Chapter 4: Environmental Consequences of Alternatives

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 4: Environmental Consequences of Alternatives Final Constellation Programmatic Environmental Impact Statement 4. ENVIRONMENTAL CONSEQUENCES OF ALTERNATIVES The potential environmental consequences of both the National Aeronautics and Space Administration’s (NASA) Proposed Action (Preferred Alternative) to continue preparations for and to implement the Constellation Program, and the No Action Alternative, not continue preparations for nor implement the Constellation Program, are summarized in Chapter 2 and are presented in detail in this Chapter. In addition, this Chapter presents in Cumulative Impacts (see Section 4.3) the potential environmental consequences of two overlapping but individual NASA actions: implementing the Constellation Program and close-out of the Space Shuttle Program. 4.1 ENVIRONMENTAL IMPACTS OF THE PROPOSED ACTION (PREFERRED ALTERNATIVE) Under the Proposed Action, NASA would continue preparations for and implement the Constellation Program. This Program would involve activities at many U.S. Government and commercial facilities. Although detailed aspects of the Constellation Program and the full scope of the activities that might occur at each facility are not fully known, the activities described in Section 2.1 present enough information to broadly estimate the nature of the potential environmental impacts that might occur if NASA implements the Proposed Action. Figure 2-2 presents a high-level summary of the major Constellation Program activities that would be expected to occur at each of the primary U.S. Government facilities, as well as commercial facilities with the potential for significant environmental impacts. Given the long-term nature of the Constellation Program, and NASA’s desire to utilize as much of the Space Shuttle Program infrastructure as practicable, it is expected that over time, many of the existing facilities currently used by the Space Shuttle Program and planned to be used for the Constellation Program would require maintenance, upgrading, renovation, and/or replacement. For evaluation purposes, this Final Programmatic Environmental Impact Statement (PEIS) discusses the potential environmental impacts of the proposed Constellation Program activities at each NASA Center, and other U.S. Government or commercial facilities, and at more broadly defined locations (e.g., the Atlantic, Indian, and Pacific Oceans) for which impact locations are undefined at this time. For each site, the potential environmental impacts are presented in a number of broad areas. For each area, only potential impacts deemed more than minimal in nature are described. It is anticipated that the nature and locations of many activities associated with the Constellation Program would be similar to the ongoing activities conducted in support of the Space Shuttle Program. Thus, the known environmental impacts of the Space Shuttle Program have been used as the baseline for predicting potential impacts of implementing the Constellation Program. The impacts of the Space Shuttle Program have been well-characterized in NEPA documents prepared for the Space Shuttle Program, including site- or program-specific NEPA documents, in analyses documented by the Space Shuttle Program, and in Environmental Resources Documents for various NASA Centers. 4-1 Final Constellation Programmatic Environmental Impact Statement 4.1.1 Potential Environmental Impacts at U.S. Government Facilities 4.1.1.1 John F. Kennedy Space Center Table 4-1 summarizes the major activities currently anticipated at the John F. Kennedy Space Center (KSC) in support of the individual projects within the Constellation Program. At KSC, most of the reasonably foreseeable activities would be similar to ongoing activities conducted in support of the Space Shuttle Program. As such, the environmental impacts of implementing the Constellation Program at this site would be expected to be similar to the environmental impacts of the ongoing Space Shuttle Program, which have been documented in various environmental documents, including the KSC Environmental Resources Document (KSC 2003). Table 4-1. Description of Constellation Program Activities at KSC Constellation Project Responsibilities Program Project Project Orion Manage: • Ground processing, launch