Processing the Shuttle for Flight

Total Page:16

File Type:pdf, Size:1020Kb

Processing the Shuttle for Flight Processing When taking a road trip, it is important to plan ahead by making sure your vehicle is prepared for the journey. A typical road trip on Earth can be the Shuttle for routine and simple. The roadways are already properly paved, service Flight stations are available if vehicle repairs are needed, and food, lodging, and stores for other supplies can also be found. The same, however, could not be said for a Space Shuttle trip into space. The difficulties associated with Steven Sullivan space travel are complex compared with those we face when traveling here. Preparing the Shuttle for Flight Food, lodging, supplies, and repair equipment must be provided for within Ground Processing the space vehicle. Jennifer Hall Peter Nickolenko Vehicle preparation required a large amount of effort to restore the shuttle Jorge Rivera to nearly new condition each time it flew. Since it was a reusable vehicle Edith Stull Steven Sullivan with high technical performance requirements, processing involved a Space Operations Weather tremendous amount of “hands-on” labor; no simple tune-up here. Not only Francis Merceret was the shuttle’s exterior checked and repaired for its next flight, all Robert Scully components and systems within the vehicle were individually inspected and Terri Herst verified to be functioning correctly. This much detail work was necessary Steven Sullivan because a successful flight was dependent on proper vehicle assembly. Robert Youngquist During a launch attempt, decisions were made within milliseconds by equipment and systems that had to perform accurately the first time—there was no room for hesitation or error. It has been said that a million things have to go right for the launch, mission, and landing to be a success, but it can take only one thing to go wrong for them to become a failure. In addition to technical problems that could plague missions, weather conditions also significantly affected launch or landing attempts. Unlike our car, which can continue its road trip in cloudy, windy, rainy, or cold weather conditions, shuttle launch and landing attempts were restricted to occur only during optimal weather conditions. As a result, weather conditions often caused launch delays or postponed landings. Space Shuttle launches were a national effort. During the lengthy processing procedures for each launch, a dedicated workforce of support staff, technicians, inspectors, engineers, and managers from across the nation at multiple government centers had to pull together to ensure a safe flight. The whole NASA team performed in unison during shuttle processing, with pride and dedication to its work, to make certain the success of each mission. 74 The Space Shuttle and Its Operations Preparing the the demands of the largest and most The initial six operational missions were complex reusable space vehicle. scheduled to land at DFRC/Edwards Shuttle for Flight Air Force Base because of the safety The end of a mission set in motion margins available on the lakebed a 4- to 5-month process that included Ground Processing runways. Wet lakebed conditions more than 750,000 work hours and diverted one of those landings—Space Imagine embarking on a one-of-a-kind, literally millions of processing steps to Transportation System (ST S)- 3 (1 982)— once-in-a-lifetime trip. Everything prepare the shuttle for the next flight. to White Sands Space Harbor. STS-7 must be exactly right. Every flight of (1 983) was the first mission scheduled to the Space Shuttle was just that way. Landing land at KSC, but it was diverted to A successful mission hinged on ground During each mission, NASA Edwards Air Force Base runways due operations planning and execution. designated several landing sites— to unfavorable Florida weather. The Ground operations was the term used to three in the Continental United States, 10th shuttle flight—STS-41B (1 984)— describe the work required to process three overseas contingency or was the first to land at KSC. the shuttle for each flight. It included transatlanic abort landing sites, and landing-to-launch processing—called a various emergency landing sites Landing Systems “flow”—of the Orbiter, payloads, Solid located in the shuttle’s orbital flight Similar to a conventional airport, the Rocket Boosters (SRBs), and External path. All of these sites had one thing in KSC shuttle landing facility used visual Tank (ET). It also involved many common: the commander got one and electronic landing aids both on important ground systems. Three chance to make the runway. The the ground and in the Orbiter to help missions could be processed at one time, Orbiter dropped like a rock and there direct the landing. Unlike conventional all at various stages in the flow. Each were no second chances. If the target aircraft, the Orbiter had to land perfectly stage had to meet critical milestones or was missed, the result was disaster. the first time since it lacked propulsion throw the entire flow into a tailspin. Kennedy Space Center (KSC) in Florida and landed in a high-speed glide at Each shuttle mission was unique. and Dryden Flight Research Center 343 to 364 km/hr ( 21 3 to 226 mph). The planning process involved creating (DFRC)/Edwards Air Force Base in Following shuttle landing, a convoy a detailed set of mission guidelines, California were the primary landing of some 25 specially designed vehicles writing reference materials and manuals, sites for the entire Space Shuttle or units and a team of about 