3-Monochloropropane-1,2-Diol Esters and Glycidyl Esters

Total Page:16

File Type:pdf, Size:1020Kb

3-Monochloropropane-1,2-Diol Esters and Glycidyl Esters www.nature.com/scientificreports OPEN Monitoring of heat‑induced carcinogenic compounds (3‑monochloropropane‑1,2‑diol esters and glycidyl esters) in fries Yu Hua Wong1, Kok Ming Goh1,2, Kar Lin Nyam2, Ling Zhi Cheong3, Yong Wang4, Imededdine Arbi Nehdi5,6, Lamjed Mansour7 & Chin Ping Tan1* 3‑Monochloropropane‑1,2‑diol (3‑MCPD) esters and glycidyl esters (GE) are heat‑induced contaminants which form during oil refning process, particularly at the high temperature deodorization stage. It is worth to investigate the content of 3‑MCPD and GE in fries which also involved high temperature. The content of 3‑MCPD esters and GE were monitored in fries. The factors that been chosen were temperature and duration of frying, and diferent concentration of salt (NaCl). The results in our study showed that the efect was in the order of concentration of sodium chloride < frying duration < frying temperature. The content of 3‑MCPD esters was signifcantly increased whereas GE was signifcantly decreased, when prolong the frying duration. A high temperature results in a high 3‑MCPD ester level but a low GE level in fries. The present of salt had contributed signifcant infuence to the generation of 3‑MCPD. The soaking of potato chips in salt showed no signifcant efect on the level of GE during the frying. The oil oxidation tests showed that all the fries were below the safety limit. Hence, the frying cycle, temperature and the added salt to carbohydrate‑based food during frying should be monitored. Deep-fat frying is commonly being used to process food. During the process, heat transfer between the fried food and oil is occurs. Te frying oil replaced the moisture in food during the dehydration process. Tus, the frying oil quality is highly infuencing the fried food1. During deep-fat frying, free fatty acids, aldehydes, ketones, hydrocarbons, diacylglycerol and monoacylglycerol are formed from numerous complex interrelation reactions induced by hydrolysis, oxidation, isomerization and polymerization2. Palm olein is widely being used for deep- fat frying because of the stability of the oil and high smoke point. Tis is due to the unique properties of palm olein, which contain the relative balance of unsaturated and saturated fatty acids3. It is suitable for repeated frying within a certain number of frying cycles. 3-Monochloropropane-1,2-diol (3-MCPD) esters and glycidyl esters (GE) are trace contaminants formed during the high-temperature refning of oils, especially during the deodorization process4,5. Te temperature for deep-fat frying usually is within 150–190 °C6, which fall within the temperature range of refning process. Researchers believe that the 3-MCPD esters are from the conversation of triacylglycerol to cyclic acyloxonium, together with chloride ions7. 3-Monochloropropane-1,2-diol is in vivo carcinogenic and in vitro genotoxic8. Glycidyl esters are suggested to be formed through an intermediate stage during 3-MCPD ester formation via monoacylglycerol-derived acyloxonium ion pathway9. Te free form of glycidyl is a carcinogenic directly acting multisite mutagen in animal studies that reacts readily with cellular nucleophiles. 1Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43300 Seri Kembangan, Selangor, Malaysia. 2Department of Food Science and Nutrition, Faculty of Applied Sciences, UCSI University, 56000 Cheras, Kuala Lumpur, Malaysia. 3Department of Food Safety and Quality, School of Marine Science, Ningbo University, Ningbo 315211, China. 4JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety (POPS), Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China. 