Science Researches of Chinese Manned Space Flight

Total Page:16

File Type:pdf, Size:1020Kb

Science Researches of Chinese Manned Space Flight SPACE SCIENCE ACTIVITIES IN CHINA Science Researches of Chinese Manned Space Flight AUTHORS GU Yidong Technology and Engineering Center for Space Utilization, Chinese Academy of Sciences, GAO Ming Beijing 100190 ZHAO Guangheng LIU Yingchun JIN Zhaojun ABSTRACT With the complete success of the 2nd stage of Chinese Manned Space Program (CMSP), several science researches have been performed on Tiangong-1 experimental spacelab, which was docked with three Shenzhou spaceships one after another. The China’s real spacelab, Tiangong-2 will be launched in 2015, docked with a Shenzhou spaceship soon. After six months, it will be docked with the first Chinese cargo ship (Tianzhou-1). More space science researches, involving with space biology, fluid physics, fundamental physics, materials science, Earth science, astronomy and space environmental science, will be operated on Tiangong-2 spacelab, and crewed and cargo spaceships. Furthermore, the considerable large-scale space utilization of Chinese Space Station is planned. The research fields include yet not limited to space medicine and physiology, space life science and biotechnology, fluid physics and combustion in microgravity, space material science, and fundamental physics in microgravity, space astronomy, Earth science, space physics and space environment utilization, technology demonstration. KEY WORDS Science research, Chinese Manned Space Program (CMSP), Space station 1 Progress and Future Plans of China’s experimental space laboratory, was visited by the other Manned Space Program two Shenzhou spaceships after Shenzhou-8 in the latest two years. Shenzhou-9 spaceship docked with Tian- Tiangong-1, serving as a target spacecraft as well as an gong-1 in June, 2012, which was China’s first manned ·14· GU Yidong, et al.: Science Researches of Chinese Manned Space Flight spacecraft rendezvous and docking. Liu Yang, the first data utilization in the nation’s economic, social Chinese female astronaut, was among the crew. One development and scientific research. Under the authorization year later, Shenzhou-10 spaceship docked with Tiangong-1 in June 2013 with another female astronaut. Now Tab.1 Key specifications of HSI Tiangong-1 has exceeded its planned two-year opera- spectral number spectral spatial spectral name width tional life time and entered the extension application range of bands resolution resolution full phase. It will continue to work in orbit till the fuel runs out. 0.5–0.8 μm 1 - 5 m 20 km chromatographic With the complete success of these spaceflight miss- visible and near 0.4–1 μm 64 10 nm 10 m 10 km ions as a milestone, China’s Manned Space Program infrared shortwave (CMSP) will enter a new phase of manned space station 1–2.5 μm 64 23 nm 20 m 10 km construction. Tiangong-2, serving as a real space infrared laboratory, will be launched in 2015. Half a year later, thermal infrared - 1 - 10 m 15 km the first cargo ship (named Tianzhou-1) will be launched and dock with Tiangong-2 in 2016. In 2018, the first module as the core module of the multi-module space station of China will be launched. And two experimental modules will be launched into space in 2020 and 2022 respectively. The China’s manned space station is planned to be a state-level space laboratory, for carrying out successive space science researches, technology demonstrations and some space applications. Between 2015 and 2022, there will be a series of cargo ships and manned spaceships transporting crews and supplies to the space laboratory and space station. 2 Science Researches on Tiangong-1 and Shenzhou Spaceships Ever since having been launched on September 29, 2011, Tiangong-1 is in flight operation phase, including three rendezvous and docking missions. All the payloads on Tiangong-1 have performed well, e.g. the Earth observation and space environment detectors onboard. Tiangong-1 has obtained a great deal of scientific data, which are valuable in mineral resources Fig.1 Hyperspectral short-wave infrared spectral data applied to investigation, ocean and forest application, hydrologic mineral identification and ecological environment monitoring, land utilization planning, urban thermal environment monitoring and emergency disaster control. Remarkable