOa.9HzOistriclinic PT, ao: /.94, bo:9.452,co-7.412 A, a:101"21,,p-: l}l"7g,, t:99"49'. The findingsof Switzerin Palache(1938) for meyerhofferiteare confirmed. Powder patterns, partially indexed, are given for inyoite, meyerhofierite,and 2CaO.3BzOs.9HrO. INrnooucrroN ANDAcrwowr,ooGMENTS A systematic study of borate minerals has been continued in the pres- ent investigation with the determination of the r-ray crystallography of inyoite, 2CaO.3B2OB.13H2O, the *-ray crystallographyand morphology of the synthetic mineral 2CaO.38zOs.9HzO,and the redeterminationof the r-ray crystallography of meyerhofierite, 2CaO.3BzOt. jIJzO. Results obtained on meyerhofferite were in excellent agreementwith those previ- ously reported by Switzer in Palache (1933). Powder patterns of the three compounds have been measured and partially indexed. The work was undertaken primarily as a preliminary to the determina- tion of the structures. The writer is indebted to various colleaguesin the U. S. Geological Survey: Waldemar T. Schaller furnished the crystals studied; Mrs. Joan R. Clark made many of the calculations and film measurements; Howard T. Evans, Jr., made the goniometric measurementson and the drawing of 2CaO.3B2OB.9HsOand,also renderedmuch helpful advice; Fred A. Hildebrand prepared the powder patterns reported. ExpBnrlrpwrAr, WoRK All of the crystals used were synthetic. Schaller (personal communica- tion) has furnished the following description of the methods of prepara- tion: Inyoite (2:3:13). -
Inyoite Cab3o3(OH)5 • 4H2O C 2001-2005 Mineral Data Publishing, Version 1
Inyoite CaB3O3(OH)5 • 4H2O c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Monoclinic. Point Group: 2/m. Typically as crystals, short prismatic along [001], tabular on {001}, exhibiting prominent {110} and {001} and a dozen other minor forms, to 2.5 cm; in cockscomb aggregates of pseudorhombohedral crystals; also coarse spherulitic, granular. Physical Properties: Cleavage: {001}, good; {010}, distinct. Fracture: Irregular. Tenacity: Brittle. Hardness = 2 D(meas.) = 1.875 D(calc.) = 1.87 Soluble in H2O. Optical Properties: Transparent, translucent on dehydration. Color: Colorless, white on dehydration. Luster: Vitreous. Optical Class: Biaxial (–). Orientation: Y = b; X ∧ c =37◦; Z ∧ c = –53◦. Dispersion: r< v, slight. α = 1.490–1.495 β = 1.501–1.505 γ = 1.516–1.520 2V(meas.) = 70◦–86◦ Cell Data: Space Group: P 21/a. a = 10.621(1)) b = 12.066(1) c = 8.408(1) β = 114◦1.2◦ Z=4 X-ray Powder Pattern: Monte Azul mine, Argentina. 7.67 (100), 2.526 (25), 3.368 (22), 1.968 (22), 2.547 (21), 3.450 (20), 2.799 (19) Chemistry: (1) (2) B2O3 37.44 37.62 CaO 20.42 20.20 + H2O 9.46 − H2O 32.46 H2O 42.18 rem. 0.55 Total 100.33 100.00 • (1) Hillsborough, Canada; remnant is gypsum. (2) CaB3O3(OH)5 4H2O. Occurrence: Along fractures and nodular in sedimentary borate deposits; may be authigenic in playa sediments. Association: Meyerhofferite, colemanite, priceite, hydroboracite, ulexite, gypsum. Distribution: In the USA, in California, from an adit on Mount Blanco, Furnace Creek district, Death Valley, Inyo Co., and in the Kramer borate deposit, Boron, Kern Co. -
Ulexite Nacab5o6(OH)6 • 5H2O C 2001-2005 Mineral Data Publishing, Version 1 Crystal Data: Triclinic
Ulexite NaCaB5O6(OH)6 • 5H2O c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Triclinic. Point Group: 1. Rare as measurable crystals, which may have many forms; typically elongated to acicular along [001], to 5 cm, then forming fibrous cottonball-like masses; in compact parallel fibrous veins, and radiating and compact nodular groups. Twinning: Polysynthetic on {010} and {100}; possibly also on {340}, {230}, and others. Physical Properties: Cleavage: On {010}, perfect; on {110}, good; on {110}, poor. Fracture: Uneven across fiber groups. Tenacity: Brittle. Hardness = 2.5 D(meas.) = 1.955 D(calc.) = 1.955 Slightly soluble in H2O; parallel fibrous masses can act as fiber optical light pipes; may fluoresce yellow, greenish yellow, cream, white under SW and LW UV. Optical Properties: Transparent to opaque. Color: Colorless; white in aggregates, gray if included with clays. Luster: Vitreous; silky or satiny in fibrous aggregates. Optical Class: Biaxial (+). Orientation: X (11.5◦,81◦); Y (100◦,21.5◦); Z (107◦,70◦) [with c (0◦,0◦) and b∗ (0◦,90◦) using (φ,ρ)]. α = 1.491–1.496 β = 1.504–1.506 γ = 1.519–1.520 2V(meas.) = 73◦–78◦ Cell Data: Space Group: P 1. a = 8.816(3) b = 12.870(7) c = 6.678(1) α =90.36(2)◦ β = 109.05(2)◦ γ = 104.98(4)◦ Z=2 X-ray Powder Pattern: Jenifer mine, Boron, California, USA. 12.2 (100), 7.75 (80), 6.00 (30), 4.16 (30), 8.03 (15), 4.33 (15), 3.10 (15b) Chemistry: (1) (2) B2O3 43.07 42.95 CaO 13.92 13.84 Na2O 7.78 7.65 H2O 35.34 35.56 Total 100.11 100.00 • (1) Suckow mine, Boron, California, USA. -