5Chemistry Department, College of Science, King Saud University, P.O. BOX 2455, Riyadh 11451, Saudi Arabia. 6Chemistry Department, El Manar Preparatory Institute for Engineering Studies, Tunis El Manar University, P.O. Box 244, 2092 Tunis, Tunisia. 7Zoology Department, College of Science, King Saud University, Saudi Arabia, P.O. Box 2455, Riyadh 11451, Saudi Arabia. *email: [email protected] SCIENTIFIC REPORTS | (2020) 10:15110 | https://doi.org/10.1038/s41598-020-72118-z 1 Vol.:(0123456789) www.nature.com/scientificreports/ 3-MCPD esters in fries 3.50 3.00 2.50 160°C 160°C, 1% NaCl 2.00 160°C, 3% NaCl 1.50 160°C, 5% NaCl 180°C 1.00 180°C, 1% NaCl 0.50 180°C, 3% NaCl 3-MCPD equivalent (mg/kg oil) 180°C, 5% NaCl 0.00 1 2345 Frying duration (Day) Figure 1. 3-MCPD esters in fries in diferent frying systems. Frying oils that are transferred into the fried potatoes can be the main sources of 3-MCPD esters in fried potatoes10. A potato, which contains carbohydrates, protein, fat, vitamins and other minor constituents, can undergo a very complex chemical reaction with salt under prolonged high-temperature deep frying 11. Terefore, the infuence of the frying temperature, frying time and salt was monitored. Te concentration of salt used for soaking were from 1 to 5%. Te chosen temperature were 160 °C and 180 °C, and continue the frying for 5 days. Te parameters chosen were to simulate the most common frying condition. Results Infuence of the temperature during frying. Te 3-monochloropropane-1,2-diol (3-MCPD) ester lev- els of fries prepared by frying at 160 and 180 °C with controls (distilled water) and three diferent salt solutions (1%, 3% and 5%) are shown in Fig. 1. Te 3-MCPD esters contents ranged from 0.60 to 2.14 mg/kg oil for 160 °C and 0.89 to 2.51 mg/kg for 180 °C afer each day’s frying. Generally, the 3-MCPD esters in fries under 180 °C are higher than 160 °C. Te GE contents ranged from 5.23 to 6.94 mg/kg oil for 160 °C and 4.56 to 6.30 mg/ kg for 180 °C afer each day’s frying. For glycidyl esters (GE), the fries under 160 °C was higher as compared with fries under 180 °C. Besides that, all the oxidation parameters were increasing with the increasing of frying temperature. Infuence of the frying duration. Te infuence of frying time on the level of 3-MCPD esters in fries was examined from Day 0 to Day 5. Te increasing of the heating duration to Day 5 leads to the reduction of 3-MCPD esters and increase of GE. Te 3-MCPD esters of fresh oil in this study was 3.5 mg/kg. Te 3-MCPD esters was 0.60 mg/kg oil afer 25 frying cycles at 160 °C and 0.89 mg/kg at 180 °C. In other words, the percent decreases were 82.86% for 160 °C and 74.57% for 180 °C. Te GE content in the fresh oil before frying was approximately 4.0 mg/kg. Te GE contents for all tested fries was 9.31 mg/kg oil afer 25 frying cycles at 160 °C and 6.71 mg/kg at 180 °C. Te percent increases were 73.50% for 160 °C and 57.5% for 180 °C. In Table 1, the higher temperature frying system showed signifcantly higher (p < 0.05) FFA contents, which causes the negative efect to the taste of fries. Te conjugated dienes and trienes shows the trends of increasing for both of the 160 °C and 180 °C frying systems when prolong frying duration. Te lower temperature frying system showed signifcant (p < 0.05) lower p-anisidine value, representing a clear reduction in the rate of second- ary oxidation due to the high frying temperature. Infuence of the salt (NaCl). Figure 1 shows the content of 3-MCPD with the infuence of salt. When the concentration of salt was increasing, the content of 3-MCPD esters were signifcantly (p < 0.05) increased. Tis fnding is in agreement with another study that reported that the generation of 3-MCPD esters increased with the increasing sodium chloride concentration12. Te infuences of salt on the GE in diferent frying systems are shown in Fig. 2. Tere