Supplemental Table 2: List of Mass-Spectrometry Results

Total Page:16

File Type:pdf, Size:1020Kb

Supplemental Table 2: List of Mass-Spectrometry Results Supplemental Table 2: List of mass-spectrometry results Accession Description # # # # # # Peptides PSM Peptides PSM Peptides PSM (EV) (EV) (T1) (T1) (T10) (T10) O75717 WD repeat and HMG-box DNA-binding 43 155 59 224 36 61 protein 1 OS=Homo sapiens GN=WDHD1 PE=1 SV=1 - [WDHD1_HUMAN] O75717-2 Isoform 2 of WD repeat and HMG-box 37 117 51 192 30 47 DNA-binding protein 1 OS=Homo sapiens GN=WDHD1 - [WDHD1_HUMAN] P11142 Heat shock cognate 71 kDa protein 14 24 31 104 26 100 OS=Homo sapiens GN=HSPA8 PE=1 SV=1 - [HSP7C_HUMAN] P0DMV8 Heat shock 70 kDa protein 1A OS=Homo 14 23 26 93 23 101 sapiens GN=HSPA1A PE=1 SV=1 - [HS71A_HUMAN] A0A0G2JIW1 Heat shock 70 kDa protein 1B OS=Homo 14 23 26 93 23 101 sapiens GN=HSPA1B PE=1 SV=1 - [A0A0G2JIW1_HUMAN] E9PKE3 Heat shock cognate 71 kDa protein 13 22 29 91 24 88 OS=Homo sapiens GN=HSPA8 PE=1 SV=1 - [E9PKE3_HUMAN] P0DMV8-2 Isoform 2 of Heat shock 70 kDa protein 13 19 25 86 22 95 1A OS=Homo sapiens GN=HSPA1A - [HS71A_HUMAN] Chaf1a (bait) 24 82 27 141 P26641 Elongation factor 1-gamma OS=Homo 11 50 21 81 11 22 sapiens GN=EEF1G PE=1 SV=3 - [EF1G_HUMAN] P26641-2 Isoform 2 of Elongation factor 1-gamma 11 50 21 81 11 22 OS=Homo sapiens GN=EEF1G - [EF1G_HUMAN] P11142-2 Isoform 2 of Heat shock cognate 71 kDa 11 20 26 79 21 74 protein OS=Homo sapiens GN=HSPA8 - [HSP7C_HUMAN] P09874 Poly [ADP-ribose] polymerase 1 9 10 39 70 13 15 OS=Homo sapiens GN=PARP1 PE=1 SV=4 - [PARP1_HUMAN] Q15233 Non-POU domain-containing octamer- 5 7 23 69 13 28 binding protein OS=Homo sapiens GN=NONO PE=1 SV=4 - [NONO_HUMAN] E9PNE6 Heat shock cognate 71 kDa protein 7 13 20 65 16 64 OS=Homo sapiens GN=HSPA8 PE=1 SV=1 - [E9PNE6_HUMAN] Q13112 Chromatin assembly factor 1 subunit B 23 65 21 72 OS=Homo sapiens GN=CHAF1B PE=1 SV=1 - [CAF1B_HUMAN] Q15233-2 Isoform 2 of Non-POU domain- 5 7 22 63 12 27 containing octamer-binding protein OS=Homo sapiens GN=NONO - [NONO_HUMAN] P04264 Keratin, type II cytoskeletal 1 OS=Homo 15 22 27 60 27 64 sapiens GN=KRT1 PE=1 SV=6 - [K2C1_HUMAN] Q09028 Histone-binding protein RBBP4 15 60 16 86 OS=Homo sapiens GN=RBBP4 PE=1 SV=3 - [RBBP4_HUMAN] Q09028-3 Isoform 3 of Histone-binding protein 15 60 16 86 RBBP4 OS=Homo sapiens GN=RBBP4 - [RBBP4_HUMAN] >sp|K2C1_HUMAN| 14 21 26 59 26 62 Q09028-2 Isoform 2 of Histone-binding protein 14 59 15 85 RBBP4 OS=Homo sapiens GN=RBBP4 - [RBBP4_HUMAN] E9PLF4 Heat shock cognate 71 kDa protein 9 18 15 58 15 62 (Fragment) OS=Homo sapiens GN=HSPA8 PE=1 SV=1 - [E9PLF4_HUMAN] P29692-2 Isoform 2 of Elongation factor 1-delta 8 51 17 56 8 15 OS=Homo sapiens GN=EEF1D - [EF1D_HUMAN] E9PK54 Heat shock cognate 71 kDa protein 8 16 14 56 14 60 (Fragment) OS=Homo sapiens GN=HSPA8 PE=1 SV=7 - [E9PK54_HUMAN] E9PQQ4 Heat shock cognate 71 kDa protein 8 16 14 56 14 60 (Fragment) OS=Homo sapiens GN=HSPA8 PE=1 SV=1 - [E9PQQ4_HUMAN] E9PRY8 Elongation factor 1-delta OS=Homo 8 51 17 56 8 15 sapiens GN=EEF1D PE=1 SV=1 - [E9PRY8_HUMAN] E9PQK7 Heat shock cognate 71 kDa protein 8 16 14 56 14 60 (Fragment) OS=Homo sapiens GN=HSPA8 PE=1 SV=1 - [E9PQK7_HUMAN] A0A087X1X7 Elongation factor 1-delta OS=Homo 8 51 17 56 8 15 sapiens GN=EEF1D PE=1 SV=1 - [A0A087X1X7_HUMAN] Q09028-4 Isoform 4 of Histone-binding protein 11 56 13 80 RBBP4 OS=Homo sapiens GN=RBBP4 - [RBBP4_HUMAN] P38646 Stress-70 protein, mitochondrial 11 16 22 52 21 37 OS=Homo sapiens GN=HSPA9 PE=1 SV=2 - [GRP75_HUMAN] E9PN89 Heat shock cognate 71 kDa protein 7 11 20 52 15 43 (Fragment) OS=Homo sapiens GN=HSPA8 PE=1 SV=1 - [E9PN89_HUMAN] P11021 78 kDa glucose-regulated protein 11 18 27 51 18 35 OS=Homo sapiens GN=HSPA5 PE=1 SV=2 - [GRP78_HUMAN] P29692 Elongation factor 1-delta OS=Homo 7 50 12 50 8 15 sapiens GN=EEF1D PE=1 SV=5 - [EF1D_HUMAN] E9PK01 Elongation factor 1-delta (Fragment) 7 50 12 50 8 15 OS=Homo sapiens GN=EEF1D PE=1 SV=1 - [E9PK01_HUMAN] O75152 Zinc finger CCCH domain-containing 30 44 34 49 20 26 protein 11A OS=Homo sapiens GN=ZC3H11A PE=1 SV=3 - [ZC11A_HUMAN] P13645 Keratin, type I cytoskeletal 10 OS=Homo 14 18 25 48 22 35 sapiens GN=KRT10 PE=1 SV=6 - [K1C10_HUMAN] E9PI65 Heat shock cognate 71 kDa protein 7 14 11 48 11 49 (Fragment) OS=Homo sapiens GN=HSPA8 PE=1 SV=1 - [E9PI65_HUMAN] >sp|K1C10_HUMAN| 14 18 24 47 21 34 P68104 Elongation factor 1-alpha 1 OS=Homo 6 11 15 47 6 11 sapiens GN=EEF1A1 PE=1 SV=1 - [EF1A1_HUMAN] Q5VTE0 Putative elongation factor 1-alpha-like 3 6 11 15 47 6 11 OS=Homo sapiens GN=EEF1A1P5 PE=5 SV=1 - [EF1A3_HUMAN] P22626 Heterogeneous nuclear 9 28 17 47 9 20 ribonucleoproteins A2/B1 OS=Homo sapiens GN=HNRNPA2B1 PE=1 SV=2 - [ROA2_HUMAN] E9PI39 Elongation factor 1-delta (Fragment) 6 49 11 47 7 14 OS=Homo sapiens GN=EEF1D PE=1 SV=1 - [E9PI39_HUMAN] E9PQ49 Elongation factor 1-delta (Fragment) 6 49 11 47 7 14 OS=Homo sapiens GN=EEF1D PE=1 SV=7 - [E9PQ49_HUMAN] Q16576 Histone-binding protein RBBP7 16 47 15 61 OS=Homo sapiens GN=RBBP7 PE=1 SV=1 - [RBBP7_HUMAN] >sp|K1C9_HUMAN| 12 19 19 45 16 41 P35527 Keratin, type I cytoskeletal 9 OS=Homo 12 19 19 45 16 41 sapiens GN=KRT9 PE=1 SV=3 - [K1C9_HUMAN] P22626-2 Isoform A2 of Heterogeneous nuclear 9 28 16 45 9 20 ribonucleoproteins A2/B1 OS=Homo sapiens GN=HNRNPA2B1 - [ROA2_HUMAN] E9PQ61 Zinc finger CCCH domain-containing 26 37 30 44 18 24 protein 11A OS=Homo sapiens GN=ZC3H11A PE=1 SV=1 - [E9PQ61_HUMAN] P12004 Proliferating cell nuclear antigen 17 44 11 16 OS=Homo sapiens GN=PCNA PE=1 SV=1 - [PCNA_HUMAN] E9PC52 Histone-binding protein RBBP7 15 44 15 61 OS=Homo sapiens GN=RBBP7 PE=1 SV=1 - [E9PC52_HUMAN] P34931 Heat shock 70 kDa protein 1-like 8 16 12 43 11 50 OS=Homo sapiens GN=HSPA1L PE=1 SV=2 - [HS71L_HUMAN] P29692-3 Isoform 3 of Elongation factor 1-delta 6 41 11 43 6 10 OS=Homo sapiens GN=EEF1D - [EF1D_HUMAN] Q53FA3 Heat shock 70 kDa protein 1-like 8 16 12 43 11 50 (Fragment) OS=Homo sapiens GN=HSPA1L PE=1 SV=1 - [Q53FA3_HUMAN] E9PL12 Elongation factor 1-delta (Fragment) 6 49 8 43 6 13 OS=Homo sapiens GN=EEF1D PE=1 SV=1 - [E9PL12_HUMAN] E9PPR1 Elongation factor 1-delta (Fragment) 6 49 8 43 6 13 OS=Homo sapiens GN=EEF1D PE=1 SV=1 - [E9PPR1_HUMAN] H0YCK7 Elongation factor 1-delta (Fragment) 6 44 10 42 5 12 OS=Homo sapiens GN=EEF1D PE=1 SV=1 - [H0YCK7_HUMAN] P60709 Actin, cytoplasmic 1 OS=Homo sapiens 11 16 17 41 13 24 GN=ACTB PE=1 SV=1 - [ACTB_HUMAN] P63261 Actin, cytoplasmic 2 OS=Homo sapiens 11 16 17 41 13 24 GN=ACTG1 PE=1 SV=1 - [ACTG_HUMAN] P68104-2 Isoform 2 of Elongation factor 1-alpha 1 6 11 11 41 5 10 OS=Homo sapiens GN=EEF1A1 - [EF1A1_HUMAN] E9PPY6 