6-Oxidation.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

6-Oxidation.Pdf Myers Oxidation Chem 115 General Introductory References Alkane R-CH3 March, J. In Advanced Organic Chemistry, John Wiley and Sons: New York, 1992, p. 1158! organoboranes RCH BR ' organometallics in general RCH M (M = Li, MgX, ZnX...) 1238. 2 2 2 Carey, F. A.; Sundberg, R. J. In Advanced Organic Chemistry Part B, Plenum Press: New York, organosilanes RCH2SiR3' 1990, p. 615!664. Carruthers, W. In Some Modern Methods of Organic Synthesis 3rd Ed., Cambridge University Press: Cambridge, UK, 1987, p. 344!410. Alcohol R-CH2OH (R-CH2X ) Oxidation States of Organic Functional Groups alkyl halide X = halide alkane sulfonate X = OSO2R' alkyl azide X = N3 The notion of oxidation state is useful in categorizing many organic transformations. This is illustrated by the progression of a methyl group to a carboxylic acid in a series of 2-electron alkylamine X = NR'2 alkylthio ether X = SR' alkyl ether X = OR' oxidations, as shown at right. Included are several functional group equivalents considered to be at the same oxidation state. Summary of Reagents for Oxidative Functional Group Interconversions: Aldehyde (Ketone) R-CHO (RCOR') OH O O NR'' OR'' or R''O OH N 2 N R R'(H) R R' R H hemiketal (hemiacetal) hydrazone oxime R R' R R' alcohol ketone aldehyde R R' R''O OR''' R''O NR2''' Dimethylsulfoxide-Mediated Oxidations Oppenauer Oxidation ketal (acetal) geminal dihalide RCX2R' aminal R R' R R' Dess-Martin Periodinane (DMP) Chromium (VI) Oxidants o-Iodoxybenzoic Acid (IBX) Sodium Hypochlorite R''O R'' N tetra-n-Propylammonium Perruthenate (TPAP) N-Bromosuccinimide (NBS) enol ether (enamine) dithiane S S imine R R' N-Oxoammonium-Mediated Oxidation Bromine R R' R R' Manganese Dioxide Cerium (IV) Oxidants Barium Manganate Carboxylic Acid R-CO H 2 O O O O O O O O R''' ester RCO2R' amide R N ketene R H R OH R H R OR' R R' R OR' O R'' R R' aldehyde acid aldehyde ester ketone ester thioester R SR' trihalomethyl RCX3 nitrile R C N O Sodium Chlorite Manganese Dioxide!NaCN!CH3OH Bayer-Villiger Oxidation O R' Silver Oxide Bromine hydroxamic acid orthoester (OBO ester shown) R N R O CH3 Potassium Permanganate OH O Pyridinium Dichromate (PDC) O O O OH O Carbonic Acid Ester ROH + CO2 (ROCO2H) R' R' R OH R OH R R HO O O O S OH carbamate R'' alkyl haloformate xanthate n n RO RO SR' alcohol acid ketone "-hydroxy diol lactone RO N X ketone R' O Ruthenium Tetroxide Form enolate; Davis Oxaziridine Fetizon's Reagent isocyanate R N C O carbodiimide R N C N R' urea R R' N N O2/Pt Form enolate; MoOPH O2/Pt Jones Oxidation Form silyl enol ether; mCPBA N-Oxoammonium- R'' R''' Mediated Oxidation Mark G. Charest, Jonathan William Medley 1 Myers Oxidation Chem 115 • Pummerer Rearrangement OH O O or HO CH3 OH HO CH3 OH R R'(H) R R' R H H3C H H3C H alcohol ketone aldehyde CF3CO2Ac, Ac2O B 2,6-lutidine H C O O H C O O H H Dimethylsulfoxide-Mediated Oxidations 3 H 3 H • Reviews S Ph –BH+ O + S Ph – Lee, T. V. In Comprehensive Organic Synthesis, Trost, B. M.; Fleming, I., Eds., Pergamon O –RCO2 O Press: New York, 1991, Vol. 7, p. 291!303. R HO CH3 OH HO CH3 OH Tidwell, T. T. Synthesis 1990, 857!870. H3C H H3C H AcO– Tidwell, T. T. Organic Reactions 1990, 39, 297!557. O O H3C O OAc >60% H3C O General Mechanism H H S Ph S Ph • Dimethylsulfoxide (DMSO) can be activated by reaction with a variety of electrophilic reagents, + including oxalyl chloride, dicyclohexylcarbodiimide, sulfur