was some increase in the GE with the increased concentration of salt. However, there was no signifcant diference (p > 0.05) between diferent concentrations of salt. Te increases of p-anisidine, CD and CT were observed when the amount of salt increased. Discussion Te formation of 3-monochloropropane-1,2-diol (3-MCPD) esters and glycidyl esters (GE) are a multivari- ate problem, which is afected by fat and salt content, processing temperature and time. Tis study is focused on the content of 3-MCPD esters and GE in fries which undergone diferent frying parameters. Te frying oil was absorbed in the fried potatoes during frying. Te content of lipids in the fried potatoes was approximately 40%. Fresh potatoes are mainly made up of water, with an average content of 75%. During the frying, the high temperatures result in a partial evaporation of the moisture in the fries, and travels through the surrounding oil. Te oil replaces the water lost in fries. A higher frying temperature under atmospheric conditions causes more oil to accumulate in the fries. Tis is because the higher frying temperature leads to the rapid formation of a SCIENTIFIC REPORTS | (2020) 10:15110 | https://doi.org/10.1038/s41598-020-72118-z 2 Vol:.(1234567890) www.nature.com/scientificreports/ 160 °C with 1% 160 °C with 3% 160 °C with 5% 180 °C with 1% 180 °C with 3% 180 °C with 5% Characteristics Day 160 °C NaCl NaCl NaCl 180 °C NaCl NaCl NaCl e d de c bc b b a 1 3.17 ± 0.02 E 3.25 ± 0.03 D 3.22 ± 0.02 D 3.36 ± 0.04 E 3.54 ± 0.06 E 3.57 ± 0.15 E 3.65 ± 0.08 E 3.61 ± 0.01 E d d c c c c b a 2 4.37 ± 0.15 D 4.34 ± 0.06 C 4.78 ± 0.07 C 4.83 ± 0.03 D 4.89 ± 0.14 D 4.95 ± 0.13 D 5.11 ± 0.01 D 5.47 ± 0.07 D d dB dB d c bc b a K232 3 5.77 ± 0.13 C 5.97 ± 0.12 5.81 ± 0.24 5.95 ± 0.20 C 6.45 ± 0.12 C 6.59 ± 0.04 C 6.82 ± 0.20 C 7.12 ± 0.09 C e d c bc bc b b a 4 7.06 ± 0.14 B 7.60 ± 0.11 A 7.88 ± 0.23 A 7.83 ± 0.04 B 7.90 ± 0.13 B 8.46 ± 0.06 B 8.52 ± 0.06 B 9.02 ± 0.14 B d d c b b b a a 5 7.49 ± 0.04 A 7.45 ± 0.17
Recommended publications
  • Than Was the Monoleucyl Ester of Cis-Cyclopentane-1,2-Diol
    SOME OBSERVATIONS ON THE MECHANISM OF THE ACYLATION PROCESS IN PROTEIN SYNTHESIS* BY BEVERLY E. GRIFFIN AND C. B. REESE UNIVERSITY CHEMICAL LABORATORY, CAMBRIDGE, ENGLAND Communicated by Lord Todd, January 2, 1964 During recent years much attention has been given to the mechanism of synthesis of proteins in biological systems.' Although the process is by no means fully understood, some of the steps involved appear to be well established.2-4 Before amino acids can be incorporated into polypeptide chains they must first be "activated." The "activation" process involves ribonucleic acids of comparatively low molecular weight, known as "transfer" or "soluble" ribonucleic acids (sRNA), adenosine-5' triphosphate (ATP) as an energy source, and a specific enzyme for each amino acid. In the first step of the "activation" process, the amino acid reacts with ATP to form a mixed anhydride with adenosine-5' phosphate (AMP) releasing inorganic pyrophosphate; this mixed anhydride then acylates a specific sRNA on its terminal nucleoside (adenosine) residue to yield a 2' (or 3')-aminoacyl ester-the "activated" amino-acid. These processes are reversible. ATP + amino acid aminoacyl-AMP + pyrophosphate (1) sRNA + aminoacyl-AMP aminoacyl-sRNA + AMP (2) Beyond this point our knowledge of the process of polypeptide synthesis is less certain. The "activated" amino acids are believed to be transferred to the ribo- somes-the site of assembly of polypeptide chains-and then the amino acids become linked together in a genetically controlled order to synthesize a specific protein.5 Although there is as yet no definite evidence regarding this final step, it is frequently assumed that it involves a simple acylation as indicated in step (3).