Heat shock cognate 71 kDa protein 6 13 11 41 11 46 (Fragment) OS=Homo sapiens GN=HSPA8 PE=1 SV=1 - [E9PPY6_HUMAN] A0A087WVQ9 Elongation factor 1-alpha 1 OS=Homo 6 11 11 41 5 10 sapiens GN=EEF1A1 PE=1 SV=1 - [A0A087WVQ9_HUMAN] A8K7Q2 Heat shock cognate 71 kDa protein 3 4 14 40 9 32 OS=Homo sapiens GN=HSPA8 PE=1 SV=1 - [A8K7Q2_HUMAN] E9PL71 Elongation factor 1-delta (Fragment) 5 40 10 40 5 9 OS=Homo sapiens GN=EEF1D PE=1 SV=1 - [E9PL71_HUMAN] Q16576-2 Isoform 2 of Histone-binding protein 16 40 15 53 RBBP7 OS=Homo sapiens GN=RBBP7 - [RBBP7_HUMAN] P19338 Nucleolin OS=Homo sapiens GN=NCL 10 11 25 39 18 21 PE=1 SV=3 - [NUCL_HUMAN] E9PMW7 Elongation factor 1-delta OS=Homo 5 43 7 38 5 12 sapiens GN=EEF1D PE=1 SV=1 - [E9PMW7_HUMAN] E9PIZ1 Elongation factor 1-delta (Fragment) 5 43 7 38 5 12 OS=Homo sapiens GN=EEF1D PE=1 SV=1 - [E9PIZ1_HUMAN] C9JYB3 WD repeat and HMG-box DNA-binding 8 40 10 37 8 16 protein 1 (Fragment) OS=Homo sapiens GN=WDHD1 PE=1 SV=1 - [C9JYB3_HUMAN] P09651 Heterogeneous nuclear 6 14 13 36 4 8 ribonucleoprotein A1 OS=Homo sapiens GN=HNRNPA1 PE=1 SV=5 - [ROA1_HUMAN] E9PBY7 Zinc finger CCCH domain-containing 17 27 24 36 14 19 protein 11A (Fragment) OS=Homo sapiens GN=ZC3H11A PE=1 SV=1 - [E9PBY7_HUMAN] P46821 Microtubule-associated protein 1B 30 36 OS=Homo sapiens GN=MAP1B PE=1 SV=2 - [MAP1B_HUMAN] >sp|TRYP_PIG| 3 12 4 35 4 28 P07910-2 Isoform C1 of Heterogeneous nuclear 7 13 15 35 7 15 ribonucleoproteins C1/C2 OS=Homo sapiens GN=HNRNPC - [HNRPC_HUMAN] P29692-4 Isoform 4 of Elongation factor 1-delta 5 39 9 35 6 12 OS=Homo sapiens GN=EEF1D - [EF1D_HUMAN] B4DY08 Heterogeneous nuclear 7 13 15 35 7 15 ribonucleoproteins C1/C2 OS=Homo sapiens GN=HNRNPC PE=1 SV=1 - [B4DY08_HUMAN] G3V4C1 Heterogeneous nuclear 7 13 15 35 7 15 ribonucleoproteins C1/C2 OS=Homo sapiens GN=HNRNPC PE=1 SV=1 - [G3V4C1_HUMAN] G3V4W0 Heterogeneous nuclear 7 13 15 35 7 15 ribonucleoproteins C1/C2 (Fragment) OS=Homo sapiens GN=HNRNPC PE=1 SV=1 - [G3V4W0_HUMAN] E9PN25 Heat shock cognate 71 kDa protein 6 13 9 35 9 40 (Fragment) OS=Homo sapiens GN=HSPA8 PE=1 SV=1 - [E9PN25_HUMAN] B2R5W2 Heterogeneous nuclear 7 13 15 35 7 15 ribonucleoproteins C1/C2 OS=Homo sapiens GN=HNRNPC PE=1 SV=1 - [B2R5W2_HUMAN] Q92841 Probable ATP-dependent RNA helicase 14 16 22 34 17 21 DDX17 OS=Homo sapiens GN=DDX17 PE=1 SV=2 - [DDX17_HUMAN] P07910 Heterogeneous nuclear 7 13 14 34 7 15 ribonucleoproteins C1/C2 OS=Homo sapiens GN=HNRNPC PE=1 SV=4 - [HNRPC_HUMAN] P14866 Heterogeneous nuclear 10 15 17 34 10 16 ribonucleoprotein L OS=Homo sapiens GN=HNRNPL PE=1 SV=2 - [HNRPL_HUMAN] Q00839 Heterogeneous nuclear 6 13 15 34 9 18 ribonucleoprotein U OS=Homo sapiens GN=HNRNPU PE=1 SV=6 - [HNRPU_HUMAN] Q00839-2 Isoform Short of Heterogeneous nuclear 6 13 15 34 9 18 ribonucleoprotein U OS=Homo sapiens GN=HNRNPU - [HNRPU_HUMAN] P09651-2 Isoform A1-A of Heterogeneous nuclear 5 11 12 34 4 8 ribonucleoprotein A1 OS=Homo sapiens GN=HNRNPA1 - [ROA1_HUMAN] P08670 Vimentin OS=Homo sapiens GN=VIM 15 19 19 34 23 49 PE=1 SV=4 - [VIME_HUMAN] G3V576 Heterogeneous nuclear 7 13 14 34 7 15 ribonucleoproteins C1/C2 OS=Homo sapiens GN=HNRNPC PE=1 SV=1 - [G3V576_HUMAN] V9GZ37 Heat shock 70 kDa protein 1A
Recommended publications
  • Large-Scale Analysis of Genome and Transcriptome Alterations in Multiple Tumors Unveils Novel Cancer-Relevant Splicing Networks
