STS-135: the Final Mission Dedicated to the Courageous Men and Women Who Have Devoted Their Lives to the Space Shuttle Program and the Pursuit of Space Exploration

Total Page:16

File Type:pdf, Size:1020Kb

STS-135: the Final Mission Dedicated to the Courageous Men and Women Who Have Devoted Their Lives to the Space Shuttle Program and the Pursuit of Space Exploration National Aeronautics and Space Administration STS-135: The Final Mission Dedicated to the courageous men and women who have devoted their lives to the Space Shuttle Program and the pursuit of space exploration PRESS KIT/JULY 2011 www.nasa.gov 2 011 2009 2008 2007 2003 2002 2001 1999 1998 1996 1994 1992 1991 1990 1989 STS-1: The First Mission 1985 1981 CONTENTS Section Page SPACE SHUTTLE HISTORY ...................................................................................................... 1 INTRODUCTION ................................................................................................................................... 1 SPACE SHUTTLE CONCEPT AND DEVELOPMENT ................................................................................... 2 THE SPACE SHUTTLE ERA BEGINS ....................................................................................................... 7 NASA REBOUNDS INTO SPACE ............................................................................................................ 14 FROM MIR TO THE INTERNATIONAL SPACE STATION .......................................................................... 20 STATION ASSEMBLY COMPLETED AFTER COLUMBIA ........................................................................... 25 MISSION CONTROL ROSES EXPRESS THANKS, SUPPORT .................................................................... 30 SPACE SHUTTLE PROGRAM’S KEY STATISTICS (THRU STS-134) ........................................................ 32 THE ORBITER FLEET ............................................................................................................................. 32 SHUTTLE UPS AND DOWNS: LAUNCH, LAND AND LAUNCH AGAIN ....................................................... 41 THREE LANDING SITES USED, MANY MORE AVAILABLE ....................................................................... 44 ASTRONAUT CORPS MARKS CHANGES IN SPACE, SOCIETY ................................................................ 46 HUBBLE AND THE SHUTTLE: NEW VIEWS OF OUR UNIVERSE .............................................................. 49 STS-135 MISSION OVERVIEW ............................................................................................... 51 STS-135 TIMELINE OVERVIEW ............................................................................................... 61 STS-135 MISSION PROFILE ................................................................................................... 63 STS-135 MISSION OBJECTIVES ............................................................................................. 65 MISSION PERSONNEL ............................................................................................................. 67 STS-135 ATLANTIS CREW ...................................................................................................... 69 PAYLOAD OVERVIEW .............................................................................................................. 75 RAFFAELLO MULTI-PURPOSE LOGISTICS MODULE (MPLM) FLIGHT MODULE 2 (FM2) .......................... 77 MPLM BACKGROUND INFORMATION ................................................................................................... 78 THE LIGHTWEIGHT MULTI-PURPOSE EXPERIMENT SUPPORT STRUCTURE CARRIER (LMC) ................ 79 ROBOTIC REFUELING MISSION (RRM) ................................................................................................ 82 PUMP MODULE (PM) ........................................................................................................................... 85 JULY 2011 CONTENTS i Section Page RENDEZVOUS & DOCKING ....................................................................................................... 87 UNDOCKING, SEPARATION AND DEPARTURE ....................................................................................... 88 SPACEWALKS ......................................................................................................................... 89 STS-135 EXPERIMENTS .......................................................................................................... 