trioxide, acetic anhydride, and N- chlorosuccinimide. Schreiber, S. L.; Satake, K. J. Am. Chem. Soc. 1984, 106, 4186!4188. • The mechanism can be considered generally as shown, where the initial step involves Swern Procedure electrophilic (E+) attack on the sulfoxide oxygen atom. • Typically, 2 equivalents of DMSO are activated with oxalyl chloride in dichloromethane at or • Subsequent nucleophilic attack of an alcohol substrate on the activated sulfoxonium intermediate below –60 °C. leads to alkoxysulfonium salt formation. This intermediate breaks down under basic conditions to furnish the carbonyl compound and dimethyl sulfide. • Subsequent addition of the alcohol substrate and triethylamine leads to carbonyl formation. • The mild reaction conditions have been exploited to prepare many sensitive aldehydes. + – + + Careful optimization of the reaction temperature is often necessary. (CH3)2S O + E (CH3)2S X Huang, S. L.; Mancuso, A. J.; Swern, D. J. Org. Chem. 1978, 43, 2480!2482. + + –H H H CH3 – RCH2OH + (CH3)2S X S+ + X HO TBSO 1. TBSCl, Im, DMAP, CH2Cl2 R O CH3 HO TBSO 2. 10% Pd/C, AcOH, EtOAc – H CH H O O B H 2 3. (COCl)2, DMSO; Et3N S+ + (CH3)2S R O CH R O –78 " –50 °C 3 OBn O H alkoxysulfonium ylide 66% Evans, D. A.; Carter, P. H.; Carreira, E. M.; Prunet, J. A.; Charette, A. B.; Lautens, M. Angew. • Methylthiomethyl (MTM) ether formation can occur as a side reaction, by nucleophilic attack of Chem., Int. Ed. Engl. 1998, 37, 2354!2359. an alcohol on methyl(methylene)sulfonium cations generated from the dissociation of sulfonium CH CH ylide intermediates present in the reaction mixture. This type of transformation is related to the N 3 N 3 Pummerer Rearrangement. N N (COCl)2, DMSO; O Et N, –78 °C O CHO OH 3 + + RO S ROH H2C S CH3 CH + 3 O N Cl 99% O N Cl –H 100-g scale Fang, F. G.; Bankston, D. D.; Huie, E. M.; Johnson, M. R.; Kang, K.-C.; LeHoullier, C. S.; Lewis, G. Fenselau, A. H.; Moffatt, J. G. J. Am. Chem. Soc. 1966, 88, 1762!1765. C.; Lovelace, T. C.; Lowery, M. W.; McDougald, D. L.; Meetholz, C. A.; Partridge, J. J.; Sharp, M. J.; Xie, S. Tetrahedron 1997, 53, 10953!10970. Mark G. Charest, Jonathan William Medley 2 Myers Oxidation Chem 115 CH O CH CH3O CH3 3 3 OTBDPS OTBDPS DMSO, EDC O HO O O CH O HO CH3O O 3 OH O TFA, pyr OR1 OR1 CH BzO OCH BzO OCH CH3 3 3 3 (COCl)2, DMSO; O O N N FK506 94% CH CH3 Et N, –78 °C 3 H 3 H EDC = (CH3)2N (CH2)3 N C N CH2CH3 • HCl O 80% O OR O OR O H H OCH Hanessian, S.; Lavallee, P. Can. J. Chem. 1981, 59, 870!877. OCH3 R O 3 R1O 1 CH CH CH3 CH3 3 3 OR OR Parikh-Doering Procedure R = TIPS, R = TBS 1 • Sulfur trioxide-pyridine is used to activate DMSO. • Ease of workup and at-or-near ambient reaction temperatures make the method attractive for large- Jones, T. K.; Reamer, R. A.; Desmond, R.; Mills, S. G. J. Am. Chem. Soc. 1990, 112, 2998!3017. scale reactions. Pfitzner-Moffatt Procedure Parihk, J. R.; Doering, W. von E. J. Am. Chem. Soc. 1967, 89, 5505-5507. • The first reported DMSO-based oxidation procedure. • Examples • Dicyclohexylcarbodiimide (DCC) functions as the electrophilic activating agent in conjunction with a Brønsted acid promoter. Ph Ph SO3•pyr, Et3N, DMSO • Typically, oxidations are carried out with an excess of DCC at or near 23 °C. OH 8 " 23 °C O Bn2N Bn2N • Separation of the by-product dicyclohexylurea and MTM ether formation can limit usefulness. H 99.9% ee >95% 99.9% ee • Alternative carbodiimides that yield water-soluble by-products (e.g., 1-(3-dimethylaminopropyl)-3- ethylcarbodiimide hydrochloride (EDC)) can simplify workup procedures. 