150 trained developing flight software, generating Program. White Sands Space Harbor in personnel converged on the runway. a flight plan, managing configuration New Mexico was the primary shuttle The team conducted safety checks for control, and conducting simulation pilot training site and a tertiary landing explosive or toxic gases, assisted the and testing. Engineers became masters site in case of unacceptable weather crew in leaving the Orbiter, and at using existing technology, systems, conditions at the other locations. prepared the Orbiter for towing to the and equipment in unique ways to meet Orbiter Processing Facility. The landing-to- launch ground operations “flow” at Kennedy Space Center prepared each shuttle for its next flight. This 4- to 5-month process required thousands of work hours and millions of individual processing steps. After landing, the Orbiter is moved to the Orbiter Space Shuttle Atlantis landing, STS-129 (2009). Processing Facility. Landing Orbiter Processing Facility: 120-130 days The Space Shuttle and Its Operations 75 Orbiter Processing coordination and prioritization among During missions, the breadboard some 35 engineering systems and replicated flow problems and worked The Orbiter Processing Facility was 32 support groups. Schedules ranged out solutions. a sophisticated aircraft hangar (about in detail from minutes to years. 2,700 m 2 [29,000 ft 2]) with three Engineers also tested spacecraft separate buildings or bays. Trained Personnel removed the Orbital communications systems at the personnel completed more than 60% Maneuvering System pods and Forward Electronic Systems Test Laboratory, of the processing work during the Reaction Control System modules and where multielement, crewed spacecraft approximately 125 days the vehicle modified or repaired and retested them communications systems were interfaced spent in the facility. in the Hypergolic Maintenance Facility. with relay satellites and ground elements When workers completed modifications for end-to-end testing in a controlled Technicians drained residual fuels and and repairs, they shipped the pods and radio-frequency environment. removed remaining payload elements modules back to the Orbiter Processing or support equipment. More than 11 5 The Avionics Engineering Laboratory Facility for reinstallation. multilevel, movable access platforms supported flight system hardware and could be positioned to surround the software development and evaluation as Johnson Space Center Orbiter Orbiter and provide interior and well as informal engineering evaluation Laboratories exterior access. Engineers performed and formal configuration- extensive checkouts involving some Several laboratories at Johnson controlled verification testing of 6 million parts. NASA removed and Space Center supported Orbiter testing non-flight and flight hardware and transferred some elements to other and modifications. software. Its real-time environment facilities for servicing. The Orbiter consisted of a vehicle dynamics The Electrical Power Systems Processing Facility also contained simulation for all phases of flight, Laboratory was a state-of-the-art shops to support Orbiter processing. including contingency aborts, and a full electrical compatibility facility that complement of Orbiter data processing Tasks were divided into forward, supported shuttle and International system line replacement units. midbody, and aft sections and required Space Station (ISS) testing. The shuttle mechanical, electrical, and Thermal breadboard, a high-fidelity replica The Shuttle Avionics Integration Protection System technicians, of the shuttle electrical power Laboratory was the only program test engineers, and inspectors as well as distribution and control subsystem, facility where avionics, other flight planners and schedulers. Daily was used early in the program for hardware (or simulations), software, activities included test and checkout equipment development testing procedures, and ground support schedule meetings that required and later for ongoing payload and equipment were
Recommended publications
  • 1993 (179Kb Pdf)
    February 4, 1993 KSC Contact: Bruce Buckingham KSC Release No. 10-93 Notice To Editors/News Directors: KSC NEWS CENTER OFFICE HOURS FOR PEGASUS ARRIVAL The NASA B-52 aircraft carrying the Orbital Sciences Cor- poration Pegasus rocket is scheduled to arrive at KSC on Sunday, Feb. 7, with launch targeted for Feb. 9. The aircraft is currently scheduled to depart Edwards Air Force Base, Calif., at about 10:00 a.m. EST on Sunday with a single refueling stopover planned at Sheppard AFB, Texas. If weather permits, arrival of the aircraft at KSC's Shuttle Landing Facility should be about 4:30 p.m. EST. Status updates regarding the cross-country flight will be made on KSC's codaphone over the weekend. This can be reached by calling 407/867-2525. Public Affairs officers will be in the KSC Press Site office by 9:30 a.m. Sunday in order to provide status updates by phone. The office, however, will not officially open until it is deter- mined the aircraft will in fact be arriving at KSC. If it is determined that the aircraft will be successful in completing the day-long trip to KSC on Sunday, the office will officially open at 3:00 p.m. In that event, media interested in viewing the B-52/Pegasus arrival should plan on calling the KSC news center at 407/867-2468 for departure times to the Shuttle Landing Facility. News media who do not possess current credentials must con- tact the Public Information Office before close of business Friday, Feb.