93 STS-135/ULF7 RESEARCH AND TECHNOLOGY DEVELOPMENT .............................................................. 93 SHORT-DURATION RESEARCH TO BE COMPLETED ON STS-135/ULF7 .................................................. 94 RESEARCH TO BE DELIVERED TO STATION ON SHUTTLE ...................................................................... 96 RESEARCH OF OPPORTUNITY .............................................................................................................. 97 RESEARCH TO BE RETURNED ON SPACE SHUTTLE ............................................................................... 98 PICO-SATELLITE SOLAR CELL TESTBED ............................................................................................... 100 DEVELOPMENT TEST OBJECTIVES (DTO) AND DETAILED SUPPLEMENTARY OBJECTIVES (DSO) .......... 102 STUDENT EXPERIMENTS ...................................................................................................................... 105 SHUTTLE REFERENCE DATA .................................................................................................... 117 LAUNCH & LANDING ................................................................................................................ 135 LAUNCH ............................................................................................................................................... 135 ABORT TO ORBIT ................................................................................................................................. 135 TRANSOCEANIC ABORT LANDING ........................................................................................................ 135 RETURN TO LAUNCH SITE .................................................................................................................... 135 ABORT ONCE AROUND ......................................................................................................................... 135 LANDING ............................................................................................................................................. 135 ACRONYMS & ABBREVIATIONS .............................................................................................. 137 MEDIA ASSISTANCE ............................................................................................................... 153 SPACE SHUTTLE AND INTERNATIONAL SPACE STATION − PUBLIC AFFAIRS CONTACTS ..... 155 THE FUTURE ............................................................................................................................ 159 ORION MULTI-PURPOSE CREW VEHICLE ............................................................................................. 159 NASA COMMERCIAL CREW PROGRAM ................................................................................................. 162 ii CONTENTS JULY 2011 SPACE SHUTTLE HISTORY INTRODUCTION Engineering and technological advances were required in development of the shuttle. It Shuttle History: Knowledge, was called the most complex machine ever Capabilities, and Cooperation built. Its main engines stretched design and metallurgical capabilities. Its thermal For 30 years, the space shuttle has been the U.S. protection system, which shielded the orbiter human access to space. It has capabilities no from temperatures as high as 3,000 degrees other spacecraft can claim. No other spacecraft Fahrenheit during re-entry, was a work in is likely to match those capabilities in this progress until shortly before the first shuttle generation. launch. Engines and the thermal protection It is the fastest winged vehicle ever to fly, with system were designed for repeated reuse. an orbital velocity of 17,500 mph, 10 times the Both have been continually improved during speed of a high-powered rifle bullet. It is the the life of the Space Shuttle Program. So has only winged vehicle to reach orbit, and the only just about every other major shuttle system. reusable space launch and landing vehicle. Science, in addition to the advances required The shuttle can carry cargos of substantial for the spacecraft’s development, has made weight and dimensions. It has taken into space huge strides with the help of the space shuttle. more than half the mass of all payloads We have learned more about ourselves, about launched by all nations since Sputnik in 1957 – how our bodies and those of other organisms 3,450,143 pounds (though STS-132) and function, from the subcellular level on up. We counting as the final shuttle launch approaches. have learned how