operations, and recovery support during design, development, test, and evaluation phases of Orion development • Final integration of Orion spacecraft • Ground support equipment development and support Project Ares Ground processing, launch operations, and recovery support for Ares I and Ares V Ground Operations Manage: Project • Design, development, testing and evaluation, and logistics activities for all ground processing, launch, and recovery systems • Ground processing, launch, and landing recovery operations planning and execution Several of the facilities at KSC identified for potential use in the Constellation Program may require modification. In some cases, new facilities may be needed. Many of the modifications would be relatively simple such as internal upgrades to electrical wiring and moving interior walls. However, some of the modifications would be more extensive. Table 2-10 summarizes new facility construction and modifications being considered to support the Constellation Program where the modifications might impact historic facilities or have the potential for environmental impacts sufficient to require additional analysis under an environmental assessment (EA) or an EIS. See Section 4.1.1.1.8 for discussion of historic/cultural impacts associated with the construction activities. In order to meet the proposed timeline of the Constellation Program, some actions needed to be accomplished before the NEPA process for this PEIS is completed. Included are the near-term modifications to the Launch Complex (LC)-39 Pad B launch tower, installation of a lightning protection system, and the construction of a new mobile launcher to accommodate the initial test launches of the Ares I. Therefore, NASA prepared and published the Final Environmental Assessment for the Construction, Modification, and Operation of Three Facilities in Support of the Constellation Program, John F. Kennedy Space Center, Florida (KSC 2007f) to address these modifications and the associated environmental impacts of construction and operation. NASA signed a Finding of No Significant Impact (FONSI) on May 2, 2007 allowing for the 4-2 Final Constellation Programmatic Environmental Impact Statement proposed action to proceed. The potential environmental impacts of construction and operation addressed in that EA are summarized as appropriate in the following subsections. Similar modifications to those underway for LC-39 Pad B (KSC 2007f) would be needed at LC-39 Pad A to accommodate Ares V launches. Therefore, the potential environmental impacts of modifying and operating LC-39 Pad A would be similar to those for LC-39 Pad B. In addition, the mitigation measures adopted for LC-39 Pad B would be adopted for LC-39 Pad A. It is NASA’s intention that both Ares launch vehicles would be able to be launched from these two launch pads. As the planning for the Constellation Program proceeds and matures, construction of new facilities or modifications to existing facilities that are currently unanticipated may be deemed necessary. These activities would be subject to separate NEPA review and documentation, as appropriate. The following sub-sections discuss the potential environmental impacts of Constellation Program activities at KSC. 4.1.1.1.1 Land Resources Activities described under the Proposed Action would not impact or conflict with land use plans at KSC. There are several tracts of largely undisturbed natural areas within KSC, including the Merritt Island National Wildlife Refuge (MINWR) and the Cape Canaveral National Seashore. There are also various wildlife management areas and wetlands located within both KSC and Merritt Island. None of these areas would experience impacts exceeding those currently experienced under the Space Shuttle Program. KSC is within the Coastal Zone as defined by Florida Statute (15 CFR 930.30-44). As such, a Coastal Zone Consistency Determination for the Proposed Action is required. NASA has performed such a Determination and has determined that the Proposed Action can be implemented within existing environmental regulations and is consistent with the Florida Coastal Zone Management Plan. 4.1.1.1.2 Air Resources This discussion has been divided into sections that address normal launches and launch accidents. See Section 4.1.1.1.12 for a discussion of air quality impacts associated with launch accidents. The