    Downloaded from genome.cshlp.org on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press Research Large-scale analysis of genome and transcriptome alterations in multiple tumors unveils novel cancer-relevant splicing networks Endre Sebestyén,1,5 Babita Singh,1,5 Belén Miñana,1,2 Amadís Pagès,1 Francesca Mateo,3 Miguel Angel Pujana,3 Juan Valcárcel,1,2,4 and Eduardo Eyras1,4 1Universitat Pompeu Fabra, E08003 Barcelona, Spain; 2Centre for Genomic Regulation, E08003 Barcelona, Spain; 3Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), E08908 L’Hospitalet del Llobregat, Spain; 4Catalan Institution for Research and Advanced Studies, E08010 Barcelona, Spain Alternative splicing is regulated by multiple RNA-binding proteins and influences the expression of most eukaryotic genes. However, the role of this process in human disease, and particularly in cancer, is only starting to be unveiled. We system- atically analyzed mutation, copy number, and gene expression patterns of 1348 RNA-binding protein (RBP) genes in 11 solid tumor types, together with alternative splicing changes in these tumors and the enrichment of binding motifs in the alter- natively spliced sequences. Our comprehensive study reveals widespread alterations in the expression of RBP genes, as well as novel mutations and copy number variations in association with multiple alternative splicing changes in cancer drivers and oncogenic pathways. Remarkably, the altered splicing patterns in several tumor types recapitulate those of undifferen- tiated cells. These patterns are predicted to be mainly controlled by MBNL1 and involve multiple cancer drivers, including the mitotic gene NUMA1. We show that NUMA1 alternative splicing induces enhanced cell proliferation and centrosome am- plification in nontumorigenic mammary epithelial cells.
    [Show full text]
  • Downloaded from the TCGA Data Portal ( Data.Nci.Nih.Gov/Tcga/) (Supplemental Table S1)
    bioRxiv preprint doi: https://doi.org/10.1101/023010; this version posted February 11, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Large-scale analysis of genome and transcriptome alterations in multiple tumors unveils novel cancer-relevant splicing networks Endre Sebestyén1,*, Babita Singh1,*, Belén Miñana1,2, Amadís Pagès1, Francesca Mateo3, Miguel Angel Pujana3, Juan Valcárcel1,2,4, Eduardo Eyras1,4,5 1Universitat Pompeu Fabra, Dr. Aiguader 88, E08003 Barcelona, Spain 2Centre for Genomic Regulation, Dr. Aiguader 88, E08003 Barcelona, Spain 3Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), E08908 L’Hospitalet del Llobregat, Spain. 4Catalan Institution for Research and Advanced Studies, Passeig Lluís Companys 23, E08010 Barcelona, Spain *Equal contribution 5Correspondence to: [email protected] Keywords: alternative splicing, RNA binding proteins, splicing networks, cancer 1 bioRxiv preprint doi: https://doi.org/10.1101/023010; this version posted February 11, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Abstract Alternative splicing is regulated by multiple RNA-binding proteins and influences the expression of most eukaryotic genes. However, the role of this process in human disease, and particularly in cancer, is only starting to be unveiled.