    [Show full text]
  • 7. Operations
    7. Operations 7.1 Ground Operations The Exploration Systems Architecture Study (ESAS) team addressed the launch site integra- tion of the exploration systems. The team was fortunate to draw on expertise from members with historical and contemporary human space flight program experience including the Mercury, Gemini, Apollo, Skylab, Apollo Soyuz Test Project, Shuttle, and International Space Station (ISS) programs, as well as from members with ground operations experience reaching back to the Redstone, Jupiter, Pershing, and Titan launch vehicle programs. The team had a wealth of experience in both management and technical responsibilities and was able to draw on recent ground system concepts and other engineering products from the Orbital Space Plane (OSP) and Space Launch Initiative (SLI) programs, diverse X-vehicle projects, and leadership in NASA/Industry/Academia groups such as the Space Propulsion Synergy Team (SPST) and the Advanced Spaceport Technology Working Group (ASTWG). 7.1.1 Ground Operations Summary The physical and functional integration of the proposed exploration architecture elements will occur at the primary launch site at the NASA Kennedy Space Center (KSC). In order to support the ESAS recommendation of the use of a Shuttle-derived Cargo Launch Vehicle (CaLV) and a separate Crew Launch Vehicle (CLV) for lunar missions and the use of a CLV for ISS missions, KSC’s Launch Complex 39 facilities and ground equipment were selected for conversion. Ground-up replacement of the pads, assembly, refurbishment, and/or process- ing facilities was determined to be too costly and time-consuming to design, build, outfit, activate, and certify in a timely manner to support initial test flights leading to an operational CEV/CLV system by 2011.
    [Show full text]
  • Trade Studies Towards an Australian Indigenous Space Launch System
    TRADE STUDIES TOWARDS AN AUSTRALIAN INDIGENOUS SPACE LAUNCH SYSTEM A thesis submitted for the degree of Master of Engineering by Gordon P. Briggs B.Sc. (Hons), M.Sc. (Astron) School of Engineering and Information Technology, University College, University of New South Wales, Australian Defence Force Academy January 2010 Abstract During the project Apollo moon landings of the mid 1970s the United States of America was the pre-eminent space faring nation followed closely by only the USSR. Since that time many other nations have realised the potential of spaceflight not only for immediate financial gain in areas such as communications and earth observation but also in the strategic areas of scientific discovery, industrial development and national prestige. Australia on the other hand has resolutely refused to participate by instituting its own space program. Successive Australian governments have preferred to obtain any required space hardware or services by purchasing off-the-shelf from foreign suppliers. This policy or attitude is a matter of frustration to those sections of the Australian technical community who believe that the nation should be participating in space technology. In particular the provision of an indigenous launch vehicle that would guarantee the nation independent access to the space frontier. It would therefore appear that any launch vehicle development in Australia will be left to non- government organisations to at least define the requirements for such a vehicle and to initiate development of long-lead items for such a project. It is therefore the aim of this thesis to attempt to define some of the requirements for a nascent Australian indigenous launch vehicle system.