application benefits have been achieved. For example, Tiangong-1 provided the timely hyper-spectral observation data during the Yuyao (a county in Zhejiang Province of China) flood disaster as well as the image data during the Australia forest fire. (1) Space Earth Science: Hyperspectral Imager The key specifications of Hyperspectral Imager (HSI) installed on Tiangong-1 are shown in Table 1. And images from three spectrums are shown in Figure 1–3. Recently, China Manned Space Agency (CMSA) officially published the data policies and there are two Fig.2 Thermal infrared spectral data and other remote sensing accesses to Tiangong-1 application data to facilitate the ancillary data applied to Earth surface observation ·15· SPACE SCIENCE ACTIVITIES IN CHINA Fig.3 Hyperspectral visible-near infrared data applied to monitoring of land utilization of CMSA, Technology and Engineering Center for (2) Space Material Science: Composite Space Utilization (CSU) of Chinese Academy of Sciences Colloidal Crystal Growth (CAS) is in charge of processing and distributing the A diffract visible light imager was operated in Earth observation data obtained from Tiangong-1. The Tiangong-1 to observe the composite colloidal crystals nonprofit users can fill a form online to obtain the data or crystalline phase transition in microgravity environment. of Grade 1 and Grade 2. The domestic and international The series of comparison crystallization experiments on commercial users can purchase the data service via the ground have been done, to find the effect of gravity several Chinese agents. Tiangong-1 data Service in the colloidal crystal growth process and understand Platform for Expanding Space Utilization has been more about the mechanism of colloidal crystal growth. online. Users may visit http://www.msadc.cn to learn the The natural crystallization process of one material details about the related policies, data acquisition sample is showed in Figure 4. The initial state of procedure and application cases. amorphous material sample in the crystallization Fig.4 Images of natural crystalline Kossel diffraction for typical sample. The upper are the results of space experiments and the lower are the results of ground experiments ·16· GU Yidong, et al.: Science Researches of Chinese Manned Space Flight experiments was observed under a zero external electric and the astronaut's operational capability in space. field (or voltage) and 25 ℃ temperature. The Kossel Aided by her Shenzhou-10 crew member, Wang diffraction lines of the sample process from scratch Yaping, the second Chinese female astronaut, conducted were observed on board. A number of natural crystalline the scientific experiments and gave a physics lesson to diffraction experiments were conducted, in order to Chinese students on live television. Wang demonstrated confirm the experimental result. The typical natural pendulum movement and gyroscopic motion, and crystalline diffraction figures of in-orbit experiments created a water bubble to illustrate the surface tension of and of the corresponding comparison ground experiment water in microgravity. More than 60 million students are shown in Figure 4. The data analyses are illustrated and teachers from 80 thousand high schools all over in Figure 5. China have participated in the interaction. 3 Science Researches on Tiangong-2 Spacelab and Tianzhou-1 Cargo Ship Tiangong-2, as the first real space laboratory of CMSP, will be launched in 2015. There will be a relatively larger scale space science projects on board. The fields of researches are related with the space biology, fluid physics in microgravity, fundamental physics, Earth science, space astronomy, and space environment detector. All flight models of scientific payloads have been completed development, which are undergoing integrated tests and ground verification now. An experimental cargo ship, Tianzhou-1, is going to be lunched around 2016. A cell bioreactor, a two-phase fluid instrument and an accelerometer for flight demonstration will be launched with it. (1) Space Biology and Microgravity Physics A higher plants cultivation experiment on Tiangong-2 would study the growth and development law from seed to seed, to explore how the long-day and short-day photoperiodic induce and control the flowering law and regulation mechanism under microgravity conditions. Fig.5 Natural