Rocks and Minerals in This Station-Based Event

Total Page:16

File Type:pdf, Size:1020Kb

Rocks and Minerals in This Station-Based Event Gary Vorwald NYS Rock & Mineral Supervisor Paul J. Gelinas JHS [email protected] Event Description Participants will demonstrate their knowledge of rocks and minerals in this station-based event. A team of up to 2 Approximate time: 40 – 50 Minutes Event Parameters Each team may bring: one magnifying glass One 3-ring binder (1 inch) containing information in any form from any source Materials MUST be 3-hole punched and inserted into the rings (sheet protectors allowed) The Competition Station Event: 15-24 stations with samples & questions Equal time intervals will be allotted for each station. When the signal is given, participants will begin work at their initial station. Participants may not move to the next station until prompted to do so, may not skip stations, nor return to any previously-visited station Mineral and Rock Stations The Competition HCl will not be provided, nor may it be brought to, or be used during the competition. Written descriptions as to how a specimen might react were it to be tested with HCl may be provided. The Competition Identification will be limited to specimens appearing on the Official Science Olympiad Rock and Mineral List (see www.soinc.org) Other rocks or minerals may be used to illustrate key concepts. Tournament Directors may include up to five additional specimens important to their own state. If additional specimens are to be included, all teams must be notified no later than 3 weeks prior to the competition. 2017 Rock & Mineral List Available at: https://www. soinc.org Students should place list in front of notebook Minerals are organized by mineral family Consists of: 59 Minerals 7 Metamorphic Rocks 10 Igneous Rocks 17 Sedimentary Rocks (or varieties) Minerals Native Elements 31. Hematite Silicates Garnet group 16. Copper 35. Magnetite 6. Augite 2. Almandine 18. Diamond 10. Beryl 25. Gold Carbonates, Borates 20. Epidote Mica Group 26. Graphite 5. Aragonite 32. Hornblende 11. Biotite 50. Silver 7. Azurite 33. Kaolinite 34. Lepidolite 54. Sulfur 13. Calcite 38. Olivine 37. Muscovite 19. Dolomite 39. Opal Sulfides 36. Malachite 49. Rhodonite Quartz varieties 12. Bornite 59. Ulexite 51. Sodalite 41. Agate/Onyx 15. Chalcopyrite 53. Staurolite 42. Amethyst 23. Galena Phosphates, Sulfates 55. Talc 43. Chalcedony 40. Pyrite 4. Apatite 56. Topaz 44. Citrine 52. Sphalerite 9. Barite 57. Tourmaline 45. Crystal 14. Celestite 58. Tremolite 46. Jasper Halides 47. Milky Quartz 22. Fluorite Gypsum varieties: Feldspar - Plagioclase 48. Rose Quartz 30. Halite 27. Alabaster Series 1. Albite 28. Satin Spar *Specimen numbers are the Oxides / Hydroxides 29. Selenite Feldspar – potassium same as in previous and feldspar current Science Olympiad 8. Bauxite Rock and Mineral Kits that 3. Microcline may be ordered from Wards 17. Corundum [Amazonite] Science Olympiad Kits. 24. Goethite/ 21. Orthoclase Limonite Additional Minerals (Nationals only) Actinolite Kyanite Labradorite [plagioclase feldspar series] Pyrolusite Rhodochrosite Labradorite feldspar Rutile Zircon Spodumene Stilbite Turquoise Zircon Kyanite Rhodochrosite Rocks Sedimentary (cont) Metamorphic Coal Varieties: 77. Anthracite 60. Gneiss 79. Bituminous 61. Marble 86. Lignite 62. Phyllite Igneous 63. Quartzite 82. Conglomerate 64. Schist [Garnet] 67. Andesite 84. Diatomite 65. Schist [Mica] 68. Basalt 85. Dolomite Rock or Dolostone 66. Slate 69. Diorite 86. Lignite Coal 70. Gabbro 71. Granite Limestone varieties: 72. Obsidian 87. Chalk 73. Pegmatite 83. Coquina 74. Pumice 89. Fossiliferous limestone 75. Rhyolite 90. Oolitic limestone 76. Scoria 91. Travertine Sedimentary 92. Sandstone 93. Shale 78. Arkose 