we as individuals interact More singular still is the shuttle’s ability to with one another under unusual and stressful return payloads from space. It has brought circumstances – and how to work together. back from orbit more than 97 percent of We have learned about our planet, its land all mass returned to Earth, a total of masses, its oceans, its atmosphere and its 225,574 pounds (though STS-132) before the environment as a whole. With the help of the upcoming final flight. shuttle we have learned more about our moon, It has launched 802 crew members including solar system, our galaxy and our universe. those lost on Challenger and Columbia. Crew The Hubble Space Telescope, for example, members returning on the shuttle numbered launched and repeatedly upgraded and 789. Many crew members flew more than once. repaired on shuttle
Recommended publications
  • JAXA Astronaut Akihiko Hoshide Returns to UWCSEA Graduation 2016 Updates and Profiles
    Vol 14 October 2016 The Alumni Magazine of UWC South East Asia JAXA Astronaut Akihiko Hoshide returns to UWCSEA Graduation 2016 Updates and Profiles (c)JAXA/NASA Our alumni community Albania, Argentina, Armenia, Australia, Austria, Bahamas, Bahrain, Bangladesh, Barbados, Belarus, Belgium, Benin, Bermuda, Botswana, Brazil, Brunei, Bulgaria, Cambodia, Cameroon, Canada, Cayman Islands, Chile, China, Colombia, Costa Rica, Croatia, Curaçao, Cyprus, Czech Republic, Denmark, Dutch Caribbean, Egypt, Ethiopia, Falkland Islands (Malvinas), Faroe Islands, Fiji, Finland, France, Germany, Ghana, Greece, Guam, Guatemala, Guyana, Hong Kong, Hungary, Iceland, India, Indonesia, Ireland, Israel, Italy, Japan, Jersey, Jordan, Kazakhstan, Kenya, Laos, Lebanon, Luxembourg, Macau, Madagascar, Malaysia, Maldives, Malta, Mauritius, Mexico, Monaco, Mongolia, Morocco, Myanmar, Namibia, Nepal, Netherlands, New Caledonia, New Zealand, Nigeria, Norway, Oman, Pakistan, Panama, Papua New Guinea, Peru, Philippines, Poland, Portugal, Qatar, Romania, Russia, Rwanda, Saudi Arabia, Senegal, Serbia, Sierra Leone, Singapore, Slovenia, South Africa, South Korea, South Sudan, Spain, Sri Lanka, Swaziland, Sweden, Switzerland, Taiwan, Tanzania, Thailand, Timor Leste, Trinidad And Tobago, Turkey, Turks And Caicos Islands, Uganda, United Arab Emirates, United Kingdom, United States, Uruguay, Venezuela, Vietnam, Zimbabwe Alumni services Every student who leaves UWCSEA, by both UWCSEA and our alumni. Watch The UWC Hub regardless of how long they were the alumni website for updates and Launched in September 2016, the UWC enrolled, automatically becomes a details, and let us advertise your events! Hub is a web platform and mobile member of our alumni community. Alumni and Parents of Alumni eBriefs app that brings together the UWC Some of the services we offer include: These are emailed to alumni and community around the world.
    [Show full text]
  • Mobile Launcher Moves to Vehicle Assembly Building EGS MONTHLY HIGHLIGHTS
    National Aeronautics and Space Administration EXPLORATION GROUND SYSTEMS HIGHLIGHTS SEPTEMBER 2018 Mobile Launcher Moves to Vehicle Assembly Building EGS MONTHLY HIGHLIGHTS 3 Mobile launcher on the move 4 In the driver’s seat 5 Prepping for Underway Recovery Test 7 6 Employees, guests view ML move MOBILE LAUNCHER ON THE MOVE NASA’s mobile launcher is inside High Bay 3 at the Vehicle Assembly Building (VAB) on Sept. 11, 2018, at NASA’s Kennedy Space Center in Florida. Photo credit: NASA/Frank Michaux NASA’s mobile launcher, atop crawler-transporter 2, traveled from Launch Pad 39B to the Vehicle Assembly Building at the agency’s Kennedy Space Center in Florida, on Sept. 7, 2018. Arriving late in the afternoon, the mobile launcher stopped at the entrance to the VAB. Early the next day, Sept. 8, engineers and technicians rotated and extended the crew access arm near the top of the mobile launcher tower. Then the mobile launcher was moved inside High Bay 3, where it will spend about seven months undergoing verification and validation testing with the 10 levels of new work platforms, ensuring that it can provide support to the agency’s Space Launch System (SLS). The 380-foot-tall structure is equipped with the crew access Cliff Lanham, NASA project manager for the mobile launcher, takes a break arm and several umbilicals that will provide power, environmental to attend the employee event for the mobile launcher move to the Vehicle control, pneumatics, communication and electrical connections Assembly Building on Sept. 7, 2018, at NASA’s Kennedy Space Center in Florida.