Meyerhofferite Cab3o3(OH)
Meyerhofferite CaB3O3(OH)5 • H2O c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Triclinic. Point Group: 1. Rare as complex acicular to crude crystals, to ∼4 cm, in fibrous divergent, radiating aggregates, commonly reticulated; may be nodular. Physical Properties: Cleavage: On {010}, perfect; in traces on {100} and {110}. Hardness = 2 D(meas.) = 2.120 D(calc.) = 2.125 Optical Properties: Transparent to translucent. Color: Colorless to white, pale yellow. Luster: Vitreous to silky. Optical Class: Biaxial (–). Orientation: X (165◦,62◦); Y (45◦300,47◦); Z (-83◦,55◦) [with c (0◦,0◦) and b∗ (0◦,90◦) using (φ,ρ)]. Dispersion: r> v.α= 1.500 β = 1.535 γ = 1.560 2V(meas.) = 78◦ Cell Data: Space Group: P 1. a = 6.632(1) b = 8.337(1) c = 6.4748(6) α =90.81(1)◦ β = 101.97(1)◦ γ =86.76(1)◦ Z=2 X-ray Powder Pattern: Mt. Blanco, California, USA. (ICDD 12-411). 8.31 (100), 6.47 (100), 4.97 (25), 4.15 (20), 3.15 (20), 3.07 (20), 2.501 (20) Chemistry: (1) (2) B2O3 46.40 46.71 CaO 25.45 25.08 + H2O 27.75 − H2O 1.01 H2O 28.21 Total 100.61 100.00 • (1) Mt. Blanco, California, USA. (2) CaB3O3(OH)5 H2O. Occurrence: Typically a minor component of sedimentary or lake-bed borate deposits. Association: Inyoite, colemanite, hydroboracite, ulexite. Distribution: In the USA, from the Mt. Blanco deposit and along Gower Gulch, Furnace Creek district, Death Valley, Inyo Co., and in the Kramer borate deposit, Boron, Kern Co., California. -
Borate Minerals. Ii. a Hierarchy of Structures
731 The Canadian Mineralogist Vol 37, pp 731-'162(1999) BORATEMINERALS. II. A HIERARCHYOF STRUCTURES BASEDUPON THE BORATE FUNDAMENTAL BUILDING BLOCK JOEL D. GRICE Research Division, Canadian Museum of Nature, p O. Box 3443, Station D, Ottawa, Ontario Klp 6p4, Canada PETERC. BURNS Department of Civil Engineering and Geological Sciences,(Jniversity of Notre Dame, Notre Dame, Indiana 46556, U.S.A. FRANK C. HAWTHORNES Department of Geological Sciences,University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada AesrRAcr A hierarchical structural classification is developed for borate minerals, based on the linkage of (BQ) triangles and (BO+) tetrahedra to form FBBs (fundamental building blocks) that polymerize to form the structural unit, a tightly bonded anionic polyhedral array whose excesscharge is baianced by the presenceof large low-valence interstitial cations. Thirty-one minerals, with nineteen distinct structure-types,contain isolated borate polyhedra. Twenty-seven minerals, with twenty-five distinct struc- ture-types, contain finite clusters of borate polyhedra. Ten minerals, with ten distinct structue-types, contain chains of borate polyhedra. Fifteen minerals, with thirteen distinct structue-types, contain sheets of borate polyhedra. Fifteen minerals, with thirteen distinct sEucture-types,contain frameworks of borate polyhedra. It is only the close-packed structures of the isolated- polyhedra class that show significant isotypism Kelwords: borate minerals, crystal sffuctures, structural hierarchy. Sowenn Nous ddvelopponsici un sch6made classification structurale des mindraux du groupe des borates,fond6 sur I'articulation des ffiangles (BO:) et des t6trabdres(BOa), qui forment des modules structuraux fondamentaux. Ceux-ci, polym6ris6s, constituent l'unitd structuralede la maille, un agencementcompact d'anions fait de ces polyddres dont I'excddent de charge est neutralis6par des cations interstitiels h rayon relativement gros et d valence relativement faible. -
Bulletin of the Geological Society of Greece