    [Show full text]
  • Space Shuttle Era Fact Sheet
    National Aeronautics and Space Administration Space Shuttle Era Facts NASA’s shuttle fleet achieved numerous firsts and opened Enterprise was the first space shuttle, although it never up space to more people than ever before during the Space flew in space. It was used to test critical phases of landing and Shuttle Program’s 30 years of missions. other aspects of shuttle preparations. Enterprise was mounted The space shuttle, officially called the Space Transportation on top of a modified 747 airliner for the Approach and Landing System (STS), began its flight career with Columbia roaring off Tests in 1977. It was released over the vast dry lakebed at Launch Pad 39A at NASA’s Kennedy Space Center in Florida Edwards Air Force Base in California to prove it could glide and on April 12, 1981. land safely. That first mission verified the combined performance of Columbia, OV-102, was named after a sloop captained the orbiter vehicle (OV), its twin solid rocket boosters (SRBs), by Robert Gray, who on May 11, 1792, maneuvered his ship giant external fuel tank (ET) and three space shuttle main through dangerous inland waters to explore British Columbia engines (SSMEs). It also put to the test the teams and what are now the states of Washington and facts that manufactured, processed, launched and Oregon. Columbia was the first shuttle to fly into managed the unique vehicle system, which consists orbit on STS-1. Its first four missions were test of about 2 1/2 million moving parts. flights to show that the shuttle design was sound.
    [Show full text]
  • Orbiter Processing Facility
    National Aeronautics and Space Administration Space Shuttle: Orbiter Processing From Landing To Launch he work of preparing a space shuttle for the same facilities. Inside is a description of an flight takes place primarily at the Launch orbiter processing flow; in this case, Discovery. Complex 39 Area. TThe process actually begins at the end of each acts Shuttle Landing Facility flight, with a landing at the center or, after landing At the end of its mission, the Space Shuttle f at an alternate site, the return of the orbiter atop a Discovery lands at the Shuttle Landing Facility on shuttle carrier aircraft. Kennedy’s Shuttle Landing one of two runway headings – Runway 15 extends Facility is the primary landing site. from the northwest to the southeast, and Runway There are now three orbiters in the shuttle 33 extends from the southeast to the northwest fleet: Discovery, Atlantis and Endeavour. Chal- – based on wind currents. lenger was destroyed in an accident in January After touchdown and wheelstop, the orbiter 1986. Columbia was lost during approach to land- convoy is deployed to the runway. The convoy ing in February 2003. consists of about 25 specially designed vehicles or Each orbiter is processed independently using units and a team of about 150 trained personnel, NASA some of whom assist the crew in disembarking from the orbiter. the orbiter and a “white room” is mated to the orbiter hatch. The The others quickly begin the processes necessary to “safe” the hatch is opened and a physician performs a brief preliminary orbiter and prepare it for towing to the Orbiter Processing Fa- medical examination of the crew members before they leave the cility.
    [Show full text]
  • Space Planes and Space Tourism: the Industry and the Regulation of Its Safety
    Space Planes and Space Tourism: The Industry and the Regulation of its Safety A Research Study Prepared by Dr. Joseph N. Pelton Director, Space & Advanced Communications Research Institute George Washington University George Washington University SACRI Research Study 1 Table of Contents Executive Summary…………………………………………………… p 4-14 1.0 Introduction…………………………………………………………………….. p 16-26 2.0 Methodology…………………………………………………………………….. p 26-28 3.0 Background and History……………………………………………………….. p 28-34 4.0 US Regulations and Government Programs………………………………….. p 34-35 4.1 NASA’s Legislative Mandate and the New Space Vision………….……. p 35-36 4.2 NASA Safety Practices in Comparison to the FAA……….…………….. p 36-37 4.3 New US Legislation to Regulate and Control Private Space Ventures… p 37 4.3.1 Status of Legislation and Pending FAA Draft Regulations……….. p 37-38 4.3.2 The New Role of Prizes in Space Development…………………….. p 38-40 4.3.3 Implications of Private Space Ventures…………………………….. p 41-42 4.4 International Efforts to Regulate Private Space Systems………………… p 42 4.4.1 International Association for the Advancement of Space Safety… p 42-43 4.4.2 The International Telecommunications Union (ITU)…………….. p 43-44 4.4.3 The Committee on the Peaceful Uses of Outer Space (COPUOS).. p 44 4.4.4 The European Aviation Safety Agency…………………………….. p 44-45 4.4.5 Review of International Treaties Involving Space………………… p 45 4.4.6 The ICAO -The Best Way Forward for International Regulation.. p 45-47 5.0 Key Efforts to Estimate the Size of a Private Space Tourism Business……… p 47 5.1.