80. Breccia 81. Chert Coaching Tips: Choose team members from different grade levels to avoid having to train a completely new team the following year. Experience is a true advantage for those teams that remain on or near the top for many years running! Have your team practice with many real samples Compile a notebook that is easy to find information Visit local museums, mineral shows, etc. Coaching Tips: Notebooks Participant notebooks are an integral part of the R & M Event. The goal for permitting resources is to encourage conceptual development in lieu of memorization of facts. Notebooks provide a framework for learning, understanding, and quick reference. Participant-developed binders are generally more helpful during the event than field guides. Field guides are not permitted during the competition this year Coaching Tips: Notebooks Survey: Any size binder OR 1-inch binder (recommended by Earth Science Committee) Participants who construct their own note-books are generally better prepared. Due to time constraints, a well-organized notebook provides a much more efficient resource than most others. Coaching Tips: Notebooks Notebooks provide an opportunity to organize facts in a personalized format. Notebooks provide an opportunity to include information from many sources. Notebooks provide a quick and easy means of checking participant progress. WARNING! Events that permit resources are generally much more challenging than those that do not. This is done purposely! Suggested Notebook Contents Devote one page to each Rock or Mineral specimen. Alphabetize mineral section by mineral name; rocks by type, then alphabetical. Each page should include, but is not limited to: a. One or more colored images b. Mineral Group or Rock classification c. Environment(s) of formation d. Properties of the specimen e. Formula or composition f. Commercial use (Avoid too much info that results from printing web pages; info should be easy to find & understand) Suggested Notebook Contents (Alphabetized) glossary of important terms Mohs scale of hardness Mineral flow chart or ID Chart with Properties Rock charts: igneous, sedimentary, and metamorphic Bowen’s Reaction Series chart Rock cycle diagram Diagrams of common mineral crystal forms & habits State Minerals Resources Rock & Mineral kits Wards Science Rock and Mineral Kit Science Olympiad Rock & Mineral Kit (OLY01) ESES, P.O. Box 503, Lee’s Summit, MO 64063 $85/kit including shipping (purchase orders or check) Other Worlds Educational Enterprises – Rock and Mineral CD, Exam packets, Rock and Mineral Kits http://www.otherworlds-edu.com/RocksAndMinerals.htm Rock & Mineral Guides (Audubon, Simon & Schuster, Petersen, Golden) Science Olympiad Store http://store.soinc.org/default.aspx • Science Olympiad Student Center • Wiki - http://scioly.org/wiki/Rocks_and_Minerals • Practice exams • Scioly.org Test Exchange: http://scioly.org/wiki/Test_Exchange • Test Exchange Archive – http://scioly.org/wiki/index.php/2014_Test_Exchange • North Carolina Science Olympiad http://www.sciencenc.com/event-help/rocksandminerals.php • National Science Olympiad – event info • https://www.soinc.org/rocks_minerals_c Websites Mineral & Gemstone Kingdom - general info on thousands of minerals and gems http://www.minerals.net/ Mineral & Locality Database http://www.mindat.org/ USGS Educational Resources for Secondary Grades (7–12) – click on Rocks and Minerals to get dozens of links http://education.usgs.gov/secondary.html#rocks Rocks for Kids – info on mineral properties & characteristics http://www.rocksforkids.com/RFK/identification.html Geoman’s Mineral & Rock Charts http://jersey.uoregon.edu/~mstrick/MinRockID/MinRockIndex.html 3 Basic Types of Rocks (Ask GeoMan) http://jersey.uoregon.edu/~mstrick/AskGeoMan/geoQuerry13.html