    [Show full text]
  • Carboligation Using the Aldol Reaction
    Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1730 Carboligation using the aldol reaction A comparison of stereoselectivity and methods DERAR AL-SMADI ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6214 ISBN 978-91-513-0472-4 UPPSALA urn:nbn:se:uu:diva-362866 2018 Dissertation presented at Uppsala University to be publicly examined in BMC C2:301, Husargatan 3, Uppsala, Friday, 30 November 2018 at 09:15 for the degree of Doctor of Philosophy. The examination will be conducted in English. Faculty examiner: Professor Ulf Nilsson (Lund University). Abstract Al-Smadi, D. 2018. Carboligation using the aldol reaction. A comparison of stereoselectivity and methods. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1730. 50 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-513-0472-4. The research summarized in this thesis focuses on synthesizing aldehyde and aldol compounds as substrates and products for the enzyme D-fructose-6-aldolase (FSA). Aldolases are important enzymes for the formation of carbon-carbon bonds in nature. In biological systems, aldol reactions, both cleavage and formation play central roles in sugar metabolism. Aldolases exhibit high degrees of stereoselectivity and can steer the product configurations to a given enantiomeric and diastereomeric form. To become truly useful synthetic tools, the substrate scope of these enzymes needs to become broadened. In the first project, phenylacetaldehyde derivatives were synthesized for the use as test substrates for E. coli FSA. Different methods were discussed to prepare phenylacetaldehyde derivatives, the addition of a one carbon unit to benzaldehyde derivatives using a homologation reaction was successful and was proven efficient and non-sensitive to the moisture.
    [Show full text]
  • Aldehydes Can React with Alcohols to Form Hemiacetals
    340 14 . Nucleophilic substitution at C=O with loss of carbonyl oxygen You have, in fact, already met some reactions in which the carbonyl oxygen atom can be lost, but you probably didn’t notice at the time. The equilibrium between an aldehyde or ketone and its hydrate (p. 000) is one such reaction. O HO OH H2O + R1 R2 R1 R2 When the hydrate reverts to starting materials, either of its two oxygen atoms must leave: one OPh came from the water and one from the carbonyl group, so 50% of the time the oxygen atom that belonged to the carbonyl group will be lost. Usually, this is of no consequence, but it can be useful. O For example, in 1968 some chemists studying the reactions that take place inside mass spectrometers needed to label the carbonyl oxygen atom of this ketone with the isotope 18 O. 16 18 By stirring the ‘normal’ O compound with a large excess of isotopically labelled water, H 2 O, for a few hours in the presence of a drop of acid they were able to make the required labelled com- í In Chapter 13 we saw this way of pound. Without the acid catalyst, the exchange is very slow. Acid catalysis speeds the reaction up by making a reaction go faster by raising making the carbonyl group more electrophilic so that equilibrium is reached more quickly. The the energy of the starting material. We 18 also saw that the position of an equilibrium is controlled by mass action— O is in large excess.