Bulletin of the Geological Society of Greece Vol. 40, 2007 A PRELIMINARY STUDY OF THE COLEMANITE- RICH TUFF LAYER FROM THE SOURIDES AREA, KARLOVASSI BASIN, SAMOS ISLAND, HELLAS Kantiranis N. Aristotle University of Thessaloniki, Faculty of Sciences, School of Geology, Department of Min eralogy-Petrology-Economic Geology Filippidis A. Aristotle University of Thessaloniki, Faculty of Sciences, School of Geology, Department of Min eralogy-Petrology-Economic Geology Stamatakis M. National and Kapodistrian University of Athens, Faculty of Geology and Geoenvironment, Department of Economic Geology and Geochemistry Tzamos E. Aristotle University of Thessaloniki, Faculty of Sciences, School of Geology, Department of Min eralogy-Petrology-Economic Geology Drakoulis A. Aristotle University of Thessaloniki, Faculty of Sciences, School of Geology, Department of Min eralogy-Petrology-Economic Geology https://doi.org/10.12681/bgsg.16717 Copyright © 2018 N. Kantiranis, A. Filippidis, M. Stamatakis, E. Tzamos, A. Drakoulis To cite this article: http://epublishing.ekt.gr | e-Publisher: EKT | Downloaded at 20/02/2020 23:19:58 | Kantiranis, N., Filippidis, A., Stamatakis, M., Tzamos, E., & Drakoulis, A. (2007). A PRELIMINARY STUDY OF THE COLEMANITE-RICH TUFF LAYER FROM THE SOURIDES AREA, KARLOVASSI BASIN, SAMOS ISLAND, HELLAS. Bulletin of the Geological Society of Greece, 40(2), 769-774. doi:https://doi.org/10.12681/bgsg.16717 http://epublishing.ekt.gr | e-Publisher: EKT | Downloaded at 20/02/2020 23:19:58 | Δελτίο της Ελληνικής Γεωλογικής Εταιρίας τομ. -
Redalyc.Particles Association Study of a Borate Sample from Sijes District
Ingeniare. Revista Chilena de Ingeniería ISSN: 0718-3291 [email protected] Universidad de Tarapacá Chile Torres Sánchez, Rosa M.; Mattenella, Lilian E. Particles association study of a borate sample from Sijes District, Argentina Ingeniare. Revista Chilena de Ingeniería, vol. 15, núm. 1, enero-abril, 2007, pp. 35-41 Universidad de Tarapacá Arica, Chile Available in: http://www.redalyc.org/articulo.oa?id=77215105 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Torres et al.: ParticlesIngeniare. association Revista study chilena of a borate de ingeniería, sample from vol. 15sijes Nº di 1,strict, 2007, Argentina pp. 35-41 PARTICLES ASSOCIATION STUDY OF A BORATE SAMPLE FROM SIJES DISTRICT, ARGENTINA ESTUDIO DE LA ASOCIACIÓN DE PARTÍCULAS DE UNA MUESTRA DE BORATOS DEL DISTRITO SIJES, ARGENTINA Rosa M. Torres Sánchez1 Lilian E. Mattenella2 Recibido 13 de marzo de 2006, aceptado 11 de septiembre de 2006 Received: March 13, 2006 Accepted: September 11, 2006 RESUMEN La ampliación de los mercados que utilizan borato, principalmente el de la producción de fritas cerámicas, ha llevado a los productores de dicho mineral a mejorar su competitividad a través de su concentración y/o purificación tanto por medio de su molienda así como mediante la caracterización de minerales con alto contenido en B2O3. En los minerales provenientes de Sijes, Provincia de Salta, Argentina, se han identificado principalmente colemanita e hidroboracita, con 50.84% y 50.54% en B2O3, respectivamente, lo cual los hace potencialmente interesantes para su utilización industrial. -
Warren, J. K., 2010, Evaporites Through Time: Tectonic, Climatic And
Earth-Science Reviews 98 (2010) 217–268 Contents lists available at ScienceDirect Earth-Science Reviews journal homepage: www.elsevier.com/locate/earscirev Evaporites through time: Tectonic, climatic and eustatic controls in marine and nonmarine deposits John K. Warren Petroleum Geoscience Program, Department of Geology, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok 10330, Thailand article info abstract Article history: Throughout geological time, evaporite sediments form by solar-driven concentration of a surface or Received 25 February 2009 nearsurface brine. Large, thick and extensive deposits dominated by rock-salt (mega-halite) or anhydrite Accepted 10 November 2009 (mega-sulfate) deposits tend to be marine evaporites and can be associated with extensive deposits of Available online 22 November 2009 potash salts (mega-potash). Ancient marine evaporite deposition required particular climatic, eustatic or tectonic juxtapositions that have occurred a number of times in the past and will so again in the future. Keywords: Ancient marine evaporites typically have poorly developed Quaternary counterparts in scale, thickness, evaporite deposition tectonics and