James St John, Ohio State University Homepage – go to his links for Common Rocks, Common Minerals, and Sediments for good descriptions & images http://www.newark.osu.edu/facultystaff/personal/jstjohn/Documents/Home-page.htmmes Sample Event Questions STATION 1 1. Identify Mineral A. A. Emerald B. Beryl C. Tourmaline D. Olivine E. Apatite 2. Identify Mineral B. A. Hornblende B. Augite C. Apatite D. Tourmaline E. Topaz Sample A (Beryl) 3. Observe the properties of the minerals. Which statement best describes the differences between them? A.Sample A has about the same density as Sample B. B.Sample A is harder than Sample B. C. Sample A has a sub-metallic luster while Sample B is vitreous. D. Sample A is hexagonal while Sample B is a prismatic crystal. 4. What is a use for Mineral B? Sample B A.Fine quality crystals are cut into faceted semi-precious gems. (Tourmaline) B.It is used as an abrasive because of its extreme hardness. C. It is a common rock-forming mineral found in many igneous and metamorphic rocks. D. It is a source of beryllium. STATION 2 5. What is the texture of igneous Rock A? A.fine-grained C coarse-grained B. glassy D. vesicular 6. What is the name of Rock B? Sample A (Obsidian) A.Gabbro C. Diorite B.Granite D. Andesite 7. What is the name of Rock C ? A.Gabbro C. Diorite B.Granite D. Andesite Sample B (Granite) 8. Which rock cooled at the fastest rate? A B C 9. Which minerals are characteristic of Rock C? A. Orthoclase feldspar & quartz B. Plagioclase Feldspar & Olivine C. Quartz & Olivine D. Plagioclase Feldspar & Hornblende Sample C (Diorite Mineral Definition More than 4,000 naturally occurring minerals—inorganic solids that have a characteristic chemical composition and specific crystal structure—have been found on Earth. A substance needs to meet the following criteria to be considered a mineral: Naturally occurring Inorganic Solid Definite chemical composition Orderly internal crystal structure Physical Properties of Minerals Each mineral has different physical and chemical properties which allow it to be identified.
Recommended publications
  • Inyoite Cab3o3(OH)5 • 4H2O C 2001-2005 Mineral Data Publishing, Version 1
    Inyoite CaB3O3(OH)5 • 4H2O c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Monoclinic. Point Group: 2/m. Typically as crystals, short prismatic along [001], tabular on {001}, exhibiting prominent {110} and {001} and a dozen other minor forms, to 2.5 cm; in cockscomb aggregates of pseudorhombohedral crystals; also coarse spherulitic, granular. Physical Properties: Cleavage: {001}, good; {010}, distinct. Fracture: Irregular. Tenacity: Brittle. Hardness = 2 D(meas.) = 1.875 D(calc.) = 1.87 Soluble in H2O. Optical Properties: Transparent, translucent on dehydration. Color: Colorless, white on dehydration. Luster: Vitreous. Optical Class: Biaxial (–). Orientation: Y = b; X ∧ c =37◦; Z ∧ c = –53◦. Dispersion: r< v, slight. α = 1.490–1.495 β = 1.501–1.505 γ = 1.516–1.520 2V(meas.) = 70◦–86◦ Cell Data: Space Group: P 21/a. a = 10.621(1)) b = 12.066(1) c = 8.408(1) β = 114◦1.2◦ Z=4 X-ray Powder Pattern: Monte Azul mine, Argentina. 7.67 (100), 2.526 (25), 3.368 (22), 1.968 (22), 2.547 (21), 3.450 (20), 2.799 (19) Chemistry: (1) (2) B2O3 37.44 37.62 CaO 20.42 20.20 + H2O 9.46 − H2O 32.46 H2O 42.18 rem. 0.55 Total 100.33 100.00 • (1) Hillsborough, Canada; remnant is gypsum. (2) CaB3O3(OH)5 4H2O. Occurrence: Along fractures and nodular in sedimentary borate deposits; may be authigenic in playa sediments. Association: Meyerhofferite, colemanite, priceite, hydroboracite, ulexite, gypsum. Distribution: In the USA, in California, from an adit on Mount Blanco, Furnace Creek district, Death Valley, Inyo Co., and in the Kramer borate deposit, Boron, Kern Co.