190-kg scale Liu, C.; Ng, J. S.; Behling, J. R.; Yen, C. H.; Campbell, A. L.; Fuzail, K. S.; Yonan, E. E.; Mehrotra, D. Cl Ot-Bu DMSO, DCC Cl Ot-Bu V. Org. Process Res. Dev. 1997, 1, 45!54. OH TFA, pyr O H H SO3•pyr, Et3N, H H 87% O O H DMSO, CH2Cl2 H HO 0 23 °C Corey, E. J.; Kim, C. U.; Misco, P. F. Org. Synth. Coll. Vol. VI 1988, 220!222. O Br " OHC O Br H H H H 99% CH H H H 3 CHO CHO OH DMSO, DCC H H + O CO CH TFA, pyr CO CH CO CH 2 3 2 3 2 3 H O CH3 O CH3 O CH3 Et O Br S 9 : 1 #,$ : %,# S S H H Br H3C CH3 H3C CH3 H3C CH3 (–)-kumausallene Semmelhack, M. F.; Yamashita, A.; Tomesch, J. C.; Hirotsu, K. J. Am. Chem. Soc. 1978, 100, Evans, P. A.; Murthy, V. S.; Roseman, J. D.; Rheingold, A. L. Angew. Chem., Int. Ed. Engl. 1999, 5565 5576. 38, 3175!3177. ! Mark G. Charest, Jonathan William Medley 3 Myers Oxidation Chem 115 Dess-Martin Periodinane (DMP) • Examples • DMP has found wide utility in the preparation of sensitive, highly functionalized molecules. H3C H3C H3C CH3 CH3 CH3 • DMP oxidations are characterized by short reaction times, use of a single equivalent of oxidant, H C 1. DIBAL H C H C 3 H H 3 H H 3 H H and can be moderated with regard to acidity by the incorporation of additives such as pyridine. H3C H3C H3C 2. DMP O TBSO O TBSO O HO AcO • DMP and its precurser o-iodoxybenzoic acid (IBX) are potentially heat and shock sensitive and should be handled with appropriate care. I 89% overall I (–)-7-deacetoxy- Dess, D. B.; Martin, J. C. J. Am. Chem. Soc. 1983, 48, 4155!4156. PivO O H alcyonin acetate Boeckman, R. K.; Shao, P.; Mulins, J. J. Org. Synth. 1999, 77, 141!152.
Recommended publications
  • Fluorescent Aminal Linked Porous Organic Polymer for Reversible Iodine Capture and Sensing Muhammad A
    www.nature.com/scientificreports OPEN Fluorescent aminal linked porous organic polymer for reversible iodine capture and sensing Muhammad A. Sabri1, Mohammad H. Al‑Sayah2, Susan Sen2, Taleb H. Ibrahim1 & Oussama M. El‑Kadri2* A novel triazene-anthracene-based fuorescent aminal linked porous organic polymer (TALPOP) was prepared via metal free-Schif base polycondensation reaction of 9,10-bis-(4,6-diamino-S‑triazin‑ 2-yl)anthracene and 2-furaldehyde. The polymer has exceptional chemical and thermal stabilities and exhibit good porosity with Brunauer–Emmett–Teller surface area of 401 m2g−1. The combination of such porosity along with the highly conjugated heteroatom-rich framework enabled the polymer to exhibit exceptional iodine vapor uptake of up to 314 wt % and reversible iodine adsorption in solution. Because of the inclusion of the anthracene moieties, the TALPOP exhibited excellent 3 −1 detection sensitivity towards iodine via forescence quenching with Ksv value of 2.9 × 10 L mol . The cost efective TALPOP along with its high uptake and sensing of iodine, make it an ideal material for environmental remediation. Nuclear energy is becoming one of the most feasible alternative sources to meet the ever-increasing energy demand and minimize the emission of greenhouse gases because of its high-density energy, minimal carbon footprints, and low operation cost1–4. Despite such advantages, the potential emissions of radioactive material 129 131 3 14 85 (such as I and I, H, CO2, and Kr) from nuclear energy power plants is a major drawback of this tech- nology due to the serious environmental and health efect of these materials4,5.