    [Show full text]
  • 1 Title 1 Loss of PABPC1 Is Compensated by Elevated PABPC4
    bioRxiv preprint doi: https://doi.org/10.1101/2021.02.07.430165; this version posted February 15, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 1 Title 2 Loss of PABPC1 is compensated by elevated PABPC4 and correlates with transcriptome 3 changes 4 5 Jingwei Xie1, 2, Xiaoyu Wei1, Yu Chen1 6 7 1 Department of Biochemistry and Groupe de recherche axé sur la structure des 8 protéines, McGill University, Montreal, Quebec H3G 0B1, Canada 9 10 2 To whom correspondence should be addressed: Dept. of Biochemistry, McGill 11 University, Montreal, QC H3G 0B1, Canada. E-mail: [email protected]. 12 13 14 15 Abstract 16 Cytoplasmic poly(A) binding protein (PABP) is an essential translation factor that binds to 17 the 3' tail of mRNAs to promote translation and regulate mRNA stability. PABPC1 is the 18 most abundant of several PABP isoforms that exist in mammals. Here, we used the 19 CRISPR/Cas genome editing system to shift the isoform composition in HEK293 cells. 20 Disruption of PABPC1 elevated PABPC4 levels. Transcriptome analysis revealed that the 21 shift in the dominant PABP isoform was correlated with changes in key transcriptional 22 regulators. This study provides insight into understanding the role of PABP isoforms in 23 development and differentiation. 24 Keywords 25 PABPC1, PABPC4, c-Myc 26 bioRxiv preprint doi: https://doi.org/10.1101/2021.02.07.430165; this version posted February 15, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder.
    [Show full text]
  • Comprehensive Protein Interactome Analysis of a Key RNA Helicase: Detection of Novel Stress Granule Proteins
    Biomolecules 2015, 5, 1441-1466; doi:10.3390/biom5031441 OPEN ACCESS biomolecules ISSN 2218-273X www.mdpi.com/journal/biomolecules/ Article Comprehensive Protein Interactome Analysis of a Key RNA Helicase: Detection of Novel Stress Granule Proteins Rebecca Bish 1,†, Nerea Cuevas-Polo 1,†, Zhe Cheng 1, Dolores Hambardzumyan 2, Mathias Munschauer 3, Markus Landthaler 3 and Christine Vogel 1,* 1 Center for Genomics and Systems Biology, Department of Biology, New York University, 12 Waverly Place, New York, NY 10003, USA; E-Mails: [email protected] (R.B.); [email protected] (N.C.-P.); [email protected] (Z.C.) 2 The Cleveland Clinic, Department of Neurosciences, Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH 44195, USA; E-Mail: [email protected] 3 RNA Biology and Post-Transcriptional Regulation, Max-Delbrück-Center for Molecular Medicine, Berlin-Buch, Robert-Rössle-Str. 10, Berlin 13092, Germany; E-Mails: [email protected] (M.M.); [email protected] (M.L.) † These authors contributed equally to this work. * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-212-998-3976; Fax: +1-212-995-4015. Academic Editor: André P. Gerber Received: 10 May 2015 / Accepted: 15 June 2015 / Published: 15 July 2015 Abstract: DDX6 (p54/RCK) is a human RNA helicase with central roles in mRNA decay and translation repression. To help our understanding of how DDX6 performs these multiple functions, we conducted the first unbiased, large-scale study to map the DDX6-centric protein-protein interactome using immunoprecipitation and mass spectrometry. Using DDX6 as bait, we identify a high-confidence and high-quality set of protein interaction partners which are enriched for functions in RNA metabolism and ribosomal proteins.