crystalline analyses for typical sample. The left is An integrated material furnace on Tiangong-2 would the change of lattice size during the natural crystalline process, the focus on the material physical and chemical processes right is the change of the crystal lattice orientation during the natural of space material production, the samples including crystallization process; the red triangles mark the space experimental semiconductor optoelectronic materials, metal alloys data and the black rings mark the ground experimental data and metastable materials, new feature single crystal, micro-nano and composite materials, etc. (3) Astrobiology A liquid bridge thermo-capillary on Tiangong-2 Aboard the Tiangong-1, the Shenzhou-9 and Shenzhou-10 convection experiment would observe the large Prandtl crew members tested space medicine and conducted a number liquid bridge, study the effect of the ratio of series of technology demonstrations. height
Recommended publications
  • Chinese Spacecraft En Route to Orbiting Module 17 June 2012
    Chinese spacecraft en route to orbiting module 17 June 2012 everything is going according to plan," China Central Television said in its midday news program. Two of the astronauts will live and work inside the module while the third remains in the capsule in case of emergency. The astronauts are to conduct medical tests and other experiments before returning to Earth. Shenzhou 9 spacecraft rocket launches from the Jiuquan Satellite Launch Center in Jiuquan, China, Saturday, June 16, 2012. China sent its first woman and two other astronauts into space Saturday to work on a temporary space station for about a week, in a key step toward becoming only the third nation to set up a permanent base in orbit. (AP Photo/Ng Han Guan) (AP) - A spacecraft carrying China's first female China's first female astronaut Liu Yang salutes during a astronaut and two male crew mates made a sending off ceremony as she departs for the Shenzhou 9 planned course change Sunday en route to spacecraft rocket launch pad at the Jiuquan Satellite docking with an orbiting module, state television Launch Center in Jiuquan, China, Saturday, June 16, reported. 2012. China will send its first woman and two other astronauts into space Saturday to work on a temporary space station for about a week, in a key step toward The Shenzhou 9 capsule was launched Saturday becoming only the third nation to set up a permanent on China's most ambitious space mission yet in a base in orbit.(AP Photo/Ng Han Guan) step toward building a permanent space station.
    [Show full text]
  • China Science and Technology Newsletter No. 14
    CHINA SCIENCE AND TECHNOLOGY NEWSLETTER Department of International Cooperation No.14 Ministry of Science and Technology(MOST), P.R.China July 25 2014 Special Issue: China’s Space Development Achievements and Prospects of China’s Space Development The 64th IAC Held in Beijing Shenzhou 10 Misson Successfully Accomplished Chang’e 3 Achieved Soft Landing on the Moon GF-1 Satellite - The First Satellite of CHEOS Achievements and Prospects of China’s Space Development Mr. Xu Dazhe, Chairman of China Aerospace Science in 1970 marked the start of China entering into space and and Technology Corporation (CASC) delivered a speech exploring the universe. Due to substantial governmental at the 64th International Astronautical Congress (IAC) on support and promotion, China’s space industry developed September 23, 2013, sharing experiences gained in the quite fast and has made world-known achievements. development of China’s space industry with international As the leader in China’s space sector, CASC is colleagues. assigned to develop, manufacture and test launch OUTSTANDING ACHIEVEMENTS MADE BY vehicles, manned spaceships, various satellites and CHINA’S SPACE INDUSTRY other spacecraft for major national space programs such as China’s Manned Space Program, China’s Lunar China’s space programs have had 57 years of Exploration Program, BeiDou Navigation Satellite development since the 1950s. The successful launch of System, and China’s High-Resolution Earth Observation China’s first artificial satellite Dongfanghong 1 (DFH-1) Monthly-Editorial Board:Building A8 West, Liulinguan Nanli, Haidian District, Beijing 100036, China Contact: Prof.Zhang Ning E-mail: [email protected] [email protected] http://www.caistc.com System.