    [Show full text]
  • 3 Alkenes from 1,2-Diols
    REVISTA BOLIVIANA DE QUÍMICA (Rev.Bol.Quim.) Vol. 32, No.5, pp. 121-125, Nov./Dic. 2015 Bolivian Journal of Chemistry 32(5) 121-125, Nov./Dec. 2015 Received 12 14 2015 Accepted 12 23 2015 Published 12 30 2015 Bravo et Vila . STEREOSPECIFIC SYNTHESIS OF ALKENES FROM 1,2-DIOLS; MECHANISTIC VIEWS; THE ORGANIC CHEMISTRY NOTEBOOK SERIES, A DIDACTICAL APPROACH, Nº 8 José A. Bravo 1,*, José L. Vila 2 1Department of Chemistry, Laboratorio de Fitoquímica, Instituto de Investigaciones en Productos Naturales IIPN, Universidad Mayor de San Andrés UMSA, P.O. Box 303, Calle Andrés Bello s/n, Ciudad Universitaria Cota Cota, Phone 59122792238, La Paz, Bolivia, [email protected] 2Department of Chemistry, Laboratorio de Síntesis y Hemisíntesis, Instituto de Investigaciones en Productos Naturales IIPN, Universidad Mayor de San Andrés UMSA, P.O. Box 303, Calle Andrés Bello s/n, Ciudad Universitaria Cota Cota, Phone 59122795878, La Paz, Bolivia, [email protected] Keywords: Organic Chemistry, Alkenes, 1,2-diols, Stereospecific synthesis, Mechanisms of Reactions, W. Carruthers. ABSTRACT This is the eighth chapter in the series: “The Organic Chemistry Notebook Series, a Didactical Approach”. The aim of this series of studies is to help students to have a graphical view of organic synthesis reactions of diverse nature. Here we discuss, from a mechanistic stand point, some methods for the stereospecific synthesis of alkenes from 1,2-diols. One of the best ones utilizes as precursors, the cyclic thionocarbonates obtained from the diol with thiophosgene. We describe by mechanisms, the use of 1,3-dimethyl-2-phenyl-1,3,2-diazophospholidine as an alternative for the decomposition of thionocarbonates into alkenes.
    [Show full text]
  • Chapter 19 the Chemistry of Aldehydes and Ketones. Addition Reactions
    Instructor Supplemental Solutions to Problems © 2010 Roberts and Company Publishers Chapter 19 The Chemistry of Aldehydes and Ketones. Addition Reactions Solutions to In-Text Problems 19.1 (b) (d) (e) (g) 19.2 (a) 2-Propanone (d) (E)-3-Ethoxy-2-propenal (f) 4,4-Dimethyl-2,5-cyclohexadienone 19.3 (b) 2-Cyclohexenone has a lower carbonyl stretching frequency because its two double bonds are conjugated. 19.4 (b) The compound is 2-butanone: (c) The high frequency of the carbonyl absorption suggests a strained ring. (See Eq. 19.4, text p. 897.) In fact, cyclobutanone matches the IR stretching frequency perfectly and the NMR fits as well: 19.6 The structure and CMR assignments of 2-ethylbutanal are shown below. The two methyl groups are chemically equivalent, and the two methylene groups are chemically equivalent; all carbons with different CMR chemical shifts are chemically nonequivalent. INSTRUCTOR SUPPLEMENTAL SOLUTIONS TO PROBLEMS • CHAPTER 19 2 19.7 (a) The double bonds in 2-cyclohexenone are conjugated, but the double bonds in 3-cyclohexenone are not. Consequently, 2-cyclohexenone has the UV spectrum with the greater lmax. 19.9 Compound A, vanillin, should have a p T p* absorption at a greater lmax when dissolved in NaOH solution because the resulting phenolate can delocalize into the carboxaldehyde group; the resulting phenolate from compound B, isovanillin, on the other hand, can only delocalize in the aromatic ring. 19.11 The mass spectrum of 2-heptanone should have major peaks at m/z = 43 (from a-cleavage), 71 (from inductive cleavage), and 58 (from McLafferty rearrangement).
    [Show full text]
  • 1,2-Hexanediol
    Supporting Information for Low-Priority Substance 1,2- Hexanediol (CASRN 6920-22-5) Final Designation February 20, 2020 Office of Pollution Prevention and Toxics U.S. Environmental Protection Agency 1200 Pennsylvania Avenue Washington, DC 20460 Contents 1. Introduction ................................................................................................................................................................ 1 2. Background on 1,2-Hexanediol ................................................................................................................................. 3 3. Physical-Chemical Properties ................................................................................................................................... 4 3.1 References ....................................................................................................................................................... 6 4. Relevant Assessment History ................................................................................................................................... 7 5. Conditions of Use ....................................................................................................................................................... 8 6. Hazard Characterization .......................................................................................................................................... 10 6.1 Human Health Hazard ...................................................................................................................................