    [Show full text]
  • The Correlation of Keratin Expression with In-Vitro Epithelial Cell Line Differentiation
    The correlation of keratin expression with in-vitro epithelial cell line differentiation Deeqo Aden Thesis submitted to the University of London for Degree of Master of Philosophy (MPhil) Supervisors: Professor Ian. C. Mackenzie Professor Farida Fortune Centre for Clinical and Diagnostic Oral Science Barts and The London School of Medicine and Dentistry Queen Mary, University of London 2009 Contents Content pages ……………………………………………………………………......2 Abstract………………………………………………………………………….........6 Acknowledgements and Declaration……………………………………………...…7 List of Figures…………………………………………………………………………8 List of Tables………………………………………………………………………...12 Abbreviations….………………………………………………………………..…...14 Chapter 1: Literature review 16 1.1 Structure and function of the Oral Mucosa……………..…………….…..............17 1.2 Maintenance of the oral cavity...……………………………………….................20 1.2.1 Environmental Factors which damage the Oral Mucosa………. ….…………..21 1.3 Structure and function of the Oral Mucosa ………………...….……….………...21 1.3.1 Skin Barrier Formation………………………………………………….……...22 1.4 Comparison of Oral Mucosa and Skin…………………………………….……...24 1.5 Developmental and Experimental Models used in Oral mucosa and Skin...……..28 1.6 Keratinocytes…………………………………………………….….....................29 1.6.1 Desmosomes…………………………………………….…...............................29 1.6.2 Hemidesmosomes……………………………………….…...............................30 1.6.3 Tight Junctions………………………….……………….…...............................32 1.6.4 Gap Junctions………………………….……………….….................................32
    [Show full text]
  • Appendix 2. Significantly Differentially Regulated Genes in Term Compared with Second Trimester Amniotic Fluid Supernatant
    Appendix 2. Significantly Differentially Regulated Genes in Term Compared With Second Trimester Amniotic Fluid Supernatant Fold Change in term vs second trimester Amniotic Affymetrix Duplicate Fluid Probe ID probes Symbol Entrez Gene Name 1019.9 217059_at D MUC7 mucin 7, secreted 424.5 211735_x_at D SFTPC surfactant protein C 416.2 206835_at STATH statherin 363.4 214387_x_at D SFTPC surfactant protein C 295.5 205982_x_at D SFTPC surfactant protein C 288.7 1553454_at RPTN repetin solute carrier family 34 (sodium 251.3 204124_at SLC34A2 phosphate), member 2 238.9 206786_at HTN3 histatin 3 161.5 220191_at GKN1 gastrokine 1 152.7 223678_s_at D SFTPA2 surfactant protein A2 130.9 207430_s_at D MSMB microseminoprotein, beta- 99.0 214199_at SFTPD surfactant protein D major histocompatibility complex, class II, 96.5 210982_s_at D HLA-DRA DR alpha 96.5 221133_s_at D CLDN18 claudin 18 94.4 238222_at GKN2 gastrokine 2 93.7 1557961_s_at D LOC100127983 uncharacterized LOC100127983 93.1 229584_at LRRK2 leucine-rich repeat kinase 2 HOXD cluster antisense RNA 1 (non- 88.6 242042_s_at D HOXD-AS1 protein coding) 86.0 205569_at LAMP3 lysosomal-associated membrane protein 3 85.4 232698_at BPIFB2 BPI fold containing family B, member 2 84.4 205979_at SCGB2A1 secretoglobin, family 2A, member 1 84.3 230469_at RTKN2 rhotekin 2 82.2 204130_at HSD11B2 hydroxysteroid (11-beta) dehydrogenase 2 81.9 222242_s_at KLK5 kallikrein-related peptidase 5 77.0 237281_at AKAP14 A kinase (PRKA) anchor protein 14 76.7 1553602_at MUCL1 mucin-like 1 76.3 216359_at D MUC7 mucin 7,
    [Show full text]
  • MALE Protein Name Accession Number Molecular Weight CP1 CP2 H1 H2 PDAC1 PDAC2 CP Mean H Mean PDAC Mean T-Test PDAC Vs. H T-Test
    MALE t-test t-test Accession Molecular H PDAC PDAC vs. PDAC vs. Protein Name Number Weight CP1 CP2 H1 H2 PDAC1 PDAC2 CP Mean Mean Mean H CP PDAC/H PDAC/CP - 22 kDa protein IPI00219910 22 kDa 7 5 4 8 1 0 6 6 1 0.1126 0.0456 0.1 0.1 - Cold agglutinin FS-1 L-chain (Fragment) IPI00827773 12 kDa 32 39 34 26 53 57 36 30 55 0.0309 0.0388 1.8 1.5 - HRV Fab 027-VL (Fragment) IPI00827643 12 kDa 4 6 0 0 0 0 5 0 0 - 0.0574 - 0.0 - REV25-2 (Fragment) IPI00816794 15 kDa 8 12 5 7 8 9 10 6 8 0.2225 0.3844 1.3 0.8 A1BG Alpha-1B-glycoprotein precursor IPI00022895 54 kDa 115 109 106 112 111 100 112 109 105 0.6497 0.4138 1.0 0.9 A2M Alpha-2-macroglobulin precursor IPI00478003 163 kDa 62 63 86 72 14 18 63 79 16 0.0120 0.0019 0.2 0.3 ABCB1 Multidrug resistance protein 1 IPI00027481 141 kDa 41 46 23 26 52 64 43 25 58 0.0355 0.1660 2.4 1.3 ABHD14B Isoform 1 of Abhydrolase domain-containing proteinIPI00063827 14B 22 kDa 19 15 19 17 15 9 17 18 12 0.2502 0.3306 0.7 0.7 ABP1 Isoform 1 of Amiloride-sensitive amine oxidase [copper-containing]IPI00020982 precursor85 kDa 1 5 8 8 0 0 3 8 0 0.0001 0.2445 0.0 0.0 ACAN aggrecan isoform 2 precursor IPI00027377 250 kDa 38 30 17 28 34 24 34 22 29 0.4877 0.5109 1.3 0.8 ACE Isoform Somatic-1 of Angiotensin-converting enzyme, somaticIPI00437751 isoform precursor150 kDa 48 34 67 56 28 38 41 61 33 0.0600 0.4301 0.5 0.8 ACE2 Isoform 1 of Angiotensin-converting enzyme 2 precursorIPI00465187 92 kDa 11 16 20 30 4 5 13 25 5 0.0557 0.0847 0.2 0.4 ACO1 Cytoplasmic aconitate hydratase IPI00008485 98 kDa 2 2 0 0 0 0 2 0 0 - 0.0081 - 0.0