principal sources of air emissions at KSC during the Constellation Program would be vehicular traffic from workers and visitors, especially on launch days, and the exhaust clouds from test launches and mission launches. Any long-term incremental changes in vehicular emissions due to the Proposed Action would be proportional to the size of the workforce and are not known at this time. The number of launches per year would be comparable to the historic Space Shuttle launch schedule. In addition, vehicular emissions created by visitors on launch days would be similar to those created during Space Shuttle launches. Increases in fugitive dust during construction are not expected to be a major source of air emissions and have been previously addressed (KSC 2007f). 4-3 Final Constellation Programmatic Environmental Impact Statement Launches involving solid rocket boosters (SRBs) produce several pollutants of concern from igniting the solid propellants: hydrogen chloride
Recommended publications
  • HLS 17RS-1433 ORIGINAL 2017 Regular Session HOUSE CONCURRENT RESOLUTION NO. 41 by REPRESENTATIVE GARY CARTER SPECIAL DAY/WEEK/MO
    HLS 17RS-1433 ORIGINAL 2017 Regular Session HOUSE CONCURRENT RESOLUTION NO. 41 BY REPRESENTATIVE GARY CARTER SPECIAL DAY/WEEK/MONTH: Commends several Tulane University students upon winning NASA's BIG Idea Challenge competition 1 A CONCURRENT RESOLUTION 2 To commend Tulane University students John Robertson, Otto Lyon, Benjamin Lewson, 3 Matthew Gorban, Ethan Gasta, Maxwell Woody, and Afsheen Sajjadi upon their 4 selection as winners of NASA's 2017 BIG Idea Challenge competition. 5 WHEREAS, the National Aeronautics and Space Administration (NASA) is widely 6 regarded as the finest space exploration organization in the world and has an exceptional 7 reputation; and 8 WHEREAS, NASA hosts the BIG Idea Challenge, which is intended to produce 9 designs of crucial importance to manned spaceflight; and 10 WHEREAS, twenty-nine teams from top national universities submitted designs to 11 the BIG Idea Challenge competition; and 12 WHEREAS, the group of students representing Tulane designed a revolutionary solar 13 electric propulsion cargo transport spacecraft, called "The Sunflower", and submitted their 14 design to the BIG Idea Challenge competition in November of 2016; and 15 WHEREAS, in December of 2016, the students were selected to be among five 16 finalist teams and were invited to present their design before a panel of distinguished judges 17 at NASA's Langley research facility in Hampton, Virginia; and 18 WHEREAS, the judges selected the Tulane team and their design as the winner of 19 the BIG Idea Challenge competition; and Page 1 of
    [Show full text]
  • Mobile Launcher Moves to Vehicle Assembly Building EGS MONTHLY HIGHLIGHTS
    National Aeronautics and Space Administration EXPLORATION GROUND SYSTEMS HIGHLIGHTS SEPTEMBER 2018 Mobile Launcher Moves to Vehicle Assembly Building EGS MONTHLY HIGHLIGHTS 3 Mobile launcher on the move 4 In the driver’s seat 5 Prepping for Underway Recovery Test 7 6 Employees, guests view ML move MOBILE LAUNCHER ON THE MOVE NASA’s mobile launcher is inside High Bay 3 at the Vehicle Assembly Building (VAB) on Sept. 11, 2018, at NASA’s Kennedy Space Center in Florida. Photo credit: NASA/Frank Michaux NASA’s mobile launcher, atop crawler-transporter 2, traveled from Launch Pad 39B to the Vehicle Assembly Building at the agency’s Kennedy Space Center in Florida, on Sept. 7, 2018. Arriving late in the afternoon, the mobile launcher stopped at the entrance to the VAB. Early the next day, Sept. 8, engineers and technicians rotated and extended the crew access arm near the top of the mobile launcher tower. Then the mobile launcher was moved inside High Bay 3, where it will spend about seven months undergoing verification and validation testing with the 10 levels of new work platforms, ensuring that it can provide support to the agency’s Space Launch System (SLS). The 380-foot-tall structure is equipped with the crew access Cliff Lanham, NASA project manager for the mobile launcher, takes a break arm and several umbilicals that will provide power, environmental to attend the employee event for the mobile launcher move to the Vehicle control, pneumatics, communication and electrical connections Assembly Building on Sept. 7, 2018, at NASA’s Kennedy Space Center in Florida.