    [Show full text]
  • Space Reporter's Handbook Mission Supplement
    CBS News Space Reporter's Handbook - Mission Supplement Page 1 The CBS News Space Reporter's Handbook Mission Supplement Shuttle Mission STS-125: Hubble Space Telescope Servicing Mission 4 Written and Produced By William G. Harwood CBS News Space Analyst [email protected] CBS News 5/10/09 Page 2 CBS News Space Reporter's Handbook - Mission Supplement Revision History Editor's Note Mission-specific sections of the Space Reporter's Handbook are posted as flight data becomes available. Readers should check the CBS News "Space Place" web site in the weeks before a launch to download the latest edition: http://www.cbsnews.com/network/news/space/current.html DATE RELEASE NOTES 08/03/08 Initial STS-125 release 04/11/09 Updating to reflect may 12 launch; revised flight plan 04/15/09 Adding EVA breakdown; walkthrough 04/23/09 Updating for 5/11 launch target date 04/30/09 Adding STS-400 details from FRR briefing 05/04/09 Adding trajectory data; abort boundaries; STS-400 launch windows Introduction This document is an outgrowth of my original UPI Space Reporter's Handbook, prepared prior to STS-26 for United Press International and updated for several flights thereafter due to popular demand. The current version is prepared for CBS News. As with the original, the goal here is to provide useful information on U.S. and Russian space flights so reporters and producers will not be forced to rely on government or industry public affairs officers at times when it might be difficult to get timely responses. All of these data are available elsewhere, of course, but not necessarily in one place.
    [Show full text]
  • Mourners Remember Life, Career of US Astronaut John Glenn 17 December 2016
    Mourners remember life, career of US astronaut John Glenn 17 December 2016 Mourners gathered at a memorial service for The state of Ohio held ceremonies over two days, groundbreaking astronaut John Glenn on Saturday complete with full military honors, ending with the in his home state of Ohio, capping two days of memorial service held at a 2,500-seat auditorium remembrances for the first American to orbit the on the Ohio State University campus home to the Earth. Glenn College of Public Affairs. Glenn, who later in life also became the first senior The memorial service was attended by dignitaries, citizen in space, was remembered as a national high-ranking government officials and members of hero who believed in selfless service to his the public who got tickets. country. The service included a platoon of 40 Marines who He died last week at the age of 95, after a lifetime marched three miles (4.8 kilometers) to accompany spent in the US Marines, the American space the hearse carrying Glenn's body from the Ohio program, the Senate, and as a university Statehouse to the auditorium. professor. Glenn's flag-draped coffin lay in state at the At the public memorial service in the state capital Statehouse rotunda Friday, allowing thousands of Columbus, Vice President Joe Biden said Glenn visitors to pay their final respects in an honor exemplified America's view of itself as a "country of granted to only eight other people in Ohio's history. promise, opportunity, always a belief for tomorrow." At the memorial, speakers—including his adult children Lyn and David—remembered Glenn's long "He knew from his upbringing that ordinary career in public service.
    [Show full text]
  • Remains of Astronaut Legend Neil Armstrong Buried at Sea 15 September 2012
    Remains of astronaut legend Neil Armstrong buried at sea 15 September 2012 The cremated remains of legendary American astronaut Neil Armstrong were scattered at sea Friday, in a ceremony aboard a US aircraft carrier paying final tribute to the first man to set foot on the moon, NASA said. US Navy personnel carried Armstrong's remains to the Atlantic Ocean one day after a somber memorial ceremony at the Washington National Cathedral for the famously reserved Apollo 11 commander, who died August 25 at the age of 82. Armstrong's widow Carol was presented an American flag at the ceremony aboard the USS Philippine Sea that included a bugler and rifle salute. "Neil will always be remembered for taking humankind's first small step on another world," NASA Administrator Charles Bolden said at the National Cathedral service. "But it was the courage, grace and humility he displayed throughout his life that lifted him above the stars." Armstrong's Apollo 11 crew mates Michael Collins and Buzz Aldrin, Eugene Cernan—the Apollo 17 mission commander and last man to walk on the moon—attended the memorial service. Also present Thursday was John Glenn, the former US senator and first American to orbit the Earth. Armstrong came to be known around the world for the immortal words he uttered on July 20, 1969, as he became the first person ever to step onto another body in space: "That's one small step for (a) man, one giant leap for mankind." (c) 2012 AFP APA citation: Remains of astronaut legend Neil Armstrong buried at sea (2012, September 15) retrieved 29 September 2021 from https://phys.org/news/2012-09-astronaut-legend-neil-armstrong-sea.html 1 / 2 This document is subject to copyright.