    [Show full text]
  • This Thesis Has Been Submitted in Fulfilment of the Requirements for a Postgraduate Degree (E.G
    This thesis has been submitted in fulfilment of the requirements for a postgraduate degree (e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following terms and conditions of use: • This work is protected by copyright and other intellectual property rights, which are retained by the thesis author, unless otherwise stated. • A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. • This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author. • The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author. • When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given. Expression and subcellular localisation of poly(A)-binding proteins Hannah Burgess PhD The University of Edinburgh 2010 Abstract Poly(A)-binding proteins (PABPs) are important regulators of mRNA translation and stability. In mammals four cytoplasmic PABPs with a similar domain structure have been described - PABP1, tPABP, PABP4 and ePABP. The vast majority of research on PABP mechanism, function and sub-cellular localisation is however limited to PABP1 and little published work has explored the expression of PABP proteins. Here, I examine the tissue distribution of PABP1 and PABP4 in mouse and show that both proteins differ markedly in their expression at both the tissue and cellular level, contradicting the widespread perception that PABP1 is ubiquitously expressed. PABP4 is shown to be widely expressed though with an expression pattern distinct from PABP1, and thus may have a biological function in many tissues.
    [Show full text]
  • Supplementary Table 1
    Supplementary Table 1. 492 genes are unique to 0 h post-heat timepoint. The name, p-value, fold change, location and family of each gene are indicated. Genes were filtered for an absolute value log2 ration 1.5 and a significance value of p ≤ 0.05. Symbol p-value Log Gene Name Location Family Ratio ABCA13 1.87E-02 3.292 ATP-binding cassette, sub-family unknown transporter A (ABC1), member 13 ABCB1 1.93E-02 −1.819 ATP-binding cassette, sub-family Plasma transporter B (MDR/TAP), member 1 Membrane ABCC3 2.83E-02 2.016 ATP-binding cassette, sub-family Plasma transporter C (CFTR/MRP), member 3 Membrane ABHD6 7.79E-03 −2.717 abhydrolase domain containing 6 Cytoplasm enzyme ACAT1 4.10E-02 3.009 acetyl-CoA acetyltransferase 1 Cytoplasm enzyme ACBD4 2.66E-03 1.722 acyl-CoA binding domain unknown other containing 4 ACSL5 1.86E-02 −2.876 acyl-CoA synthetase long-chain Cytoplasm enzyme family member 5 ADAM23 3.33E-02 −3.008 ADAM metallopeptidase domain Plasma peptidase 23 Membrane ADAM29 5.58E-03 3.463 ADAM metallopeptidase domain Plasma peptidase 29 Membrane ADAMTS17 2.67E-04 3.051 ADAM metallopeptidase with Extracellular other thrombospondin type 1 motif, 17 Space ADCYAP1R1 1.20E-02 1.848 adenylate cyclase activating Plasma G-protein polypeptide 1 (pituitary) receptor Membrane coupled type I receptor ADH6 (includes 4.02E-02 −1.845 alcohol dehydrogenase 6 (class Cytoplasm enzyme EG:130) V) AHSA2 1.54E-04 −1.6 AHA1, activator of heat shock unknown other 90kDa protein ATPase homolog 2 (yeast) AK5 3.32E-02 1.658 adenylate kinase 5 Cytoplasm kinase AK7
    [Show full text]
  • Structural and Functional Studies of Mrna Stability Regulators
    Research Collection Doctoral Thesis Structural and Functional Studies of mRNA Stability Regulators Author(s): Ripin, Nina Publication Date: 2018-11 Permanent Link: https://doi.org/10.3929/ethz-b-000303696 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library DISS. ETH NO. 25327 Structural and functional studies of mRNA stability regulators A thesis submitted to attain the degree of DOCTOR OF SCIENCES of ETH ZÜRICH (Dr. sc. ETH Zürich) presented by NINA RIPIN Diplom-Biochemikerin, Goethe University, Frankfurt, Germany Born on 06.08.1986 citizen of Germany accepted on the recommendation of Prof. Dr. Frédéric Allain Prof. Dr. Stefanie Jonas Prof. Dr. Michael Sattler Prof. Dr. Witold Filipowicz 2018 “Success consists of going from failure to failure without loss of enthusiasm.” Winston Churchill Summary Posttranscriptional gene regulation (PTGR) is the process by which every step of the life cycle of an mRNA following transcription – maturation, transport, translation, subcellular localization and decay - is tightly regulated. This is accomplished by a complex network of multiple RNA binding proteins (RNPs) binding to several specific mRNA elements. Such cis-acting elements are or can be found within the 5’ cap, the 5’ untranslated region (UTR), the open reading frame (ORF), the 3’UTR and the poly(A) tail at the 3’ end of the mRNA. Adenylate-uridylate-rich elements (AU-rich elements; AREs) are heavily investigated regulatory cis- acting elements within 3’untranslated regions (3’UTRs). These are found in short-lived mRNAs and function as a signal for rapid degradation.