    [Show full text]
  • Highlights in Space 2010
    International Astronautical Federation Committee on Space Research International Institute of Space Law 94 bis, Avenue de Suffren c/o CNES 94 bis, Avenue de Suffren UNITED NATIONS 75015 Paris, France 2 place Maurice Quentin 75015 Paris, France Tel: +33 1 45 67 42 60 Fax: +33 1 42 73 21 20 Tel. + 33 1 44 76 75 10 E-mail: : [email protected] E-mail: [email protected] Fax. + 33 1 44 76 74 37 URL: www.iislweb.com OFFICE FOR OUTER SPACE AFFAIRS URL: www.iafastro.com E-mail: [email protected] URL : http://cosparhq.cnes.fr Highlights in Space 2010 Prepared in cooperation with the International Astronautical Federation, the Committee on Space Research and the International Institute of Space Law The United Nations Office for Outer Space Affairs is responsible for promoting international cooperation in the peaceful uses of outer space and assisting developing countries in using space science and technology. United Nations Office for Outer Space Affairs P. O. Box 500, 1400 Vienna, Austria Tel: (+43-1) 26060-4950 Fax: (+43-1) 26060-5830 E-mail: [email protected] URL: www.unoosa.org United Nations publication Printed in Austria USD 15 Sales No. E.11.I.3 ISBN 978-92-1-101236-1 ST/SPACE/57 *1180239* V.11-80239—January 2011—775 UNITED NATIONS OFFICE FOR OUTER SPACE AFFAIRS UNITED NATIONS OFFICE AT VIENNA Highlights in Space 2010 Prepared in cooperation with the International Astronautical Federation, the Committee on Space Research and the International Institute of Space Law Progress in space science, technology and applications, international cooperation and space law UNITED NATIONS New York, 2011 UniTEd NationS PUblication Sales no.
    [Show full text]
  • The Annual Compendium of Commercial Space Transportation: 2012
    Federal Aviation Administration The Annual Compendium of Commercial Space Transportation: 2012 February 2013 About FAA About the FAA Office of Commercial Space Transportation The Federal Aviation Administration’s Office of Commercial Space Transportation (FAA AST) licenses and regulates U.S. commercial space launch and reentry activity, as well as the operation of non-federal launch and reentry sites, as authorized by Executive Order 12465 and Title 51 United States Code, Subtitle V, Chapter 509 (formerly the Commercial Space Launch Act). FAA AST’s mission is to ensure public health and safety and the safety of property while protecting the national security and foreign policy interests of the United States during commercial launch and reentry operations. In addition, FAA AST is directed to encourage, facilitate, and promote commercial space launches and reentries. Additional information concerning commercial space transportation can be found on FAA AST’s website: http://www.faa.gov/go/ast Cover art: Phil Smith, The Tauri Group (2013) NOTICE Use of trade names or names of manufacturers in this document does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the Federal Aviation Administration. • i • Federal Aviation Administration’s Office of Commercial Space Transportation Dear Colleague, 2012 was a very active year for the entire commercial space industry. In addition to all of the dramatic space transportation events, including the first-ever commercial mission flown to and from the International Space Station, the year was also a very busy one from the government’s perspective. It is clear that the level and pace of activity is beginning to increase significantly.
    [Show full text]
  • Only Six Chinese Human Spaceflight Missions
    Fact Sheet Updated April 29, 2021 CHINA’S HUMAN SPACEFLIGHT PROGRAM: BACKGROUND AND LIST OF CREWED AND AUTOMATED LAUNCHES China's human spaceflight program, Project 921, officially began in 1992. The program is proceeding at a measured pace. The most recent crewed launch, Shenzhou-11 in October 2016, was the 11th flight in the series, but only the sixth to carry a crew. Shenzhou Spacecraft: Shenzhou 1-4 were automated tests of the spacecraft. Shenzhou-8 was an automated test of rendezvous and docking procedures with the Tiangong-1 space station. The others (5, 6, 7, 9, 10, 11) carried crews of one, two or three people and were launched in 2003, 2005, 2008, 2012, 2013 and 2016 respectively (see list below) Space Stations: Tiangong-1, China's first space station, was launched in September 2011. It hosted the automated Shenzhou-8 in 2011 and two three-person crews: Shenzhou-9 in 2012 and Shenzhou-10 in 2013. It made an uncontrolled reentry at 8:16 pm April 1, 2018 EDT (00:16 April 2 UTC; 8:16 am April 2 Beijing Time) over the southern Pacific Ocean. Tiangong-1 was a small 8.5 metric ton (MT) module. As first space stations go, it was rather modest -- just less than half the mass of the world's first space station, the Soviet Union’s Salyut 1. Launched in 1971, Salyut 1 had a mass of about 18.6 MT. The first U.S. space station, Skylab, launched in 1973, had a mass of about 77 MT. Today's International Space Station (ISS), a partnership among the United States, Russia, Japan, Europe, and Canada, has a mass of about 400 MT and has been permanently occupied by 2-6 person crews rotating on 4-6 month missions since November 2000.