    [Show full text]
  • International Space Medicine Summit 2018
    INTERNATIONAL SPACE MEDICINE SUMMIT 2018 October 25–28, 2018 • Rice University’s Baker Institute for Public Policy • Houston, Texas INTERNATIONAL SPACE MEDICINE SUMMIT 2018 October 25–28, 2018 • Rice University’s Baker Institute for Public Policy • Houston, Texas About the Event As we continue human space exploration, much more research is needed to prevent and/or mitigate the medical, psychological and biomedical challenges spacefarers face. The International Space Station provides an excellent laboratory in which to conduct such research. It is essential that the station be used to its fullest potential via cooperative studies and the sharing of equipment and instruments between the international partners. The application of the lessons learned from long-duration human spaceflight and analog research environments will not only lead to advances in technology and greater knowledge to protect future space travelers, but will also enhance life on Earth. The 12th annual International Space Medicine Summit on Oct. 25-28, 2018, brings together the leading physicians, space biomedical scientists, engineers, astronauts, cosmonauts and educators from the world’s spacefaring nations for high-level discussions to identify necessary space medicine research goals as well as ways to further enhance international cooperation and collaborative research. All ISS partners are represented at the summit. The summit is co-sponsored by the Baker Institute Space Policy Program, Texas A&M University College of Engineering and Baylor College of Medicine. Organizers Rice University’s Baker Institute for Public Policy The mission of Rice University’s Baker Institute is to help bridge the gap between the theory and practice of public policy by drawing together experts from academia, government, media, business and nongovernmental organizations.
    [Show full text]
  • Bibliographic Essay and Chapter Notes
    BIBLIOGRAPHIC ESSAY People make history; then, the history becomes documented through primary texts and official records. However, the history of Shuttle-Mir comes first from those who experienced it. This book presents the human side through a detailed chronology and background information. Much of the material was provided by the NASA Johnson Space Center Oral History Project for which dozens of Shuttle-Mir participants (see list below) offered their words, their stories, their memories. Historian Stephen Ambrose wrote in the introduction to his book, Citizen Soldiers, “Long ago my mentors … taught me to let my characters speak for themselves by quoting them liberally. They were there. I wasn't. They saw with their own eyes; they put their lives on the line. I didn't. They speak with an authenticity no one else can match. Their phrases, their word choices, their slang are unique — naturally enough, as their experiences were unique.” 1 Shuttle-Mir was likewise unique. And, its oral histories will continue through the years to illustrate the humanity and illuminate the importance of the Program. Also, this book reflects the changing of the times. The Internet came of age during the Shuttle-Mir Program, and many of the book’s sources reflect the Internet’s capabilities. For historical background, NASA history offices maintain an ever-growing library of electronic texts. NASA’s various Centers maintain Internet Web sites pertinent to their missions, such as the Shuttle launch records at Kennedy Space Center and human spaceflight information at the Johnson Space Center (JSC). During and after the Program, JSC hosted a Shuttle-Mir Web site that included weekly updates and interviews.