    [Show full text]
  • Assessment of Data Used to Manage Real Property Assets (IG-11-024
    AUGUST 4, 2011 AUDIT REPORT OFFICE OF AUDITS NASA INFRASTRUCTURE AND FACILITIES: ASSESSMENT OF DATA USED TO MANAGE REAL PROPERTY ASSETS OFFICE OF INSPECTOR GENERAL National Aeronautics and Space Administration REPORT NO. IG-11-024 (ASSIGNMENT NO. A-11-001-00) Final report released by: Paul K. Martin Inspector General Acronyms FERP Facilities Engineering and Real Property Division GAO Government Accountability Office GSA General Services Administration NPR NASA Procedural Requirements NTC NASA Technical Capabilities OIG Office of Inspector General O&M Operations and Maintenance RPMS Real Property Management System SPF Space Power Facility REPORT NO. IG-11-024 AUGUST 4, 2011 OVERVIEW NASA INFRASTRUCTURE AND FACILITIES: ASSESSMENT OF DATA USED TO MANAGE REAL PROPERTY ASSETS The Issue NASA’s real property holdings include approximately 5,000 buildings and structures such as wind tunnels, laboratories, launch pads, and test stands. In total, the assets occupy 44 million square feet and represent more than $26.4 billion in current replacement value.1 However, 80 percent of NASA’s facilities are 40 or more years old and many are in degraded condition. Moreover, NASA is dealing with the challenge of its aging infrastructure at a time of large and growing budget deficits that are straining the resources of all Federal agencies. As discretionary funding continues to decline, NASA will be required to make more prudent decisions regarding its infrastructure. In addition, the issue of the Agency’s aging infrastructure has been identified by NASA, the
    [Show full text]
  • Merritt Island National Wildlife Refuge
    Merritt Island National Wildlife Refuge Comprehensive Conservation Plan U.S. Department of the Interior Fish and Wildlife Service Southeast Region August 2008 COMPREHENSIVE CONSERVATION PLAN MERRITT ISLAND NATIONAL WILDLIFE REFUGE Brevard and Volusia Counties, Florida U.S. Department of the Interior Fish and Wildlife Service Southeast Region Atlanta, Georgia August 2008 TABLE OF CONTENTS COMPREHENSIVE CONSERVATION PLAN EXECUTIVE SUMMARY ....................................................................................................................... 1 I. BACKGROUND ................................................................................................................................. 3 Introduction ................................................................................................................................... 3 Purpose and Need for the Plan .................................................................................................... 3 U.S. Fish And Wildlife Service ...................................................................................................... 4 National Wildlife Refuge System .................................................................................................. 4 Legal Policy Context ..................................................................................................................... 5 National Conservation Plans and Initiatives .................................................................................6 Relationship to State Partners .....................................................................................................
    [Show full text]
  • NASA's Strategic Direction and the Need for a National Consensus
    NASA's Strategic Direction and the Need for a National Consensus NASAs Strategic Direction and the Need for a National Consensus Committee on NASAs Strategic Direction Division on Engineering and Physical Sciences THE NATIONAL ACADEMIES PRESS Washington, D.C. www.nap.edu PREPUBLICATION COPYSUBJECT TO FURTHER EDITORIAL CORRECTION Copyright © National Academy of Sciences. All rights reserved. NASA's Strategic Direction and the Need for a National Consensus THE NATIONAL ACADEMIES PRESS 500 Fifth Street, NW Washington, DC 20001 NOTICE: The project that is the subject of this report was approved by the Governing Board of the National Research Council, whose members are drawn from the councils of the National Academy of Sciences, the National Academy of Engineering, and the Institute of Medicine. The members of the committee responsible for the report were chosen for their special competences and with regard for appropriate balance. This study is based on work supported by Contract NNH10CC48B between the National Academy of Sciences and the National Aeronautics and Space Administration. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of the agency that provided support for the project. International Standard Book Number-13: 978-0-309-XXXXX-X International Standard Book Number-10: 0-309-XXXXX-X Copies of this report are available free of charge from: Division on Engineering and Physical Sciences National Research Council 500 Fifth Street, NW Washington, DC 20001 Additional copies of this report are available from the National Academies Press, 500 Fifth Street, NW, Keck 360, Washington, DC 20001; (800) 624-6242 or (202) 334-3313; http://www.nap.edu.