    [Show full text]
  • ESPI Insights Space Sector Watch
    ESPI Insights Space Sector Watch Issue 16 May 2021 THIS MONTH IN THE SPACE SECTOR… MARS LANDING CEMENTS CHINA’S POSITION AS MAJOR SPACE POWER ................................................................ 1 POLICY & PROGRAMMES .................................................................................................................................... 2 ESA awards €150 million in contracts to continue development of Prometheus and Phoebus .......... 2 European Commission targets second study for its space-based secure connectivity project .......... 2 South Korea joins Artemis accords and strengthens partnership with the U.S. ..................................... 2 May marks busy month in UK space sector................................................................................................... 3 NASA temporarily suspends SpaceX’s HLS contract following protests on the award ........................ 3 Spain eyes creation of a National Space Agency .......................................................................................... 3 Space Force awards $228 million GPS contract extension to Raytheon Intelligence and Space ...... 4 China officially establishes company to develop and operate broadband mega constellation ........... 4 Lithuania signs Association Agreement with ESA ........................................................................................ 4 CNES and Bundeswehr University Munich (UniBw) launch SpaceFounders accelerator ..................... 4 The Brazilian Space Agency selects Virgin Orbit
    [Show full text]
  • Scientists Hail Xi's Speech on Innovation
    On alert Direct sales of California braces for severe wildfire e-cars spur Ready to soar season amid intensifying drought excitement Skateboarding is poised for Olympic debut, SPORTS, PAGE 19 WORLD, PAGE 12 BUSINESS, PAGE 14 but is it losing its soul? CHINADAILY MONDAY, May 31, 2021 www.chinadailyhk.com HK $10 Scientists hail Xi’s speech on innovation President calls for more breakthroughs in core tech, higher-level self-reliance By ZHANG ZHIHAO National Congress of the China Asso- [email protected] ciation for Science and Technology. These feats include the country’s Noted scientists and engineers Mars and lunar probes, the Beidou hailed President Xi Jinping’s latest Navigation Satellite System, the speech on science and technologi- construction of the Chinese space cal innovation as insightful, station, new quantum computers inspiring and instructive, saying and deep-sea submersibles. He they will fulfill Xi’s call to enhance also mentioned that China has basic research, train quality pro- become a global leader in fields fessionals, promote international including 5G communication and collaboration and conduct image and voice recognition. A Long March 7 rocket, carrying the Tianzhou 2 cargo spacecraft, blasts off from the Wenchang Space Launch Center in Hainan province on reforms to unleash the full poten- However, China’s ability to make Saturday. TU HAICHAO / FOR CHINA DAILY tial of those working in science. original breakthroughs is still rela- Xi, who is also general secretary tively weak, Xi said. The nation of the Communist Party of China also needs to improve the effective- Central Committee and chairman of ness of its innovation system, make the Central Military Commission, better use of its research resources Tianzhou 2 cargo ship docks with space station module called on the Chinese scientific com- and optimize its systems for train- munity to make more break- ing talent and evaluating scientific By zhao LEI When astronauts from the throughs in core technologies and output, he added.