    [Show full text]
  • FINAL Programme
    th 68International Astronautical IAC Congress ADELAIDE, AUSTRALIA 25 - 29 SEPTEMBER 2017 FINAL PROGRAMME www.iac2017.org Industry Anchor Sponsor UNLOCKING IMAGINATION, FOSTERING INNOVATION AND STRENGTHENING SECURITY THE SKY IS NOT THE LIMIT. AT LOCKHEED MARTIN, WE’RE ENGINEERING A BETTER TOMORROW. The Orion spacecraft will carry astronauts on bold missions to the moon, Mars and beyond — missions that will excite the imagination and advance the frontiers of science. Because at Lockheed Martin, we’re designing ships to go as far as the spirit of exploration takes us. Learn more at lockheedmartin.com/orion. © 2017 LOCKHEED MARTIN CORPORATION THE SKY IS THE LOWER LIMIT Booth #16 From deep sea to deep space, together we’re exploring the future. At sea, on land and now in space, exciting new partnerships between France and South Australia are constantly being fostered to inspire shared enterprise and opportunity. And as the International Astronautical Congress and the IAF explore ways to shape the future of aeronautics and space research, you can be sure that South Australia will be there. To find out more about opportunities for innovation and investment in South Australia visit welcometosouthaustralia.com INNOVATION THAT’S OUT OF THIS WORLD Vision and perseverance are the launch pads of innovation. Boeing is proud to salute those who combine vision with passion to turn dreams into reality. Contents 1. Welcome Messages ____________________________________________________________________________ 2 1.1 Message from the President of the International Astronautical Federation (IAF) ............................................. 2 1.2 Message from the Local Organising Committee (LOC) ....................................................................................... 3 1.3 Message from the International Programme Committee (IPC) Co-Chairs .........................................................
    [Show full text]
  • Get Ready to Launch! with NASA's Commercial Crew
    Get ready to LAUNCH! with NASA’s Commercial Crew What is What are they Where are they Commercial Crew? launching? going? Boeing SpaceX CST-100 Starliner Crew Dragon National Aeronautics and Space Administration www.nasa.gov SP-2019-04-575-KSC Boeing Crew Flight Test SpaceX Demo 2 Nicole Aunapu Mann A NEW SPACE AGE Bob Behnken NASA Astronaut NASA’s Commercial Crew Program spacecraft and rockets will carry up to four astronauts NASA Astronaut Marine Corps Air Force Colonel and about 220 pounds of cargo to and from the International Space Station. Commercial Lieutenant Colonel crew will resume human spaceflight launches from the United States and provide the nation Flew aboard space shuttle Endeavour twice as a Mission Selected as an Astronaut in 2013, with two unique spacecraft, two human-rated rockets and the necessary ground support this is Nicole’s first spaceflight. Specialist, first on STS-123 and systems. NASA and our commercial partners, Boeing and SpaceX, are working together to then on STS-130. open access to low-Earth orbit. Chris Ferguson Boeing Astronaut BUILDING A NEW AMERICAN CAPABILITY Doug Hurley Navy Captain (retired) NASA’s Commercial Crew Program has been redefining space system development for NASA Astronaut Marine Corps Colonel Piloted space shuttle Atlantis low-Earth orbit by forming strong public-private partnerships with the aerospace industry to for STS-115, and commanded encourage innovation while maintaining NASA’s high safety standards and leveraging NASA’s (retired) shuttle Endeavour on STS-126 Piloted space shuttle Endeavor and Atlantis on STS-135, the 50 plus years of spaceflight experience.
    [Show full text]
  • Chapter 4: Environmental Consequences of Alternatives
    Final Constellation Programmatic Environmental Impact Statement 4. ENVIRONMENTAL CONSEQUENCES OF ALTERNATIVES The potential environmental consequences of both the National Aeronautics and Space Administration’s (NASA) Proposed Action (Preferred Alternative) to continue preparations for and to implement the Constellation Program, and the No Action Alternative, not continue preparations for nor implement the Constellation Program, are summarized in Chapter 2 and are presented in detail in this Chapter. In addition, this Chapter presents in Cumulative Impacts (see Section 4.3) the potential environmental consequences of two overlapping but individual NASA actions: implementing the Constellation Program and close-out of the Space Shuttle Program. 4.1 ENVIRONMENTAL IMPACTS OF THE PROPOSED ACTION (PREFERRED ALTERNATIVE) Under the Proposed Action, NASA would continue preparations for and implement the Constellation Program. This Program would involve activities at many U.S. Government and commercial facilities. Although detailed aspects of the Constellation Program and the full scope of the activities that might occur at each facility are not fully known, the activities described in Section 2.1 present enough information to broadly estimate the nature of the potential environmental impacts that might occur if NASA implements the Proposed Action. Figure 2-2 presents a high-level summary of the major Constellation Program activities that would be expected to occur at each of the primary U.S. Government facilities, as well as commercial facilities with the potential for significant environmental impacts. Given the long-term nature of the Constellation Program, and NASA’s desire to utilize as much of the Space Shuttle Program infrastructure as practicable, it is expected that over time, many of the existing facilities currently used by the Space Shuttle Program and planned to be used for the Constellation Program would require maintenance, upgrading, renovation, and/or replacement.