    [Show full text]
  • Carbonyl Compounds
    Carbonyl Compounds What are Carbonyl Compounds? Carbonyl compounds are compounds that contain the C=O (carbonyl) group. Preparation of Aldehydes: 1. Preparation from Acid Chloride (Rosenmund Reduction): This reaction was named after Karl Wilhelm Rosenmund, who first reported it in 1918. The reaction is a hydrogenation process in which an acyl chloride is selectively reduced to an aldehyde. The reaction, a hydrogenolysis, is catalysed by palladium on barium sulfate, which is sometimes called the Rosenmund catalyst. 2. Preparation from Nitriles: This reaction involves the preparation of aldehydes (R-CHO) from nitriles (R- CN) using SnCl2 and HCl and quenching the resulting iminium salt ([R- + − CH=NH2] Cl ) with water (H2O). During the synthesis, ammonium chloride is also produced. The reaction is known as Stephen Aldehyde synthesis. Dr. Sumi Ganguly Page 1 3. Preparation from Grignard Reagent: When Grignard Reagent is reacted with HCN followed by hydrolysis aldehyde is produced. Preparation of Ketones: 1. Preparation from Acid Chloride (Friedel-Crafts Acylation): Acid chlorides when reacted with benzene in presence of anhydrous AlCl3, aromatic ketone are produced. However, only aromatic ketones can be prepared by following this method. In order to prepare both aromatic and aliphatic ketones acid chlorides is reacted with lithium dialkylcuprate (Gilman Reagnt). Dr. Sumi Ganguly Page 2 The lithium dialkyl cuprate is produced by the reaction of two equivalents of the organolithium reagent with copper (I) iodide. Example: 3. Preparation from Nitriles and Grignard Reagents: When Grignard Reagent is reacted with RCN followed by hydrolysis aldehyde is produced. Dr. Sumi Ganguly Page 3 Physical Characteristic of Carbonyl Compounds: 1) The boiling point of carbonyl compounds is higher than the alkanes with similar Mr.
    [Show full text]
  • 3-Monochloropropane-1,2-Diol Esters and Glycidyl Esters
    www.nature.com/scientificreports OPEN Monitoring of heat‑induced carcinogenic compounds (3‑monochloropropane‑1,2‑diol esters and glycidyl esters) in fries Yu Hua Wong1, Kok Ming Goh1,2, Kar Lin Nyam2, Ling Zhi Cheong3, Yong Wang4, Imededdine Arbi Nehdi5,6, Lamjed Mansour7 & Chin Ping Tan1* 3‑Monochloropropane‑1,2‑diol (3‑MCPD) esters and glycidyl esters (GE) are heat‑induced contaminants which form during oil refning process, particularly at the high temperature deodorization stage. It is worth to investigate the content of 3‑MCPD and GE in fries which also involved high temperature. The content of 3‑MCPD esters and GE were monitored in fries. The factors that been chosen were temperature and duration of frying, and diferent concentration of salt (NaCl). The results in our study showed that the efect was in the order of concentration of sodium chloride < frying duration < frying temperature. The content of 3‑MCPD esters was signifcantly increased whereas GE was signifcantly decreased, when prolong the frying duration. A high temperature results in a high 3‑MCPD ester level but a low GE level in fries. The present of salt had contributed signifcant infuence to the generation of 3‑MCPD. The soaking of potato chips in salt showed no signifcant efect on the level of GE during the frying. The oil oxidation tests showed that all the fries were below the safety limit. Hence, the frying cycle, temperature and the added salt to carbohydrate‑based food during frying should be monitored. Deep-fat frying is commonly being used to process food. During the process, heat transfer between the fried food and oil is occurs.