    [Show full text]
  • HISTORIC AMERICAN ENGINEERING RECORD SPACE TRANSPORTATION SYSTEM, MOTOR VESSELS LIBERTY STAR & FREEDOM STAR HAER No. TX-116
    HISTORIC AMERICAN ENGINEERING RECORD SPACE TRANSPORTATION SYSTEM, MOTOR VESSELS LIBERTY STAR & FREEDOM STAR HAER No. TX-116-M Location: Lyndon B. Johnson Space Center 2101 NASA Parkway Houston Harris County Texas Motor vessels Liberty Star and Freedom Star were docked at the Hangar AF Wharf in the Industrial Area of the Cape Canaveral Air Force Station (CCAFS), located at latitude: 28.489342, longitude: -80.588955, during their period of performance with the National Aeronautics and Space Administration (NASA). These coordinates were obtained on August 24, 2012, through Google Earth™. The coordinates’ datum are North American Datum 1983. Dates of Construction: Liberty Star was built in 1980 and Freedom Star was built in 1981 and delivered as UTC Liberty and UTC Freedom, respectively. Their corresponding name changes were effective in 1984.1 Architect/Engineer/ Builder: Architect: Rudolph F. Matzer and Associates, Jacksonville, Florida; Builder: Atlantic Marine Shipyard, Fort George Island, Florida. Original Owner and Use: Original Owner: United Space Boosters, Inc. (USBI) of Huntsville, Alabama, a subsidiary of United Technologies Corporation (UTC) of Sunnyvale, California. Original Use: Recovery at sea and towback to Hangar AF of the expended Space Shuttle Solid Rocket Boosters (SRBs)2 and their associated flight hardware following launch. 1 For simplicity’s sake, the names Liberty Star and Freedom Star will be used throughout the document. 2 The SRBs, also referred to as the ‘booster stacks,’ were comprised of four reusable solid rocket motor case segments joined to reusable solid rocket booster forward skirt and aft skirt assemblies. Each SRB also had three main parachutes, one drogue parachute, and one pilot parachute.
    [Show full text]
  • Techno-Optimists," Brilliant Technologist Entrepreneurs Inventing Better Future
    Media Contact Mary Meluso, 201.253.1335 [email protected] Liberty Science Center’s Genius Gala 6.0 on Friday, May 5, Celebrates "Techno-Optimists," Brilliant Technologist Entrepreneurs Inventing Better Future Jersey City, New Jersey (March 2, 2017) – At a time when great uncertainty and pessimism seems to be permeating society, Liberty Science Center President and CEO Paul Hoffman is ready to redirect the national conversation on optimism – specifically “techno-optimists,” those “singularly brilliant technologist entrepreneurs who are inventing a better future for all of us.” So, it is highly appropriate that the Center’s 2017 Genius Award winners who’ll be honored and feted at its Genius Gala 6.0 on Friday, May 5 reflect just such individuals. They are mathematician Katherine Coleman Goble Johnson, one of the first African-American women to be employed by NASA and the subject of the Academy Award nominated film Hidden Figures, and Ray Kurzweil, one of the world’s leading inventors, thinkers, authors, and futurists who has been called "the restless genius" by The Wall Street Journal, "the ultimate thinking machine" by Forbes, and the "rightful heir to Thomas Edison" by Inc. magazine. And for the first time, the Center will bestow a Genius Award on a machine, SpotMini, the newest robot from Boston Dynamics, the company that is on the forefront of designing bipedal and quadrupedal robots whose movements uncannily mimic those of human beings and animals. Also to be honored will be SpotMini’s carbon-based enablers, Boston Dynamics founder and CEO Marc Raibert and the Boston Dynamics Robotics Team.