    [Show full text]
  • Ulexite Nacab5o6(OH)6 • 5H2O C 2001-2005 Mineral Data Publishing, Version 1 Crystal Data: Triclinic
    Ulexite NaCaB5O6(OH)6 • 5H2O c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Triclinic. Point Group: 1. Rare as measurable crystals, which may have many forms; typically elongated to acicular along [001], to 5 cm, then forming fibrous cottonball-like masses; in compact parallel fibrous veins, and radiating and compact nodular groups. Twinning: Polysynthetic on {010} and {100}; possibly also on {340}, {230}, and others. Physical Properties: Cleavage: On {010}, perfect; on {110}, good; on {110}, poor. Fracture: Uneven across fiber groups. Tenacity: Brittle. Hardness = 2.5 D(meas.) = 1.955 D(calc.) = 1.955 Slightly soluble in H2O; parallel fibrous masses can act as fiber optical light pipes; may fluoresce yellow, greenish yellow, cream, white under SW and LW UV. Optical Properties: Transparent to opaque. Color: Colorless; white in aggregates, gray if included with clays. Luster: Vitreous; silky or satiny in fibrous aggregates. Optical Class: Biaxial (+). Orientation: X (11.5◦,81◦); Y (100◦,21.5◦); Z (107◦,70◦) [with c (0◦,0◦) and b∗ (0◦,90◦) using (φ,ρ)]. α = 1.491–1.496 β = 1.504–1.506 γ = 1.519–1.520 2V(meas.) = 73◦–78◦ Cell Data: Space Group: P 1. a = 8.816(3) b = 12.870(7) c = 6.678(1) α =90.36(2)◦ β = 109.05(2)◦ γ = 104.98(4)◦ Z=2 X-ray Powder Pattern: Jenifer mine, Boron, California, USA. 12.2 (100), 7.75 (80), 6.00 (30), 4.16 (30), 8.03 (15), 4.33 (15), 3.10 (15b) Chemistry: (1) (2) B2O3 43.07 42.95 CaO 13.92 13.84 Na2O 7.78 7.65 H2O 35.34 35.56 Total 100.11 100.00 • (1) Suckow mine, Boron, California, USA.
    [Show full text]
  • Bulletin of the Geological Society of Greece
    Bulletin of the Geological Society of Greece Vol. 40, 2007 A PRELIMINARY STUDY OF THE COLEMANITE- RICH TUFF LAYER FROM THE SOURIDES AREA, KARLOVASSI BASIN, SAMOS ISLAND, HELLAS Kantiranis N. Aristotle University of Thessaloniki, Faculty of Sciences, School of Geology, Department of Min eralogy-Petrology-Economic Geology Filippidis A. Aristotle University of Thessaloniki, Faculty of Sciences, School of Geology, Department of Min eralogy-Petrology-Economic Geology Stamatakis M. National and Kapodistrian University of Athens, Faculty of Geology and Geoenvironment, Department of Economic Geology and Geochemistry Tzamos E. Aristotle University of Thessaloniki, Faculty of Sciences, School of Geology, Department of Min eralogy-Petrology-Economic Geology Drakoulis A. Aristotle University of Thessaloniki, Faculty of Sciences, School of Geology, Department of Min eralogy-Petrology-Economic Geology https://doi.org/10.12681/bgsg.16717 Copyright © 2018 N. Kantiranis, A. Filippidis, M. Stamatakis, E. Tzamos, A. Drakoulis To cite this article: http://epublishing.ekt.gr | e-Publisher: EKT | Downloaded at 20/02/2020 23:19:58 | Kantiranis, N., Filippidis, A., Stamatakis, M., Tzamos, E., & Drakoulis, A. (2007). A PRELIMINARY STUDY OF THE COLEMANITE-RICH TUFF LAYER FROM THE SOURIDES AREA, KARLOVASSI BASIN, SAMOS ISLAND, HELLAS. Bulletin of the Geological Society of Greece, 40(2), 769-774. doi:https://doi.org/10.12681/bgsg.16717 http://epublishing.ekt.gr | e-Publisher: EKT | Downloaded at 20/02/2020 23:19:58 | Δελτίο της Ελληνικής Γεωλογικής Εταιρίας τομ.