    [Show full text]
  • 1 Chapter 15: Alcohols, Diols, and Thiols 15.1: Sources of Alcohols
    Chapter 15: Alcohols, Diols, and Thiols 15.1: Sources of Alcohols (please read) Hydration of alkenes (Chapter 6) 1. Acid catalyzed hydration 2. Oxymercuration 3. Hydroboration Hydrolysis of alkyl halides (Chapter 8) nucleophilic substitution Reaction of Grignard or organolithium reagents with ketones, aldehydes, and esters. (Chapter 14) Reduction of alehydes, ketones, esters, and carboxylic acids (Chapter 15.2 - 15.3) Reaction of epoxides with Grignard Reagents (Chapter 15.4) Diols from the dihydroxylation of alkenes (Chapter 15.5)320 15.2: Preparation of Alcohols by Reduction of Aldehydes and Ketones - add the equivalent of H2 across the π-bond of the carbonyl to yield an alcohol H O [H] O aldehyde (R or R´= H) → 1° alcohol C C ketone (R and R´≠ H) → 2° alcohol R H R R' R' Catalytic hydrogenation is not typically used for the reduction of ketones or aldehydes to alcohols. Metal hydride reagents: equivalent to H:– (hydride) sodium borohydride lithium aluminium hydride (NaBH4) (LiAlH4) H H Na+ H B H Li+ H Al H H H B H Al H 321 electronegativity 2.0 2.1 1.5 2.1 1 synthons precursors R1 R1 R1 + H: R2 C OH C OH = C O + NaBH4 H R2 R2 NaBH4 reduces aldehydes to primary alcohols O H H NaBH O2N 4 O N H 2 OH HOCH2CH3 NaBH4 reduces ketones to secondary alcohols H OH O NaBH4 HOCH2CH3 ketones 2° alcohols NaBH4 does not react with esters or carboxylic acids O HO H NaBH4 H CH CO H3CH2CO 3 2 HOCH2CH3 O O 322 Lithium Aluminium Hydride (LiAlH4, LAH) - much more reactive than NaBH4.
    [Show full text]
  • Wo 2008/127291 A2
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (43) International Publication Date PCT (10) International Publication Number 23 October 2008 (23.10.2008) WO 2008/127291 A2 (51) International Patent Classification: Jeffrey, J. [US/US]; 106 Glenview Drive, Los Alamos, GOlN 33/53 (2006.01) GOlN 33/68 (2006.01) NM 87544 (US). HARRIS, Michael, N. [US/US]; 295 GOlN 21/76 (2006.01) GOlN 23/223 (2006.01) Kilby Avenue, Los Alamos, NM 87544 (US). BURRELL, Anthony, K. [NZ/US]; 2431 Canyon Glen, Los Alamos, (21) International Application Number: NM 87544 (US). PCT/US2007/021888 (74) Agents: COTTRELL, Bruce, H. et al.; Los Alamos (22) International Filing Date: 10 October 2007 (10.10.2007) National Laboratory, LGTP, MS A187, Los Alamos, NM 87545 (US). (25) Filing Language: English (81) Designated States (unless otherwise indicated, for every (26) Publication Language: English kind of national protection available): AE, AG, AL, AM, AT,AU, AZ, BA, BB, BG, BH, BR, BW, BY,BZ, CA, CH, (30) Priority Data: CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, 60/850,594 10 October 2006 (10.10.2006) US ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, (71) Applicants (for all designated States except US): LOS LR, LS, LT, LU, LY,MA, MD, ME, MG, MK, MN, MW, ALAMOS NATIONAL SECURITY,LLC [US/US]; Los MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, Alamos National Laboratory, Lc/ip, Ms A187, Los Alamos, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, NM 87545 (US).