    [Show full text]
  • Human Exploration and Operations: AA Perspective
    Human Exploration and Operations: AA Perspective Bill Gerstenmaier | April 22, 2013 Exploration is Human and Robotic 2 Mazlan Othman Director of the United Nations Office for Outer Space Affairs Former Director General of Angkasa, the Malaysian National Space Agency 3 68 Countries Have Participated in ISS Utilization Germany Israel Macedonia Ghana Italy Malaysia Argentina Peru Greece Japan Mali Australia Poland Guatemala Kazakhstan Mexico Austria Portugal Belarus Republic of Korea Belgium Republic of South Africa Bermuda Romania Bolivia Russia Brazil Senegal Bulgaria Slovenia Canada Spain Chile Sweden China Switzerland Columbia Taiwan Croatia Thailand Czech Republic Trinidad and Tobago Denmark Turkey Dominican Republic Ukraine Ecuador United Kingdom Egypt Uruguay Fiji United States Finland Venezuela Hungary Luxembourg The Netherlands Vietnam France India Kenya New Zealand Indonesia Kuwait Nigeria Ireland Lebanon Norway 4 Cube Satellites After Deployment from ISS The JEM Small Satellite Orbital Deployer being released from the airlock and extended into space in preparation to jettison satellites. 5 15 Countries Contributed to the First Results from Alpha Magnetic Spectrometer “The exact shape of the spectrum…extended to higher energies, will ulmately determine whether this spectrum originates from the collision of dark maer parcles or from pulsars in the galaxy. The high level of accuracy of this data shows that AMS will soon resolve this issue.” Credit: CERN Press Office release on paper in Physical Review Leers 6 CASIS Center for the Advancement of Science in Space CASIS Portfolio • Life Sciences • Earth observation / Remote sensing • Materials Science NASA released a Cooperative Agreement Notice (CAN) on February 14, 2011 for a • Technology Development (new) non-profit entity “to develop the capability to implement research and development projects utilizing the ISS National Board of Directors Laboratory.” The objectives stated in the CAN • The current CASIS Board was appointed in November, included: 2012.
    [Show full text]
  • Do NASA's Wind Tunnel and Propulsion Test Facilities Serve
    NEWS RELEASE RESEARCH BRIEF CONFERENCE PROCEEDINGS Do NASA’s Wind Tunnel and Propulsion Test Facilities Serve National Needs? RAND RESEARCH AREAS he nation has invested billions of dollars in CHILD POLICY CIVIL JUSTICE wind tunnel and propulsion test facilities— Abstract EDUCATION investments that have created a testing NASA’s wind tunnel and propulsion test facil- ENERGY AND ENVIRONMENT infrastructure that has helped secure the PROJECT HEALTH AND HEALTH CARE ities continue to be important to U.S. com- Tcountry’s national security and prosperity through INTERNATIONAL AFFAIRS petitiveness across the military, commercial, MEMORANDUM NATIONAL SECURITY advances in commercial and military aeronautics and space sectors. But management issues POPULATION AND AGING and space systems. are creating real risks. This research shows PUBLIC SAFETY Many of these facilities exist within the National SCIENCE AND TECHNOLOGY that NASA needs to develop an aeronautics SUBSTANCE ABUSE Aeronautics and Space Administration (NASA). test technology vision and plan, analyze the TERRORISM AND Over the past two decades, NASA has reduced the HOMELAND SECURITY viability of a national test facility plan, iden- TRANSPORTATION AND number of these facilities by one-third, has identi- tify and maintain its minimum set of facilities, INFRASTRUCTURE fied additional facilities to be closed, and is experi- and identify shared financial support to keep encing patterns of declining use in some facilities its underutilized but essential facilities from that suggest they too may face closure. entering financial collapse. Given these trends, the RAND Corporation was asked to clarify the nation’s aeronautic testing needs and the continuing place that NASA’s facilities have in serving these needs.