    [Show full text]
  • Issue #1 – 2012 October
    TTSIQ #1 page 1 OCTOBER 2012 Introducing a new free quarterly newsletter for space-interested and space-enthused people around the globe This free publication is especially dedicated to students and teachers interested in space NEWS SECTION pp. 3-22 p. 3 Earth Orbit and Mission to Planet Earth - 13 reports p. 8 Cislunar Space and the Moon - 5 reports p. 11 Mars and the Asteroids - 5 reports p. 15 Other Planets and Moons - 2 reports p. 17 Starbound - 4 reports, 1 article ---------------------------------------------------------------------------------------------------- ARTICLES, ESSAYS & MORE pp. 23-45 - 10 articles & essays (full list on last page) ---------------------------------------------------------------------------------------------------- STUDENTS & TEACHERS pp. 46-56 - 9 articles & essays (full list on last page) L: Remote sensing of Aerosol Optical Depth over India R: Curiosity finds rocks shaped by running water on Mars! L: China hopes to put lander on the Moon in 2013 R: First Square Kilometer Array telescopes online in Australia! 1 TTSIQ #1 page 2 OCTOBER 2012 TTSIQ Sponsor Organizations 1. About The National Space Society - http://www.nss.org/ The National Space Society was formed in March, 1987 by the merger of the former L5 Society and National Space institute. NSS has an extensive chapter network in the United States and a number of international chapters in Europe, Asia, and Australia. NSS hosts the annual International Space Development Conference in May each year at varying locations. NSS publishes Ad Astra magazine quarterly. NSS actively tries to influence US Space Policy. About The Moon Society - http://www.moonsociety.org The Moon Society was formed in 2000 and seeks to inspire and involve people everywhere in exploration of the Moon with the establishment of civilian settlements, using local resources through private enterprise both to support themselves and to help alleviate Earth's stubborn energy and environmental problems.
    [Show full text]
  • The Annual Compendium of Commercial Space Transportation: 2017
    Federal Aviation Administration The Annual Compendium of Commercial Space Transportation: 2017 January 2017 Annual Compendium of Commercial Space Transportation: 2017 i Contents About the FAA Office of Commercial Space Transportation The Federal Aviation Administration’s Office of Commercial Space Transportation (FAA AST) licenses and regulates U.S. commercial space launch and reentry activity, as well as the operation of non-federal launch and reentry sites, as authorized by Executive Order 12465 and Title 51 United States Code, Subtitle V, Chapter 509 (formerly the Commercial Space Launch Act). FAA AST’s mission is to ensure public health and safety and the safety of property while protecting the national security and foreign policy interests of the United States during commercial launch and reentry operations. In addition, FAA AST is directed to encourage, facilitate, and promote commercial space launches and reentries. Additional information concerning commercial space transportation can be found on FAA AST’s website: http://www.faa.gov/go/ast Cover art: Phil Smith, The Tauri Group (2017) Publication produced for FAA AST by The Tauri Group under contract. NOTICE Use of trade names or names of manufacturers in this document does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the Federal Aviation Administration. ii Annual Compendium of Commercial Space Transportation: 2017 GENERAL CONTENTS Executive Summary 1 Introduction 5 Launch Vehicles 9 Launch and Reentry Sites 21 Payloads 35 2016 Launch Events 39 2017 Annual Commercial Space Transportation Forecast 45 Space Transportation Law and Policy 83 Appendices 89 Orbital Launch Vehicle Fact Sheets 100 iii Contents DETAILED CONTENTS EXECUTIVE SUMMARY .