    [Show full text]
  • XVII. Poly(Terephthalic Acid Diol Esters)
    This is an unofficial translation. Only the German version is binding. XVII. Poly(terephthalic acid diol esters) As of 01.07.2016 There are no objections to the use of poly(terephthalic acid diol esters) in the manufacture of commodities in the sense of § 2, Para. 6, No 1 of the Food and Feed Code (Lebensmittel- und Futtermittelgesetzbuch), provided they are suitable for their intended purpose and the following conditions are met: 1. The use of starting materials for poly(terephthalic acid diol esters) is subject to the Com- mission Regulation (EU) No 10/2011. The evaluation presented in the following refers to polymers from the following monomeric starting substances: Ethylene glycol Butanediol-1,4 1,4-Dihydroxymethylcyclohexane Terephthalic acid Isophthalic acid, max. 25 % Adipic acid Azelaic acid Sebacic acid Terephthalic acid dimethyl ester Azelaic acid dimethyl ester Sebacic acid dimethyl ester Oligomeric diglycidethers of 4,4-Dioxydiphenyl-2,2-propane (Bisphenol A-diglycid ethers), max. 2.0 % Polyethyleneglycol, max. 10 % The following polymers may be added to the poly(terephthalic acid diol esters) made from the mentioned starting substances: a) Polyethylene complying with Recommendation III, max. 5.0 % or b) Polypropylene complying with Recommendation VII, max. 5.0 % 2. Additives permitted by the Commission Regulation (EU) No 10/2011 may be used in com- pliance with the restrictions laid down therein. In addition to these, from manufacture and processing, only the following production aids, in the maximum amounts given, may be con- tained in the finished products: a) Catalysts and their residues: Phosphate polyester (mean mol. wt. 354), made from monoethyleneglycol, di-ethyleneglycol and phosphorus pentoxide.
    [Show full text]
  • SAFETY DATA SHEET Ethylene Glycol
    SAFETY DATA SHEET Ethylene Glycol Section 1. Identification GHS product identifier : Ethylene Glycol Product code : 0700027 Chemical name : ethanediol Other means of : ethylene glycol; ethane-1,2-diol; etilenglicol; 1,2-Ethanediol; Glycol; Monoethylene glycol; identification 1,2-Ethanediol (ethylene glycol); Glycol alcohol; 1,2-Dihydroxyethane; Ethylene glycol, aerosol Product type : Liquid. Supplier's details : Barton Solvents, Inc. 1920 NE Broadway P.O. Box 221 Des Moines, IA 50306-0221 (515) 265-7998 Emergency telephone : CHEMTREC (800) 424-9300 (AVAILABLE 24 HOURS A DAY) number Section 2. Hazards identification OSHA/HCS status : This material is considered hazardous by the OSHA Hazard Communication Standard (29 CFR 1910.1200). Classification of the : ACUTE TOXICITY (oral) - Category 4 substance or mixture EYE IRRITATION - Category 2B SPECIFIC TARGET ORGAN TOXICITY (REPEATED EXPOSURE) (kidneys) (oral) - Category 2 GHS label elements Hazard pictograms : Signal word : Warning Hazard statements : Harmful if swallowed. Causes eye irritation. May cause damage to organs through prolonged or repeated exposure if swallowed. (kidneys) Precautionary statements General : Read label before use. Keep out of reach of children. If medical advice is needed, have product container or label at hand. Prevention : Do not breathe vapor. Do not eat, drink or smoke when using this product. Wash hands thoroughly after handling. Response : Get medical attention if you feel unwell. IF SWALLOWED: Call a POISON CENTER or physician if you feel unwell. Rinse mouth. IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. If eye irritation persists: Get medical attention. Storage : Not applicable. Disposal : Dispose of contents and container in accordance with all local, regional, national and international regulations.