    [Show full text]
  • Mmm India Quarterly #17 January 2013
    MMM INDIA QUARTERLY #17 JANUARY 2013 Will we return to the Moon under one flag? - That is the goal of the International Lunar Research Park Project MAJOR ARTICLES in this issue - (Full Index on last page) p. 19 Breakthrough Demonstration of 3D Printing With Moon Rocks (in News Section) p. 32 Hellas: a glimpse of the past, a tease of Basoomian mythology, and the future of Mars - Peter Kokh p. 34 The Planetary Society’s Bold “PlanetVac” Mars Sample Return Project - Peter Kokh p. 35 Moon & Mars - two Monochrome Worlds - Peter Kokh p. 36 Could we put an Outpost on Mercury? If so, why would we? - Peter Kokh p. 38 National Space Society’s Road Map to Space, Part IV: To the Moon - NSS website p. 41 Building Networks of Support for an International Lunar Geophysical Year - David Dunlop p. 44 Lori Garver - “NASA has not abandoned the Moon” - David Dunlop p. 45 Getting Indian Astronauts on the Moon - David Dunlop p. 47 Competition and Resolving Potential Conflicts in “the Asteroid Business” - David Dunlop Innovation: L>R: Spanish Titan Lake Boat, a 3D Printer, Planetary Society’s lightweight Mars Sample Return Probe 1 MMM INDIA QUARTERLY #17 JANUARY 2013 About The Moon Society - http://www,moonsociety.org Our Vision says Who We Are - We envision a future in, which the free enterprise human economy has expanded to include settlements on the Moon and elsewhere, contributing products and services that will foster a better life for all humanity on Earth and beyond, inspiring our youth, and fostering hope in an open-ended positive future for humankind.
    [Show full text]
  • The Annual Compendium of Commercial Space Transportation: 2017
    Federal Aviation Administration The Annual Compendium of Commercial Space Transportation: 2017 January 2017 Annual Compendium of Commercial Space Transportation: 2017 i Contents About the FAA Office of Commercial Space Transportation The Federal Aviation Administration’s Office of Commercial Space Transportation (FAA AST) licenses and regulates U.S. commercial space launch and reentry activity, as well as the operation of non-federal launch and reentry sites, as authorized by Executive Order 12465 and Title 51 United States Code, Subtitle V, Chapter 509 (formerly the Commercial Space Launch Act). FAA AST’s mission is to ensure public health and safety and the safety of property while protecting the national security and foreign policy interests of the United States during commercial launch and reentry operations. In addition, FAA AST is directed to encourage, facilitate, and promote commercial space launches and reentries. Additional information concerning commercial space transportation can be found on FAA AST’s website: http://www.faa.gov/go/ast Cover art: Phil Smith, The Tauri Group (2017) Publication produced for FAA AST by The Tauri Group under contract. NOTICE Use of trade names or names of manufacturers in this document does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the Federal Aviation Administration. ii Annual Compendium of Commercial Space Transportation: 2017 GENERAL CONTENTS Executive Summary 1 Introduction 5 Launch Vehicles 9 Launch and Reentry Sites 21 Payloads 35 2016 Launch Events 39 2017 Annual Commercial Space Transportation Forecast 45 Space Transportation Law and Policy 83 Appendices 89 Orbital Launch Vehicle Fact Sheets 100 iii Contents DETAILED CONTENTS EXECUTIVE SUMMARY .
    [Show full text]
  • 25 April 2021
    2 5 A P R I L 2 0 2 1 THE FINAL FRONTIER FLASH Developments & Analysis of the Space Domain In This Issue China Launches Shiyan-6 China to Build Ningbo Commercial Spaceport Russia Counterspace Lasers Mission Extension Vehicle-2 (MEV-2) Docking Upcoming China Space Station Missions Airbus to Lead On-Orbit Manufacturing Study 1411 Frontier, Suite 1A Spring Branch, TX 78070 isruniversity.com integrityisr.com All hyperlinks are underlined #WeKnowISR China Launches Shiyan 6 (03) Shiyan 6 (03) Launch from Taiyuan 8 April 2021: China launched the third in a series of experimental Shiyan 6 satellites April 8 aboard a Long March 4B rocket. Not much is known about the satellite other than it will test new space technologies, including a new super- black coating to absorb stray light and improve the sensitivity of on-board optics. See VIDEO - The Long March 4B rocket carried the Shiyan 6 spacecraft into a polar orbit about 620 miles (1,000 km) above Earth, with an inclination of 99.5 degrees to the equator. - This is the third in a series of Shiyan 6-type satellites. The first two Shiyan 6 satellites launched on Long March 2D rockets from the Jiuquan space center in northwestern China in November 2018 and July 2020. The first two Shiyan 6 satellites were deployed at lower altitudes. - Shiyan means “experiment” in Shiyan 6 (01, 02 & 03) Orbits Chinese. - One of the technologies to be tested on the Shiyan 6 spacecraft is a new super-black coating designed to prevent stray light from disrupting optical cameras.