    [Show full text]
  • Polycarbodiimides As Classification-Free and Easy to Use Crosslinkers for Water-Based Coatings
    White paper Polycarbodiimides as classification-free and easy to use crosslinkers for water-based coatings By Dr. A.J. Derksen, Stahl International bv, The Netherlands Polycarbodiimides (CDl) selectively react with carboxylic acid (–COOH) groups in polymer chains. This type of crosslinking reaction results in a classic 3D polymer-crosslinker network. Compared to polyisocyanates, polycarbodiimides are much less sensitive to presence of water and able to achieve long pot lives. Due to the high reactivity, curing with CDI type crosslinkers can be done under room temperature or typical oven conditions used for drying of applied coatings. In addition to standard CDI crosslinker chemistry, on offer is also a range of dual reactivity CDI crosslinkers. A second type of reactive groups is attached to the polycarbodiimide in this range. Upon curing, this crosslinker not only reacts with the –COOH groups in the polymer chains, but also two of the reactive groups attached to the separate CDI molecules can couple to form an even denser network structure. Building further on the success of these polycarbodiimide crosslinkers, VOC-free polycarbodiimides, in aqueous delivery form, were introduced, which give extreme long pot lives. 1. Introduction when dealing with flexible substrates. A high level of crosslinking Crosslinking is widely practiced in nearly all the coating may be acceptable for hard coatings on rigid substrates, but industries in order to improve the performance of the coating. low levels may be best for soft coatings on extensible, flexible These improvements include wear, abrasion and chemical substrates such as rubber and leather. An important crosslinking resistances and toughness1. The improved performance originates system for aqueous resins involves the use of water-dispersible from the formation of a continuous three-dimensional network, oligomeric polyisocyanates.
    [Show full text]
  • Studies Toward Synthesis of Polycyclic Polyprenylated Acylphloroglucinols
    University of Kentucky UKnowledge University of Kentucky Doctoral Dissertations Graduate School 2006 STUDIES TOWARD SYNTHESIS OF POLYCYCLIC POLYPRENYLATED ACYLPHLOROGLUCINOLS Roxana Ciochina University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Ciochina, Roxana, "STUDIES TOWARD SYNTHESIS OF POLYCYCLIC POLYPRENYLATED ACYLPHLOROGLUCINOLS" (2006). University of Kentucky Doctoral Dissertations. 291. https://uknowledge.uky.edu/gradschool_diss/291 This Dissertation is brought to you for free and open access by the Graduate School at UKnowledge. It has been accepted for inclusion in University of Kentucky Doctoral Dissertations by an authorized administrator of UKnowledge. For more information, please contact [email protected]. ABSTRACT OF DISSERTATION Roxana Ciochina The Graduate School University of Kentucky 2006 STUDIES TOWARD SYNTHESIS OF POLYCYCLIC POLYPRENYLATED ACYLPHLOROGLUCINOLS ABSTRACT OF DISSERTATION A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the College of Arts and Sciences at the University of Kentucky By Roxana Ciochina Lexington, KY Director: Dr. R. B. Grossman, Professor of Chemistry Lexington, KY 2006 ABSTRACT OF DISSERTATION STUDIES TOWARD SYNTHESIS OF POLYCYCLIC POLYPRENYLATED ACYLPHLOROGLUCINOLS Polycyclic polyprenylated acylphloroglucinols (PPAPs) are a class of compounds that reveal intriguing biological activities and interesting and challenging chemical structures. These products are claimed to possess antioxidant, antiviral, and antimitotic properties. Increasing interest is related to their function in the CNS as modulators of neurotransmitters associated to neuronal damaging and depression. All these features make PPAPs targets for synthesis. We decided to focus our own initial efforts in this area on the type A PPAP, nemorosone because we thought that its fairly simple structure relative to other PPAPs would present fewer hurdles as we developed our methodology.