    [Show full text]
  • Howlite and Utexite from the Carboniferous Gypsum And
    Canndtan Mineralogist Vol. 13, pp. 370-376 (1975) HOWLITEAND UTEXITEFROM THE CARBONIFEROUSGYPSUM AND ANHYDBITEBEDS IN WESTERNNEWFOUNDLAND V. S. PAPEZK Department ol Geology, Memorial Llniverslty of Newfoundland, st. John's, Newfoundland AND C. C. K. FONG,! Mineral DevelopmentDivision, NewfoandlandDepartment ol Mines and Energy, St. I ohn's,N ewfoundland Ansrnect forme de nodules compos6s en forme de fram- boises de 0.5 d, 2 cm de diamdtre; elle est com- The Carboniferous anhydrite and gypsum beds pos6e de minces cristaux en plaquettes d,une iq southwestern Nevrfoundland contain small longueur de moins de 0.1 mm avec des plans (100) quantities of ulexite (NaCaBrOr.8HzO) and how- pro6minents. Ces deux min6raux ont aussi 6t6 trou- Iite (CarSiBsOr(OH)u). The ulexite occurs as ir- v6s dans deux r6gions non-localisdes auparavant de regular patches l-3 cm in diametero consisting of la Nouvelle-E le gisement Pb-Zn de Gays white fibrous crystals; the howlite forms composite River et une carridre de gtr4rseprbs de Milford. La framboidal nodules about 0.5 to Z cm in diaieter, howlite semble avoir 6t6 form6e d'un gel; la forrra- consisting of thin platy crystals less than 0.1 mm tion des borates 6tait contemporaine avec la pr6ci- long with prominent (100) planes. The two min- pitation de sulfate de calcium. erals were also found at two localities in Nova Sco- La pr6sence des min6raux de borate (en petites previously reported - the Gays River !p _not quantit6s) semble 6tre courante dans I'anhvdrite Pb-Zn deposit and a gypsum quarry near-Milford. et le g;4pse du Bassin Carbonifdre des provinces de The howlite is believed to have been formed from I'Atlantique; par contre on ne rapporte aucune a gel; the formation of the borates was contempo- autre pr6sence similaire ailleurs pour f instant.
    [Show full text]
  • Warren, J. K., 2010, Evaporites Through Time: Tectonic, Climatic And
    Earth-Science Reviews 98 (2010) 217–268 Contents lists available at ScienceDirect Earth-Science Reviews journal homepage: www.elsevier.com/locate/earscirev Evaporites through time: Tectonic, climatic and eustatic controls in marine and nonmarine deposits John K. Warren Petroleum Geoscience Program, Department of Geology, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok 10330, Thailand article info abstract Article history: Throughout geological time, evaporite sediments form by solar-driven concentration of a surface or Received 25 February 2009 nearsurface brine. Large, thick and extensive deposits dominated by rock-salt (mega-halite) or anhydrite Accepted 10 November 2009 (mega-sulfate) deposits tend to be marine evaporites and can be associated with extensive deposits of Available online 22 November 2009 potash salts (mega-potash). Ancient marine evaporite deposition required particular climatic, eustatic or tectonic juxtapositions that have occurred a number of times in the past and will so again in the future. Keywords: Ancient marine evaporites typically have poorly developed Quaternary counterparts in scale, thickness, evaporite deposition tectonics and hydrology. When mega-evaporite settings were active within appropriate arid climatic and marine hydrological settings then huge volumes of seawater were drawn into the subsealevel evaporitic nonmarine depressions. These systems were typical of regions where the evaporation rates of ocean waters were at plate tectonics their maximum, and so were centred on the past latitudinal equivalents of today's horse latitudes. But, like economic geology today's nonmarine evaporites, the location of marine Phanerozoic evaporites in zones of appropriate classification adiabatic aridity and continentality extended well into the equatorial belts. Exploited deposits of borate, sodium carbonate (soda-ash) and sodium sulfate (salt-cake) salts, along with evaporitic sediments hosting lithium-rich brines require continental–meteoric not marine-fed hydrologies.
    [Show full text]
  • Kernite, a New Sodium Borate ::
    THE AMERICAN MINERA LOGIST KERNITE, A NEW SODIUM BORATE :: .:. War.rBuan T. ScnRr,rrin, U. S. GeologicalSaraey, Washingtoh D. C. The new mineral kernite, Na2B4OT'4HsO,was receivedthrough Hoyt S. Gale of Los Angeles, California, and is reported to occur in quantity in the southeast corner of Kern County, California, in the -The Kratner boron district. name kernite is proposed after the county name. The exact locality is about 4 miles north of Rich, a station on the Santa Fe R. R. and about 25 miles directly east of Mojave, being in Sec.22, T. 11 N., R. 8W. The mineral was discovered in exploratory borings at a depth of several hundred feet. Ulexite and possibly colemanite are associated rninerals. The geology of this field has been described by Galel and Noble.z The writer has a cleavage piece of kernite 2 by 2-l/2 by 6 inches. Apparently single crystals are of large size though no terminated crystals have so far been seen. The mineral is colorless to white, transparent, vitreous to pearly in luster, and greatly resembles some specimens of massive cleavable selenite. Ortho- rhombic. Perfect prismatic cleavage, rtuAm:71" 08'. Readily breaksinto long thin fibersandlaths. H:about 3. Sp. Gr.: 1.953. Optically probably negative, although 2V is nearly 90o and sign uncertain. Elongation (c axis) positive. Axial plane is parallel to elongation. a:I.454, 0:I.472, t:1.488. Before the blowpipe it swells considerably and finally fuses to a clear glass. Very slowly soluble in cold water, the clear cleavage pieces first be- coming opaque white due to abundant etch figures.