    [Show full text]
  • U.S. Coast Guard Units in FLORIDA
    U.S. Coast Guard Units in the State of Florida Seventh Coast Guard District Headquarters Office Tel: (305) 415-6670 909 S.E. First Avenue, Suite 944 Miami, FL Coast Guard Air Station Miami Tel: (305) 953-2100 14750 N.W. 44th Court Opa Locka Airport Opa Locka, FL 33054 Coast Guard Air Station Clearwater Tel: (727) 535-1437 15100 Rescue Way Clearwater, FL 33762-1437 Coast Guard Marine Safety Office / Marine Safety Unit Tampa Tel: (813) 228-2191 155 Columbia Drive Tampa, FL 33606-3598 Coast Guard Civil Engineering Unit Miami Tel: (305) 278-6700 15608 S.W. 117th Avenue Miami, FL 33177-1630 Coast Guard Helicopter Interdiction Tactical Squadron (HITRON) Jacksonville Tel: (904) 594-6800 6213 Aviation Avenue, Bldg. 1846 Jacksonville, FL 32221-8120 Coast Guard Station St. Petersburg Tel: (727) 824-7670 600 8th Avenue SE St. Petersburg, FL 33701-5099 Coast Guard Station Ft. Myers Beach Tel: (941) 463-5754 719 San Carlos Drive Fort Myers Beach, FL 33931-2221 1 S Coast Guard tation Ft. Pierce Tel: (561) 464-6100 900 Seaway Drive Fort Pierce, FL 34949-3039 Coast Guard Station Islamorada Tel: (305) 664-4404 183 Palermo Drive Islamorada, FL 33036-3317 Coast Guard Station Lake Worth Inlet Tel: (561) 840-8503 3300 Lakeshore Drive Riviera Beach, FL 33404-2406 Coast Guard Station Marathon Tel: (305) 743-1945 1800 Overseas Highway Marathon, FL 33050-2199 Coast Guard Station Ft. Lauderdale Tel: (954) 927-1611 P.O. BOX 537 Broward County Park 7000 N. Ocean Drive Dania, FL 33004-3079 Coast Guard Station Ponce De Leon Inlet Tel: (386) 428-9085 2999 North Peninsula Avenue New Smyrna Beach, FL 32169-2041 Coast Guard Station Port Canaveral Tel: (321) 853-7601 9235 Grouper Road Cape Canaveral, FL 32920-4402 Coast Guard Station Sand Key Tel: (727) 596-8540 1375 Gulf Boulevard Clearwater, FL 33767-2899 Coast Guard Station Key West Tel: (305) 292-8862 Building 101, Trumbo Point Key West, FL 33040-6695 2 Coast Guard Station Yankeetown Tel: (352) 447-6900 P.O.
    [Show full text]
  • America's Spaceport
    National Aeronautics and Space Administration America’s Spaceport www.nasa.gov America’s Spaceport John F. Kennedy Space Center “This generation does not intend to founder in the backwash of the coming age of space. We mean to be a part of it — we mean to lead it.” President John Fitzgerald Kennedy September 12, 1962 he John F. Kennedy Space Center — America’s Spaceport — is the doorway to upon Spanish treasure ships laden with riches from space. From its unique facilities, humans and machines have begun the exploration the mines of Mexico and Peru. Shoals, reefs and T of the solar system, reaching out to the sun, the moon, the planets and beyond. storms also exacted their toll on the treasure fleets, While these spectacular achievements have fired the imagination of people throughout leaving behind a sunken bonanza now being reaped the world and enriched the lives of millions, they represent only a beginning. At America’s by modern-day treasure hunters. Spaceport, humanity’s long-cherished dream of establishing permanent outposts on the new space frontier is becoming a reality. By the early 18th century, America’s Spaceport Origins echoed with the footsteps of other intruders: Yet, our leap toward the stars is also an epilogue to a rich and colorful past . an almost English settlers and their Indian allies (the latter to forgotten legacy replete with Indian lore, stalwart adventurers, sunken treasure and hardy become known as the Seminoles) from colonies in pioneers. Georgia and South Carolina. Thus began a new era of conflict and expansion that ouldw continue until The sands of America’s Spaceport bear the imprint of New World history from its earliest the end of the Second U.S.
    [Show full text]