    [Show full text]
  • Origins of Life: Transition from Geochemistry to Biogeochemistry
    December 2016 Volume 12, Number 6 ISSN 1811-5209 Origins of Life: Transition from Geochemistry to Biogeochemistry NITA SAHAI and HUSSEIN KADDOUR, Guest Editors Transition from Geochemistry to Biogeochemistry Staging Life: Warm Seltzer Ocean Incubating Life: Prebiotic Sources Foundation Stones to Life Prebiotic Metal-Organic Catalysts Protometabolism and Early Protocells pub_elements_oct16_1300&icpms_Mise en page 1 13-Sep-16 3:39 PM Page 1 Reproducibility High Resolution igh spatial H Resolution High mass The New Generation Ion Microprobe for Path-breaking Advances in Geoscience U-Pb dating in 91500 zircon, RF-plasma O- source Addressing the growing demand for small scale, high resolution, in situ isotopic measurements at high precision and productivity, CAMECA introduces the IMS 1300-HR³, successor of the internationally acclaimed IMS 1280-HR, and KLEORA which is derived from the IMS 1300-HR³ and is fully optimized for advanced U-Th-Pb mineral dating. • New high brightness RF-plasma ion source greatly improving spatial resolution, reproducibility and throughput • New automated sample loading system with motorized sample height adjustment, significantly increasing analysis precision, ease-of-use and productivity • New UV-light microscope for enhanced optical image resolution (developed by University of Wisconsin, USA) ... and more! Visit www.cameca.com or email [email protected] to request IMS 1300-HR³ and KLEORA product brochures. Laser-Ablation ICP-MS ~ now with CAMECA ~ The Attom ES provides speed and sensitivity optimized for the most demanding LA-ICP-MS applications. Corr. Pb 207-206 - U (238) Recent advances in laser ablation technology have improved signal 2SE error per sample - Pb (206) Combined samples 0.076121 +/- 0.002345 - Pb (207) to background ratios and washout times.
    [Show full text]
  • Synthesis and Structural Studies of a New Class of Quaternary Ammonium
    Rivera et al. Chemistry Central Journal 2011, 5:55 http://journal.chemistrycentral.com/content/5/1/55 RESEARCHARTICLE Open Access Synthesis and structural studies of a new class of quaternary ammonium salts, which are derivatives of cage adamanzane type aminal 1, 3, 6, 8-tetraazatricyclo[4.3.1.13,8]undecane (TATU) Augusto Rivera1*, John Sadat-Bernal1, Jaime Ríos-Motta1, Michal Dušek2 and Lukáš Palatinus2 Abstract Background: Novel mono N-alkyl quaternary ammonium salts (3a-f) were prepared using the Menschutkin reaction from the cage adamanzane type aminal 1,3,6,8-tetraazatricyclo[4.3.1.13,8]undecane (TATU) and alkyl iodides, such as methyl, ethyl, propyl, butyl, pentyl and hexyl iodide (2a-f), in dry acetonitrile at room temperature. Results: The structures of these new quaternary ammonium salts were established using various spectral and electrospray ionization mass spectrometry (ESI-MS) analyses. Compound (3b) was also analyzed using X-ray crystallography. Conclusion: It was noted that alkyl chain length did not significantly affect the reaction because all employed alkyl iodide electrophiles reacted in a similar fashion with the aminal 1 to produce the corresponding mono N- quaternary ammonium salts, which were characterized by spectroscopic and analytical techniques. Background amines with haloalkyls [7]. We found that no reaction Cage aminals of the adamanzane type are tricyclic ter- occurred when N-alkylation was attempted using alkyl tiary tetraamines, which can act as bases or as nucleo- bromides and chlorides. Compound 1 reacts with alkyl philes. The main subject of research in our laboratory iodides in dry acetonitrile at room temperature to pro- (Universidad Nacional, Bogotá) is the reactivity of these duce mono N-alkyl ammonium quaternary salts (3a-f) polyamine bases toward nucleophiles and electrophiles.
    [Show full text]
  • Cyanide Remediation: Current and Past Technologies C.A
    CYANIDE REMEDIATION: CURRENT AND PAST TECHNOLOGIES C.A. Young§ and T.S. Jordan, Department of Metallurgical Engineering, Montana Tech, Butte, MT 59701 ABSTRACT Cyanide (CN-) is a toxic species that is found predominantly in industrial effluents generated by metallurgical operations. Cyanide's strong affinity for metals makes it favorable as an agent for metal finishing and treatment and as a lixivant for metal leaching, particularly gold. These technologies are environmentally sound but require safeguards to prevent accidental spills from contaminating soils as well as surface and ground waters. Various methods of cyanide remediation by separation and oxidation are therefore reviewed. Reaction mechanisms are given throughout. The methods are compared in regard to their effectiveness in treating various cyanide species: free cyanide, thiocyanate, weak-acid dissociables and strong-acid dissociables. KEY WORDS cyanide, metal-cyanide complex, thiocyanate, oxidation, separation INTRODUCTION ent on the transport of these heavy metals through their tissues, cyanide is very toxic. Waste waters from industrial operations The mean lethal dose to the human adult is transport many chemicals that have ad- between 50 and 200 mg [2]. U.S. EPA verse effects on the environment. Various standards for drinking and aquatic-biota chemicals leach heavy metals which would waters regarding total cyanide are 200 and otherwise remain immobile. The chemicals 50 ppb, respectively, where total cyanide and heavy metals may be toxic and thus refers to free and metal-complexed cya- cause aquatic and land biota to sicken or nides [3]. According to RCRA, all cyanide species are considered to be acute haz- die. Most waste-water processing tech- ardous materials and have therefore been nologies that are currently available or are designated as P-Class hazardous wastes being developed emphasize the removal of when being disposed of.