    [Show full text]
  • Howlite and Ulexite from Carboniferous
    C anad.ian Mineralogist Yol. 74, p, 393 (1976) HOWLITEAND ULEXITEFROM CARBONIFEROUS GYPSUM AND ANHYDRITEBEDS IN WESTERNNEWFOUNDLAND - ADDENDUM V. S. PAPEZIK Depertrnent of Geology, Memorial UnlversiE of Newfoundland, St. Johrfs, Newfoundland C. C.IL FONG Mlnerul Development Division, Newtoundland Departrnent of Mines and Energy, St. lohn's, N ewfoundland In our previous paper @apezik & Fong 1975) further referencesor reprints. A renewed search we described new occurrences of howlite and for borate mine1als,in gypsum quarries may ulexite in New,foundland and Nova Scotia, came well result in a discovery that they are indeed to the conclusion that small quantities of common in all gypsum deposits. However, if borates ought to be common in bedded g)Trsum careful investigation shows that borates are not and anhydrite deposits, expressedsurprise over ubiquitous in bedded gypsum deposits of marine the lack of reports of this association in major origin, we shall still be faced with the problem geological publications, and asked for refer- of special conditions (whether deposilional or ences to published papers that we may have erosional) for the borate-containing calcium missed. sulfate beds, as pointed out in our paper. Dr. M. Fleischer has kindly sent us a list of We wish to thank Dr. Fleischer for the refer- such papers,which we include in the References ences he has supplied to us. at the end of this note. These publications show RBrnnBxcrs that the calcium sulfate deposits of the Atlantic Provinces of Oanada are not unique in this re- Hervr,W. E., MANm{, C. J. & Scw-nrcmn, J. A. spect, and tlat similar association of borates (1961): Borate minerals in Permian gypsum of with beds of gypsum and anhydrite has been West-Central Oklahoma.
    [Show full text]
  • A Comparison of Ulexite Mineral and Borax Decahydrate to Synthesize Zinc Borate
    Proceedings of the World Congress on Engineering 2010 Vol III WCE 2010, June 30 - July 2, 2010, London, U.K. A Comparison of Ulexite Mineral and Borax Decahydrate to Synthesize Zinc Borate M.B. Piskin1 and N. Baran Acaralı2 Abstract—The purpose of this study is to compare the zinc borate results by using ulexite mineral and borax decahydrate. Zinc borate production was carried out by using boric acid synthesized in first stage, zinc oxide and commercial zinc borate as seed. In second stage, zinc borate samples produced were filtered, dried at 105°C for 20 h. The effect of reaction time, H3BO3/ZnO ratio, seed on yield have been investigated. X-ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR) analysis showed that zinc borate was (a) (b) synthesized successfully. Fig. 1 (a) Ulexite mineral, (b) Borax decahydrate Index Terms—Borax decahydrate, ulexite, zinc borate I. INTRODUCTION Zinc borate production was carried out in aqueous media Ulexite which is a sodium–calcium borate is a structurally using boric acid which was synthesized in first stage, zinc complex mineral. Borax decahydrate is one of the most oxide and commercial zinc borate as seed. Experiments have important commercial boron compounds produced in large been carried out in an isolated glass beaker. Temperature is tonnage which is sodium [1]-[3]. Zinc borates [4] are widely controlled using a digital temperature sensor and magnetic used in plastic, rubber, wood applications, cement etc. due to stirrer provides constantly stirring during the reaction. its properties [5]. Commercial zinc borate widely used is Zinc borate samples were filtered and dried at 105°C for 20 white, nonhygroscopic, viscose, powder product.