    [Show full text]
  • Toxicological Profile for Ethylene Glycol
    ETHYLENE GLYCOL 175 4. CHEMICAL AND PHYSICAL INFORMATION 4.1 CHEMICAL IDENTITY Information regarding the chemical identity of ethylene glycol is located in Table 4-1. This information includes synonyms, chemical formula and structure, and identification numbers. 4.2 PHYSICAL AND CHEMICAL PROPERTIES Information regarding the physical and chemical properties of ethylene glycol is located in Table 4-2. ETHYLENE GLYCOL 176 4. CHEMICAL AND PHYSICAL INFORMATION a Table 4-1. Chemical Identity of Ethylene Glycol Characteristic Information Chemical name Ethylene glycol Synonyms and trade names 1,2-Dihydroxyethane; 1,2-ethandiol; 1,2-ethane-diol; 2-hydroxyethanol; ethylene alcohol; ethylene dihydrate; glycol; monoethylene glycol; MEG; Lutrol-9; Dowtherm Sr 1; Fridex; Norkool; Ramp; Tescol; Ucar 17 Chemical formula C2H6O2 Chemical structure OH HO Identification numbers: CAS registry 107-21-1 b NIOSH RTECS KW2975000 EPA hazardous waste No data DOT/UN/NA/IMDG shipping No data HSDB 5012 NCI C00920 aAll information obtained from HSDB 2009 except where noted. bNIOSH 2005 CAS = Chemical Abstracts Service; DOT/UN/NA/IMDG = Department of Transportation/United Nations/North America/International Maritime Dangerous Goods Code; EPA = Environmental Protection Agency; HSDB = Hazardous Substances Data Bank; NCI = National Cancer Institute; NIOSH = National Institute for Occupational Safety and Health; RTECS = Registry of Toxic Effects of Chemical Substances ETHYLENE GLYCOL 177 4. CHEMICAL AND PHYSICAL INFORMATION a Table 4-2. Physical and Chemical Properties of Ethylene Glycol Property Ethylene glycol Molecular weight 62.07 Color Clear, colorlessb Physical state Liquidb Melting point -12.69 °Cc Boiling point 197.3 °Cc Density: at 20 °C (g/cm3) 1.1135d Vapor density 2.14 (air=1) Odor Odorless Odor threshold No data Solubility: Water at 20 °C Miscible with water Organic solvent(s) Soluble in lower aliphatic alcohols, glycerol, acetic acid, acetone; slightly soluble in ether; practically insoluble in benzene, chlorinated hydrocarbons, petroleum ether, oils.
    [Show full text]
  • 123.312 Advanced Organic Chemistry: Retrosynthesis Tutorial
    123.312 Advanced Organic Chemistry: Retrosynthesis Tutorial Question 1. Propose a retrosynthetic analysis of the following two compounds. Your answer should include both the synthons, showing your thinking, and the reagents that would be employed in the actual synthesis. Compound A O Answer: FGI OH C–C OH O dehydration O aldol O ! ! O O Remember that a conjugated double bond can easily be prepared by dehydration, thus we can perform an FGI to give the aldol product. The 1,3-diO relationship should make spotting the disconnection very easy. Of course, in the forward direction the reaction is not quite that simple; we have two carbonyl groups so we must selectively form the correct enolate but this should be possible by low temperature lithium enolate formation prior to the addition of cyclohexanone. The aldol condensation is such a common reaction that it is perfectly acceptable to do the following disconnection: O O ! ! O O Compound B O O Answer O O O O ! FGI O O HO 1 2 OH HO O 3 5 reduction 4 C–C O O HO ! ! O O O EtO OEt The first disconnection should be relatively simple, break the C–O bond to give the acid and alcohol. The next stage might be slightly tougher…your best bet is to look at the relationship between the two functional groups; it is 1,5. This can be formed via a conjugate addition of an enolate. To do this we need two carbonyl groups so next move is a FGI to form the dicarbonyl. Two possible disconnections are now possible depending on which enolate we add to which activated alkene.
    [Show full text]