    [Show full text]
  • Than Was the Monoleucyl Ester of Cis-Cyclopentane-1,2-Diol
    SOME OBSERVATIONS ON THE MECHANISM OF THE ACYLATION PROCESS IN PROTEIN SYNTHESIS* BY BEVERLY E. GRIFFIN AND C. B. REESE UNIVERSITY CHEMICAL LABORATORY, CAMBRIDGE, ENGLAND Communicated by Lord Todd, January 2, 1964 During recent years much attention has been given to the mechanism of synthesis of proteins in biological systems.' Although the process is by no means fully understood, some of the steps involved appear to be well established.2-4 Before amino acids can be incorporated into polypeptide chains they must first be "activated." The "activation" process involves ribonucleic acids of comparatively low molecular weight, known as "transfer" or "soluble" ribonucleic acids (sRNA), adenosine-5' triphosphate (ATP) as an energy source, and a specific enzyme for each amino acid. In the first step of the "activation" process, the amino acid reacts with ATP to form a mixed anhydride with adenosine-5' phosphate (AMP) releasing inorganic pyrophosphate; this mixed anhydride then acylates a specific sRNA on its terminal nucleoside (adenosine) residue to yield a 2' (or 3')-aminoacyl ester-the "activated" amino-acid. These processes are reversible. ATP + amino acid aminoacyl-AMP + pyrophosphate (1) sRNA + aminoacyl-AMP aminoacyl-sRNA + AMP (2) Beyond this point our knowledge of the process of polypeptide synthesis is less certain. The "activated" amino acids are believed to be transferred to the ribo- somes-the site of assembly of polypeptide chains-and then the amino acids become linked together in a genetically controlled order to synthesize a specific protein.5 Although there is as yet no definite evidence regarding this final step, it is frequently assumed that it involves a simple acylation as indicated in step (3).
    [Show full text]
  • Manufacturing of Potassium Permanganate Kmno4  This Is the Most Important and Well Known Salt of Permanganic Acid
    Manufacturing of Potassium Permanganate KMnO4 This is the most important and well known salt of permanganic acid. It is prepared from the pyrolusite ore. It is prepared by fusing pyrolusite ore either with KOH or K2CO3 in presence of atmospheric oxygen or any other oxidising agent such as KNO3. The mass turns green with the formation of potassium manganate, K2MnO4. 2MnO2 + 4KOH + O2 →2K2MnO4 + 2H2O 2MnO2 + 2K2CO3 + O2 →2K2MnO4 + 2CO2 The fused mass is extracted with water. The solution is now treated with a current of chlorine or ozone or carbon dioxide to convert manganate into permanganate. 2K2MnO4 + Cl2 → 2KMnO4 + 2KCl 2K2MnO4 + H2O + O3 → 2KMnO4 + 2KOH + O2 3K2MnO4 + 2CO2 → 2KMnO4 + MnO2 + 2K2CO3 Now-a-days, the conversion is done electrolytically. It is electrolysed between iron cathode and nickel anode. Dilute alkali solution is taken in the cathodic compartment and potassium manganate solution is taken in the anodic compartment. Both the compartments are separated by a diaphragm. On passing current, the oxygen evolved at anode oxidises manganate into permanganate. At anode: 2K2MnO4 + H2O + O → 2KMnO4 + 2KOH 2- - - MnO4 → MnO4 + e + - At cathode: 2H + 2e → H2 Properties: It is purple coloured crystalline compound. It is fairly soluble in water. When heated alone or with an alkali, it decomposes evolving oxygen. 2KMnO4 → K2MnO4 + MnO2 + O2 4KMnO4 + 4KOH → 4K2MnO4 + 2H2O + O2 On treatment with conc. H2SO4, it forms manganese heptoxide via permanganyl sulphate which decomposes explosively on heating. 2KMnO4+3H2SO4 → 2KHSO4 + (MnO3)2SO4 + 2H2O (MnO3)2SO4 + H2O → Mn2O7 + H2SO4 Mn2O7 → 2MnO2 + 3/2O2 Potassium permanganate is a powerful oxidising agent. A mixture of sulphur, charcoal and KMnO4 forms an explosive powder.