    [Show full text]
  • Cosmic Cuisine
    April 2017 Vol. 4 No. 4 National Aeronautics and Space Administration KENNEDY SPACE CENTER’S magazine Cosmic Cuisine Student-scientists pick crops to grow on space station Earth Solar Aeronautics Mars Technology Right ISS System & NASA’S Research Now Beyond LAUNCH KENNEDY SPACE CENTER’S SCHEDULE SPACEPORT MAGAZINE Date: April Launch Window: TBD Mission: Orbital ATK Resupply Mission to International Space Station (CRS-7) CONTENTS Description: The Atlas V launch of Orbital ATK’s Cygnus cargo craft from Cape 4 �������������������Cygnus packed with experiments to support exploration Canaveral Air Force Station in Florida. http://go.nasa.gov/2jetyfU �������������������Student-scientists select menu for astronauts 6 Date: April 10 Mission: Expedition 50 Undocking and 8 �������������������Simulation to impact future space food production Landing Description: NASA astronaut Shane 14 ����������������Fertilizer technology plants pioneer in hall of fame Kimbrough and cosmonauts Sergey Ryzhikov and Andrey Borisenko of the Russian space 17 ����������������Future figures take shape at STEM Day for girls agency Roscosmos undock their Soyuz MS-02 spacecraft from the International Space Station’s Poisk module and land in ����������������First umbilical installed on mobile launcher 19 Kazakhstan. http://go.nasa.gov/2gMg3PR 20 ����������������First integrated flight hardware arrives for NASA's SLS Date: April 20 22 ����������������Kennedy partners to help develop self-driving cars Mission: Expedition 51 Launch Description: Expedition 51/52 crew 27 ����������������ECLSS put to the test for Commercial Crew missions members NASA astronaut Jack Fischer and cosmonaut Fyodor Yurchikhin of the Russian space agency Roscosmos launch to the 30 ����������������Project seventh season of academic-aided innovation International Space Station. Yurchikhin will be the Expedition 52 commander.
    [Show full text]
  • Human Spaceflight in Social Media: Promoting Space Exploration Through Twitter
    Human Spaceflight in Social Media: Promoting Space Exploration Through Twitter Pierre J. Bertrand,1 Savannah L. Niles,2 and Dava J. Newman1,3 turn back now would be to deny our history, our capabilities,’’ said James Michener.1 The aerospace industry has successfully 1 Man-Vehicle Laboratory, Department of Aeronautics and Astro- commercialized Earth applications for space technologies, but nautics; 2Media Lab, Department of Media Arts and Sciences; and 3 human space exploration seems to lack support from both fi- Department of Engineering Systems, Massachusetts Institute of nancial and human public interest perspectives. Space agencies Technology, Cambridge, Massachusetts. no longer enjoy the political support and public enthusiasm that historically drove the human spaceflight programs. If one uses ABSTRACT constant year dollars, the $16B National Aeronautics and While space-based technologies for Earth applications are flourish- Space Administration (NASA) budget dedicated for human ing, space exploration activities suffer from a lack of public aware- spaceflight in the Apollo era has fallen to $7.9B in 2014, of ness as well as decreasing budgets. However, space exploration which 41% is dedicated to operations covering the Internati- benefits are numerous and include significant science, technological onal Space Station (ISS), the Space Launch System (SLS) and development, socioeconomic benefits, education, and leadership Orion, and commercial crew programs.2 The European Space contributions. Recent robotic exploration missions have
    [Show full text]