    [Show full text]
  • A Mixture of Tocopherol Acetate and L-Menthol Synergistically Promotes Hair Growth in C57BL/6 Mice
    pharmaceutics Article A Mixture of Tocopherol Acetate and L-Menthol Synergistically Promotes Hair Growth in C57BL/6 Mice Seunghyun Ahn , Jung Yeon Lee, Sang Mi Choi, Yujeong Shin and Seyeon Park * Department of Applied Chemistry, Dongduk Women’s University, Seoul 02748, Korea; [email protected] (S.A.); [email protected] (J.Y.L.); [email protected] (S.M.C.); [email protected] (Y.S.) * Correspondence: [email protected]; Tel.: +82-02-940-4514 Received: 4 November 2020; Accepted: 15 December 2020; Published: 18 December 2020 Abstract: Oral finasteride and topical minoxidil are single components approved by the US FDA for treating hair loss. Some other compounds originating from natural products are also traditionally used for promoting hair growth. In this study, observations of treated keratinocyte cells were used to demonstrate that tocopherol acetate, L-menthol, and stevioside exert an effect on cell regeneration. Furthermore, these were topically applied to the shaved skin of C57BL/6 mice to observe their effects on hair growth. A mixture of tocopherol acetate, L-menthol, and stevioside showed the highest potential for promoting hair growth in vivo. In in vivo experiments, the mixture of tocopherol acetate, L-menthol, and stevioside was more effective than tocopherol acetate or L-menthol alone in promoting hair growth. The transcriptome analysis of skin from the dorsal side of a mouse treated with tocopherol acetate or L-menthol versus vehicle revealed key changes in keratin, keratin-associated protein, forkhead box, sonic hedgehog, fibroblast growth factor 10, desmoglein 4, deoxyribonuclease 1-like 2, and cadherin 3, known to play roles in promoting hair growth.
    [Show full text]
  • PNAS 07-04849-SI Table 3. 6-18-2007
    Table 5. β-arrestin 2-interacting proteins under nonstimulated (-) condition IPI accession Swiss- Number of Prot Gene symbol Protein name experiments accession number number detected Signal transduction Adaptor proteins IPI00027355 P32121 ARRB2 β-arrestin 2 6 IPI00293857 P49407 ARRB1 β-arrestin 1 6 IPI00021353 P10523 SAG S-arrestin (Retinal S-antigen) (48 kDa protein) (S-AG) (Rod photoreceptor arrestin) 2 IPI00003917 P36575 ARR3 X-arrestin (Arrestin-C) (Cone arrestin) (cArr) (Retinal cone arrestin-3) (C-arrestin) 2 IPI00216318 P31946 YWHAB 14-3-3 β/α (14-3-3 protein beta/alpha) (Protein kinase C inhibitor protein 1) (KCIP-1) (Protein 1054) 2 IPI00220642 P61981 YWHAG 14-3-3 γ (14-3-3 protein gamma) (Protein kinase C inhibitor protein 1) (KCIP-1) 2 IPI00018146 P27348 YWHAQ 14-3-3 θ (14-3-3 protein tau) (14-3-3 protein theta) (14-3-3 protein T-cell) (HS1 protein) 2 IPI00216319 Q04917 YWHAH 14-3-3 η (14-3-3 protein eta) (Protein AS1) 2 IPI00000816 P62258 YWHAE 14-3-3 ε (14-3-3 protein epsilon) (14-3-3E) 2 Protein kinases IPI00027251 Q15208 STK38 STK38 (Serine/threonine-protein kinase 38) (NDR1 protein kinase) (Nuclear Dbf2-related kinase 1) 4 SCY1-like 2 (SCY1-like 2 protein) (coated vesicle-associated kinase of 104 kDa) (Eukaryotic protein IPI00396218 Q6P3W7 SCYL2 2 kinase family protein) (CDNA FLJ10074 fis, clone HEMBA1001744, weakly similar to SCY1 IPI00013835 Q13574 DGKZ DGK ζ (Diacylglycerol kinase zeta) (Diglyceride kinase zeta) (DGK-zeta) (DAG kinase zeta) 2 DGK ε (Diacylglycerol kinase epsilon) (Diglyceride kinase epsilon) (DGK-epsilon)
    [Show full text]