    [Show full text]
  • DEC. 71999 National Park Service
    NFS Form 10-900 RECEIVED 2280 0MB No. 10024-0018 (Oct. 1990) United States Department of the Interior DEC. 71999 National Park Service NAT REGISTER OF HISTORIC PLACES National Register of Historic Places ' NATIONAL PARK SERVICE Registration Form This form is for use in nominating or requesting for individual properties and districts. See instructions in How to Complete the National Register of Historic Places Registration Form (National Register Bulletin 16A). Complete each item by Marking "x" in the appropriate box or by entering the information requested. If an item does not apply to the property being documented, enter "N/A" for "not applicable." For functions, architectural classification, materials, and areas of significance, enter only categories and subcategories from the instructions. Place additional entries and narrative items on continuation sheets (NPA Form 10-900a). Use a typewriter, word processor, or computer, to complete all items.______________________________________ 1. Name of Property________________________________ historic name Crawlerway_____________________________________________ other names/site number 8BR1689_______________________________ 2. Location street & number NASAr John F. Kennedy Space Center _not for publication city or town Kennedy Space Center______________ _______ _vicinity state Florida code FL county Brevard code_QM zip code 32899 3. State/Federal Agency Certification As the designated authority under the National Historic Preservation Act, as amended, I hereby certify that this X nomination ___ request for determination of eligibility meets the documentation standards for registering properties in the National Register of Historic Places and meets the procedural and professional requirements set forth in 36 CFR Part 60. In my opinion, the property X meets ___ does not meet the National Register criteria.
    [Show full text]
  • Mission Task Checklist
    MISSION TASK CHECKLIST Entryway Discovery (page 2) Astronaut Encounter (page 3) Astronaut Autograph (page 3) Where in the World? (page 4) Mission Patch (page 5) Wild Neighbors (page 6) NASA Speak (page 7) Journey To Mars: Explorers Wanted (page 7) The Orion spacecraft is the Science On A Sphere (page 8) crew vehicle NASA is Move the Galaxy (page 8) currently developing for future deep-space missions. Mapping Survey (page 9) Crew Conference (page 10) Shuttle Launch Experience (page 15) EXPEDITION Bus Tour (page16) Touch the Moon (page16) LOGBOOK Energy for the Future (page 11-12) From Sketchpad to Launchpad (page 13) Team Name: ______________________________ ISS Live! (page 14) Rocket Garden Rap (page 17) Commander (teacher): ______________________ Rocket Search (page 18) Pilot (chaperone): __________________________ Mission Specialist 1 (MS1): ________________________ For more cool information and activities, visit www.nasa.gov and click on the “For Students” tab! Mission Specialist 2 (MS2): ________________________ Mission Specialist 3 (MS3): ________________________ Mission Specialist 4 (MS4): ________________________ MISSION TASK: Rocket Search LOCATION: Rocket Garden Expedition 321 YOU ARE GO FOR LAUNCH The rockets on display here are real, space worthy rockets left over from the early days of space exploration. Unlike the space shuttle, they are all “expendable” rockets, which means they were designed to be used only once. Some of these were Welcome the Kennedy Space Center Visitor Complex, the only place surplus, while others were designed for missions that were later canceled. on Earth where human beings have left the planet, traveled to Find the following items in the Rocket Garden and in the Word Search puzzle.