hydrology. When mega-evaporite settings were active within appropriate arid climatic and marine hydrological settings then huge volumes of seawater were drawn into the subsealevel evaporitic nonmarine depressions. These systems were typical of regions where the evaporation rates of ocean waters were at plate tectonics their maximum, and so were centred on the past latitudinal equivalents of today's horse latitudes. But, like economic geology today's nonmarine evaporites, the location of marine Phanerozoic evaporites in zones of appropriate classification adiabatic aridity and continentality extended well into the equatorial belts. Exploited deposits of borate, sodium carbonate (soda-ash) and sodium sulfate (salt-cake) salts, along with evaporitic sediments hosting lithium-rich brines require continental–meteoric not marine-fed hydrologies. -
A Specific Gravity Index for Minerats
A SPECIFICGRAVITY INDEX FOR MINERATS c. A. MURSKyI ern R. M. THOMPSON, Un'fuersityof Bri.ti,sh Col,umb,in,Voncouver, Canad,a This work was undertaken in order to provide a practical, and as far as possible,a complete list of specific gravities of minerals. An accurate speciflc cravity determination can usually be made quickly and this information when combined with other physical properties commonly leads to rapid mineral identification. Early complete but now outdated specific gravity lists are those of Miers given in his mineralogy textbook (1902),and Spencer(M,i,n. Mag.,2!, pp. 382-865,I}ZZ). A more recent list by Hurlbut (Dana's Manuatr of M,i,neral,ogy,LgE2) is incomplete and others are limited to rock forming minerals,Trdger (Tabel,l,enntr-optischen Best'i,mmungd,er geste,i,nsb.ildend,en M,ineral,e, 1952) and Morey (Encycto- ped,iaof Cherni,cal,Technol,ogy, Vol. 12, 19b4). In his mineral identification tables, smith (rd,entifi,cati,onand. qual,itatioe cherai,cal,anal,ys'i,s of mineral,s,second edition, New york, 19bB) groups minerals on the basis of specificgravity but in each of the twelve groups the minerals are listed in order of decreasinghardness. The present work should not be regarded as an index of all known minerals as the specificgravities of many minerals are unknown or known only approximately and are omitted from the current list. The list, in order of increasing specific gravity, includes all minerals without regard to other physical properties or to chemical composition. The designation I or II after the name indicates that the mineral falls in the classesof minerals describedin Dana Systemof M'ineralogyEdition 7, volume I (Native elements, sulphides, oxides, etc.) or II (Halides, carbonates, etc.) (L944 and 1951). -
Kernite, a New Sodium Borate ::
THE AMERICAN MINERA LOGIST KERNITE, A NEW SODIUM BORATE :: .:. War.rBuan T. ScnRr,rrin, U. S. GeologicalSaraey, Washingtoh D. C. The new mineral kernite, Na2B4OT'4HsO,was receivedthrough Hoyt S. Gale of Los Angeles, California, and is reported to occur in quantity in the southeast corner of Kern County, California, in the -The Kratner boron district. name kernite is proposed after the county name. The exact locality is about 4 miles north of Rich, a station on the Santa Fe R. R. and about 25 miles directly east of Mojave, being in Sec.22, T. 11 N., R. 8W. The mineral was discovered in exploratory borings at a depth of several hundred feet. Ulexite and possibly colemanite are associated rninerals. The geology of this field has been described by Galel and Noble.z The writer has a cleavage piece of kernite 2 by 2-l/2 by 6 inches. Apparently single crystals are of large size though no terminated crystals have so far been seen. The mineral is colorless to white, transparent, vitreous to pearly in luster, and greatly resembles some specimens of massive cleavable selenite. Ortho- rhombic. Perfect prismatic cleavage, rtuAm:71" 08'. Readily breaksinto long thin fibersandlaths. H:about 3. Sp. Gr.: 1.953. Optically probably negative, although 2V is nearly 90o and sign uncertain. Elongation (c axis) positive. Axial plane is parallel to elongation. a:I.454, 0:I.472, t:1.488. Before the blowpipe it swells considerably and finally fuses to a clear glass. Very slowly soluble in cold water, the clear cleavage pieces first be- coming opaque white due to abundant etch figures.