    [Show full text]
  • Alcohol Oxidation
    Alcohol oxidation Alcohol oxidation is an important organic reaction. Primary alcohols (R-CH2-OH) can be oxidized either Mechanism of oxidation of primary alcohols to carboxylic acids via aldehydes and The indirect oxidation of aldehyde hydrates primary alcohols to carboxylic acids normally proceeds via the corresponding aldehyde, which is transformed via an aldehyde hydrate (R- CH(OH)2) by reaction with water. The oxidation of a primary alcohol at the aldehyde level is possible by performing the reaction in absence of water, so that no aldehyde hydrate can be formed. Contents Oxidation to aldehydes Oxidation to ketones Oxidation to carboxylic acids Diol oxidation References Oxidation to aldehydes Oxidation of alcohols to aldehydes is partial oxidation; aldehydes are further oxidized to carboxylic acids. Conditions required for making aldehydes are heat and distillation. In aldehyde formation, the temperature of the reaction should be kept above the boiling point of the aldehyde and below the boiling point of the alcohol. Reagents useful for the transformation of primary alcohols to aldehydes are normally also suitable for the oxidation of secondary alcohols to ketones. These include: Oxidation of alcohols to aldehydes and ketones Chromium-based reagents, such as Collins reagent (CrO3·Py2), PDC or PCC. Sulfonium species known as "activated DMSO" which can result from reaction of DMSO with electrophiles, such as oxalyl chloride (Swern oxidation), a carbodiimide (Pfitzner-Moffatt oxidation) or the complex SO3·Py (Parikh-Doering oxidation). Hypervalent iodine compounds, such as Dess-Martin periodinane or 2-Iodoxybenzoic acid. Catalytic TPAP in presence of excess of NMO (Ley oxidation). Catalytic TEMPO in presence of excess bleach (NaOCl) (Oxoammonium-catalyzed oxidation).
    [Show full text]
  • Acids and Bases
    Name Date Class CHAPTER 14 REVIEW Acids and Bases SECTION 1 SHORT ANSWER Answer the following questions in the space provided. 1. Name the following compounds as acids: sulfuric acid a. H2SO4 sulfurous acid b. H2SO3 hydrosulfuric acid c. H2S perchloric acid d. HClO4 hydrocyanic acid e. hydrogen cyanide 2. H2S Which (if any) of the acids mentioned in item 1 are binary acids? 3. Write formulas for the following acids: HNO2 a. nitrous acid HBr b. hydrobromic acid H3PO4 c. phosphoric acid CH3COOH d. acetic acid HClO e. hypochlorous acid 4. Calcium selenate has the formula CaSeO4. H2SeO4 a. What is the formula for selenic acid? H2SeO3 b. What is the formula for selenous acid? 5. Use an activity series to identify two metals that will not generate hydrogen gas when treated with an acid. Choose from Cu, Ag, Au, Pt, Pd, or Hg. 6. Write balanced chemical equations for the following reactions of acids and bases: a. aluminum metal with dilute nitric acid ϩ → ϩ 2Al(s) 6HNO3(aq) 2Al(NO3)3(aq) 3H2(g) b. calcium hydroxide solution with acetic acid ϩ → ϩ Ca(OH)2(aq) 2CH3COOH(aq) Ca(CH3COO)2(aq) 2H2O(l ) MODERN CHEMISTRY ACIDS AND BASES 117 Copyright © by Holt, Rinehart and Winston. All rights reserved. Name Date Class SECTION 1 continued 7. Write net ionic equations that represent the following reactions: a. the ionization of HClO3 in water ϩ → ϩ ϩ Ϫ HClO3(aq) H2O(l ) H3O (aq) ClO3 (aq) b. NH3 functioning as an Arrhenius base ϩ → ϩ ϩ Ϫ NH3(aq) H2O(l ) ← NH4 (aq) OH (aq) 8.
    [Show full text]