    [Show full text]
  • STS-135: the Final Mission Dedicated to the Courageous Men and Women Who Have Devoted Their Lives to the Space Shuttle Program and the Pursuit of Space Exploration
    National Aeronautics and Space Administration STS-135: The Final Mission Dedicated to the courageous men and women who have devoted their lives to the Space Shuttle Program and the pursuit of space exploration PRESS KIT/JULY 2011 www.nasa.gov 2 011 2009 2008 2007 2003 2002 2001 1999 1998 1996 1994 1992 1991 1990 1989 STS-1: The First Mission 1985 1981 CONTENTS Section Page SPACE SHUTTLE HISTORY ...................................................................................................... 1 INTRODUCTION ................................................................................................................................... 1 SPACE SHUTTLE CONCEPT AND DEVELOPMENT ................................................................................... 2 THE SPACE SHUTTLE ERA BEGINS ....................................................................................................... 7 NASA REBOUNDS INTO SPACE ............................................................................................................ 14 FROM MIR TO THE INTERNATIONAL SPACE STATION .......................................................................... 20 STATION ASSEMBLY COMPLETED AFTER COLUMBIA ........................................................................... 25 MISSION CONTROL ROSES EXPRESS THANKS, SUPPORT .................................................................... 30 SPACE SHUTTLE PROGRAM’S KEY STATISTICS (THRU STS-134) ........................................................ 32 THE ORBITER FLEET ............................................................................................................................
    [Show full text]
  • The NASA Real Property Classification System (RPCS) Is A
    NASA Real Property Classification Table DRAFT As of October 4, 2010 (Replaces the General Ledger codes with the new SAP Financial Asset Class) 1 National Aeronautics and Space Administration The NASA Facility Classification Coding System The primary intent behind the NASA Facility Classification Coding System is to classify facilities according to the function they serve, as opposed to the process they support. Therefore, the first question that should be asked when determining the appropriate classification of a new facility is “what is the function of this facility?” The NASA Real Property Classification Coding System is a hierarchical scheme of real property types and functions that serves as the framework for identifying, categorizing, and analyzing the agency’s inventory of land and facilities around the world. In many respects, the NASA Facility Classification Coding System is similar to the facility classification coding system used by the Department of Defense. This is understandable in light of the fact that many NASA facilities were formerly Department of Defense facilities, as well as the fact that many of NASA facilities have the same functional purpose as similar Department of Defense facilities. Nevertheless, many other NASA facilities are quite unique and do not have a counterpart in the Department of Defense. This is especially true with respect to NASA’s launch facilities, its antennas and some of its wind tunnels. The facility classification coding system is comprised of a 5-tier structure represented by numerical codes, with 1-digit codes being the most general and 5-digit codes representing the most specific types of facilities.
    [Show full text]
  • NASA Partners with Ameresco to Install Solar Array at Goddard
    FOR IMMEDIATE RELEASE Media Contact: Ameresco: Leila Dillon, 508.661.2264, [email protected] NASA Partners with Ameresco to Install Solar Array at Goddard Space Flight Center’s Wallops Flight Facility Two-phase solar project with 1st phase total system capacity of 4.3 MW-dc FRAMINGHAM, MASS.– June 6, 2019 – Ameresco, Inc., (NYSE: AMRC), a leading energy efficiency and renewable energy company, today announced that it has broken ground on a solar array project at NASA’s Goddard Space Flight Center’s Wallops Flight Facility (NASA WFF) in Wallops Island, Virginia. The savings-funded solar renewable energy project will help NASA WFF to meet its ambitious energy-savings and sustainability goals. Designed to be completed in two phases, the project will meet at least 80% of the site’s electrical consumption once complete. Given its size and scope, the solar installation is expected to reduce the facility’s carbon output by more than 4,310 metric tons per year. This is the equivalent of canceling the CO2 emissions from 2,756 homes’ electricity usage over a one-year period. The project will include ground-mounted solar panels installed near NASA WFF’s airfield as well as carport-canopy panels. The project includes $14 million in renewable energy and infrastructure improvements. It will provide more than $537,000 in first-year energy cost savings; in future years, solar output combined with energy conservation measures are expected to allow for $3.1 million in energy cost savings. Because the partnership between NASA WFF and Ameresco is an energy savings performance contract (ESPC), NASA WFF will accrue no upfront costs.
    [Show full text]