    [Show full text]
  • In This Issue
    Vol. 41 No.9, June 2016 Editor: Jos Heyman FBIS In this issue: Astronaut Log (2009-2015) 5 Cancelled Projects: HOPE and HOPE-X 2 HOPE TIROS SPACE INFORMATION Cancelled Projects: HOPE and HOPE-X 86 Barnevelder Bend, Southern River WA 6110, Australia Tel + 61 8 9398 1322 (e-mail: [email protected]) By Jos Heyman The Tiros Space Information (TSI) - News Bulletin is published to promote the scientific exploration and In 1986 Japan began the development of the H2 Orbiting Plane (HOPE), a re-usable space plane commercial application of space through the dissemination of current news and historical facts. that would carry up to four astronauts to the Freedom space station in which Japan had agreed to In doing so, Tiros Space Information continues the traditions of the Western Australian Branch of the take part. It was one of Japan’s two contributions to the Freedom Space Station operations, the Astronautical Society of Australia (1973-1975) and the Astronautical Society of Western Australia (ASWA) other one being the Japanese Experiment Module (JEM) which eventually evolved into the Kibo (1975-2006). module of the International Space Station (ISS). The News Bulletin can be received worldwide by e-mail subscription only. Subscriptions can be requested by sending an e-mail address to [email protected]. Tiros Space Information reserves the right to refuse any subscription request without the need to provide a reason. All opinions expressed are those of the authors and do not necessarily reflect the opinions of the Editor or Tiros Space Information. All material contained in this publication may be reproduced provided due acknowledgment is made.
    [Show full text]
  • 2013 October
    TTSIQ #5 page 1 OCTOBER 2013 Reducing space transportation costs considerably is vital to achievement of mankind’s goals & dreams in space NEWS SECTION pp. 3-70 p. 3 Earth Orbit and Mission to Planet Earth p. 17 Cislunar Space and the Moon p. 26 Mars and the Asteroids p. 45 Other Planets and their moons p. 62 Starbound ARTICLES & ESSAYS pp. 72-95 p. 72 Covering Up Lunar Habitats with Moondust? - Some Precedents Here on Earth - Peter Kokh p. 74 How can we Stimulate Greater Use of the International Space Station? - Peter Kokh p. 75 AS THE WORLD EXPANDS The Epic of Human Expansion Continues - Peter Kokh p. 77 Grytviken, South Georgia Island - Lessons for Moonbase Advocates - Peter Kokh K p. 78 The “Flankscopes” Project: Seeing Around the Edges of the Moon - Peter Kokh p. 81 Integrating Cycling Orbits to Enhance Cislunar Infrastructure - Al Anzaldua p. 83 The Responsibilities of Dual Citizenship for Our economy, Our planet, and the Evolution of a Space Faring Civilization - David Dunlop p. 87 Dueling Space Roadmaps - David Dunlop p. 91 A Campaign for the International Lunar Geophysical Year: Some Beginning Considerations - David Dunlop STUDENTS & TEACHERS pp. 97-100 p. 97 Lithuanian Students Hope for free Launch of 2 Amateur Radio CubeSats p. 98 NASA Selects 7 University Projects For 2014 X-Hab Innovation Challenge Penn State University “Lions” take on the Google Lunar X-Prize Challenge p. 99 Do you experience “Manhattan Henge” in your home town? Advanced Robot with more sophisticated motion capabilities unveiled The Ongoing CubeSat Revolution: what it means for Student Space Science p.
    [Show full text]