    [Show full text]
  • Investigation of Kinetic Parameters of Dehydrated Ulexite Mineral in Boric Acide Solution
    Araştırma Makalesi / Research Article Iğdır Üni. Fen Bilimleri Enst. Der. / Iğdır Univ. J. Inst. Sci. & Tech. 8(2): 149-157, 2018 Investigation of Kinetic Parameters of Dehydrated Ulexite Mineral in Boric Acide Solution Mehmet Harbi ÇALIMLI1, Mehmet TUNÇ2 ABSTRACT: Ulexite used in the production of boron compounds is an important mineral. In this work, the kinetic parameters of dehydrated ulexite mineral and orginal ulexite in boric acid solution were investigated. According to the DTA diagram, it was seen that the mineral did not change the structure until around 170 oC. It was observed that the dissolution kinetics increased to this temperature. In the SEM images, it was observed that the number of pores in the mineral was increased until 170 oC and afterwards number of pores was decreased. The kinetic parameters of the original ulexite were evaluated. Study indicates that the dissolution kinetics model in the boric acide was found as below; -1 -1,013 0,4579 -1 -0650 0,0545 -2649,12 -1 1-(1-X) = [2.02(Rp) [CA]0 (S.L ) (M.S) e T ].t Keywords: Boric acide, dissolution rate, ulexite, kinetic parameters Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi Iğdır Iğdır University Journal of the Institute of Science and Technology Iğdır University Journal of the Institute Science and Technology Hidrate Edimiş Uleksit Mineralinin Borik Asit Çözeltisindeki Kinetik Parametrelerinin İncelenmesi ÖZET: Bor bileşiklerinin üretiminde kullanılan Uleksit çok önemli bir bor mineralidir. Bu çalışmada hidrate edilmiş uleksit minerali ve orginal mineralinin borik asit çözeltisindeki kinetik parametreleri incelenmiştir. DTA diyagramına göre 170 oC’ye kadar mineral yapısında değişim olmadığı görülmüştür.
    [Show full text]
  • The Origin of the Colemanite Deposits of California
    2OO 14,'ILLI.4M F. FOSH.4G. mud. It crystallizesin clear glassymonoclinic crystals in a great variety of habits. It is easilydistinguished from the other borate mineralsby its eminentcleavage. When heatedin a flame cole- manite loseswater and falls to a powder. Sincethe other borates fuse easilybut do not decrepitatethis givesa simpletest for the detection of colemanite. Ulexite.--At one time ulexite constituted one of the main sourcesof the boratesof commerce. Today its productionis restricted to a few localities in South America. It is the double borate of calcium and sodium, NaCaB,O0.8H20. It is abundant in manyof the playasof North and SouthAmerica. It occursin aggregatesof looselycoherent, acicular crystals.. Theseaggre- gatesare popularlycalled "cotton-balls." They are foundin the surfacesalt crustsof the playa lakesas well as in the mud layers below. At the Lang depositsin California ulexite also occurs in lenticular masses with the colemanire at the foot wall of the beds. In the center of these masses the fibers are oriented in all directionswhile at their peripheriesthe fibers are parallel and normal to the surfaces. These masseshave the appearanceof "cotton-balls" that have been compacted,by' pressure. Ulexite fuseseasily in a flame,coloring the flameintensely yellow. Inyoite hasbeen found in the Mount BlancoDeposits in Death Valley. Recentlyit has been found in the gypsumdeposits of Nova Scotia. The fresh mineral is in clear glassy monoclinic crystalswith eminentcleavage but the mineral at Mount Blanco is almostcompletely altered to a fibrouscrystalline mass of meyer- hofferite. In compositioninyoite is similar to colemanitebut differs in its water content from that mineral. The iny'oitecon- tains thirteen molecules of water as shown by its formula, Ca2B00•.
    [Show full text]
  • Ulexite, Nacabsou(OH)R.Shro:Structure Refinement, Polyanion Configuration, Hydrogen Bonding,And Fiberoptics
    American Mineralogist, Volume 63, pages 160-171, 1978 Ulexite, NaCaBsOu(OH)r.sHrO:structure refinement, polyanion configuration, hydrogen bonding,and fiberoptics SuBnnre GHosn, Cun'Nc WnN Department of Geological Sciences, Uniuersity of l(ashington S eatt le, Washington 98I 95 eNoJoeN R. Cmnx U. S. GeologicalSuruey,345 Middlefeld Road Menlo Park, California 94025 Abstract The crystalstructure of ulexite,NaCaBsOe(OH)6.5HrO, triclinic, PT. has been refined to a conventionalR:0.046 usingleast-squares methods, partially block-diagonal, for 49ll reflectionscollected on a single-crystaldiffractometer with graphite-monochromatizedMo radiation.AII l6 hydrogenatoms in theasymmetric unit werelocated, and all form hydrogen bonds.Refinedcellconstantsare:d=8.816(3),b=12.870(7),c=6.678(l)A,a:90.36(2)", B : 109.05(2)',7 = 104.98(4)",V : 688.4(4)A3,2 :2, density(calc) = 1.955g/cm3. The structurecontains isolated pentaborate-type polyanions composed of three tetrahedraand two triangles,plus chainsof Na octahedraand chainsof Ca polyhedra,all cross-linkedby polyanionbonds to thecations and by a networkof hydrogenbonds. Average bond distances (A) are:B-O, tetrahedrall.4T5,triangular 1.367; Na-O,2.421;Ca-O,2.484;hydrogen bonds, O-H 0.80,H . .O 2.08,O. .O 2.852.The octahedraland polyhedral chains are parallel to c, theelongation direction, and causethe fibrous habit of ulexitecrystals that is essentialto the opticalfiber bundles.The hydrogenbonds rangefrom strongwith a minimum O..'O distanceof 2.595(3)A to veryweak and possibly bifurcated with O. .'O distancesof 3.082(a) and3.194(3) A. The watermolecule environments are normal; each contacts at leastoneNa or Ca on its lone-pairside.
    [Show full text]
  • Eti Maden, Etiproducts, SDS, Mineral, Operation & Quality Manager, M. E. Celen
    ULEXITE (ULEXITE BIGADIC) SAFETY DATA SHEET Date of Initial Issue : March 2007 Revision No : 05 Date of Revision : January 2018 ETİ MADEN İŞLETMELERİ GENEL MÜDÜRLÜĞÜ Ayvalı Mah. Halil Sezai Erkut Cad. Afra Sok. No: 1/A 06010 Keçiören/Ankara TÜRKİYE SECTION 1. Identification of the substance and of the company 1.1. Product identifier Substance Name: Ulexite CAS No : 1319-33-1 Trade name: ULEXITE (Ulexite Bigadic) Chemical name/synonyms: Ulexite, Sodium-Calcium Pentaborate Octahydrate REACH Registration No: Exempt from registration under REACH Regulation according to Article 2 (7) (b). Ulexite is a naturally occurring mineral which is not chemically modifed, therefore, considered within the scope of Annex V (7) of the REACH Regulation. 1.2. Relevant identified uses of the substance and uses advised against The product is used in industrial manufacturing, among others in: Textile grade fiberglass Boron alloys Metallurgical fluxing Borosilicate glass Uses advised against Not applicable, there are no uses of Ulexite advised against. 1.3. Details of the supplier of the safety data sheet Importer Name : AB ETIPRODUCTS OY Address : Piispanportti 5, 02240 Espoo/FINLAND Phone No : + 358 9 819 444 40 Fax No : + 358 9 819 444 44 e-mail : [email protected] Manufacturer Name : ETİ MADEN İŞLETMELERİ GENEL MÜDÜRLÜĞÜ Address : Ayvalı Mah. Halil Sezai Erkut Cad. Afra Sok. No:1/A 06010 Keçiören/Ankara TÜRKİYE Phone No : +90 312 294 20 00 Fax No : +90 312 232 71 84 1.4. Emergency phone number: +49 (0)6132-84463 (24-Hour-Number) GBK GmbH Page 1 /11 SECTION 2. Hazard Identification 2.1. Classification of the substance Ulexite is a naturally occurring mineral and does not meet the criteria for classification as hazardous according to Regulation EC 1272/2008.
    [Show full text]