United States Patent [191 [11] Patent Number: 5,399,736 Friederichs Et Al

Total Page:16

File Type:pdf, Size:1020Kb

United States Patent [191 [11] Patent Number: 5,399,736 Friederichs Et Al USOO5399736A United States Patent [191 [11] Patent Number: 5,399,736 Friederichs et al. [45] Date of Patent: Mar. 21, 1995 [54] PROCESS FOR THE PREPARATION OF 4,369,141 1/1983 Motier ......................... 260/453P HIGHLY PURE AROMATIC DIURETHANES 4,375,000 2/1983 Merger et a1. .............. .. 560/25 AND/ OR POLYURETHANES 4,388,238 6/1983 Heitk'a'mper et a1. .. 260/239 E 4,388,246 6/ 1983 Sundermann et al. 260/453 P [75] Inventors: Wolfgang Friederichs, Cologne; 4,482,499 11/1984 Merger et a1. 260/453 P Stefan Penninger, Pulheim; Stefan 4,611,079 9/1986 Merger . .. 560/25 Wershofen, Moenchengladbach, all 4,692,550 9/1987 Engbert et a1. ................... .. 560/345 of Germany FOREIGN PATENT DOCUMENTS [73] Assignee: Bayer Aktiengesellschaft, 1458595 12/1976 United Kingdom . Leverkusen, Germany Primary Examiner-José G. Dees [21] Appl. No.: 988,659 Assistant Examiner-Samuel Barts [22] Filed: Dec. 10, 1992 Attorney, Agent, or Firm-Joseph C. Gil; N. Denise Brown [30] Foreign Application Priority Data [57] ABSTRACT Dec. 16, 1991 [DE] Germany ................... .. 41 41 402.0 This invention relates to a process for the preparation of [51] Int. Cl.6 ........... ..-. ............................ .. C07C 125/06 highly pure aromatic diurethanes and/or polyurethanes [52] US. Cl. ..................................... .. 560/25; 560/158 by reaction of the corresponding aromatic diamines [58] Field of Search ................................ .. 560/25, 158 and/or polyamines with unsubstituted carbamates with [56] References Cited the release of ammonia. The reaction is carried out in U.S. PATENT DOCUMENTS the presence of excess carbamates. The resultant reac tion mixture is freed from any solvents used, and the 2,181,663 11/1939 Martin ................................... .. 260/2 formed aromatic diurethanes and/ or polyurethanes are 3,919,278 11/1975 Rosenthal et a1. ........ .. 260/453 P 4,081,472 3/1978 Tsumura et al. .......... .. 260/453 P puri?ed by extraction with water. 4,278,805 7/1981 Merger et a1. .............. .. 560/25 4,290,970 9/1981 Merger . .. 260/453 P 17 Claims, No Drawings 5,399,736 1 2 of the volume/ time yield, and a considerable increase in PROCESS FOR THE PREPARATION OF HIGHLY costs in the distillative recovery of the solvent. PURE AROMATIC DIURETHANES AND/OR Aromatic diurethanes and/or polyurethanes are iso POLYURETHANES lated, e.g. according to the teaching of DE 2,917,568 and EP 18,583, from the crude mixtures obtained from BACKGROUND OF THE INVENTION the reaction of aromatic diamines and/or polyamines The present invention relates to a process for the with carbamates. In this process, any catalysts used are preparation of highly pure aromatic diurethanes and/ or removed and any solid products obtained are ?ltered polyurethanes by the reaction of aromatic diamines off. The alcohol and/or the solvent and the carbamate and/or polyamines with unsubstituted carbamates with which is optionally used in excess, are completely or the release of ammonia. partly distilled off, and the product is obtained by crys The preparation of aromatic diurethanes and/or tallization, precipitation, or recrystallization from other polyurethanes from aromatic diamines and/or poly solvents. Thus according to EP 18,583 (Example 36) amines and unsubstituted carbamates is of great interest 2,4-bis-(ethoxycarbonylamino)-toluene is purified by as aromatic diurethanes and/or polyurethanes can be distilling off the alcohol used as solvent and excess ethyl converted by thermal decomposition into aromatic di carbamate at a reduced pressure of 10 mbar, and dis isocyanates and/or polyisocyanates which may be used solving the residue in methylene chloride, and washing as starting materials for the production of high quality it several times with water. Methylene chloride is then polyurethane resins. Since the unsubstituted carbamates separated off, ethanol is added and the mixture is cooled used as reactants for the preparation of the aromatic 20 in a mixture of ice and salt. 2,4-Bis-(ethoxycar diurethanes and/0r polyurethanes are obtainable from bonylamino)-toluene then crystallizes with a melting urea and alcohols, they enable aromatic diisocyanates point of 108° to 110° C. However, the 2,4-bis-(ethox and/or polyisocyanates to be produced without the use ycarbonylamino)-toluene is unsuitable for the decompo of phosgene. sition of urethanes due to its insufficient purity. Analyti Processes for the preparation of aromatic diurethanes 25 cally pure 2,4-bis-(ethoxycarbonylamino)-toluene has a and/or polyurethanes from aromatic diamines and/or melting point of 134° C. polyamines and unsubstituted carbamates are known It was therefore an object of the present invention to and are described in numerous patents (DE 2,942,511, provide a process for the preparation of highly pure DE 2,917,568, DE 2,943,480, EP 18,583). The processes aromatic diurethanes and/or polyurethanes suitable for hitherto employed have the disadvantage that the diure the preparation of aromatic diisocyanates and/ or poly thanes and/or polyurethanes are not obtained in pure form. A high purity is necessary for the successful de isocyanates by the thermal decomposition of urethanes. composition of urethanes, and hence for the optimum It was found that in order to obtain highly pure aro preparation of aromatic diisocyanates and/or polyiso matic diurethanes and/or polyurethanes, the reaction cyanates. The products produced by the known pro known in the art of aromatic diamines and/or poly cesses generally contain starting materials and/or by amines with unsubstituted carbamates with the libera products which are inevitably produced, e.g. aminoure tion of ammonia should be carried out with an excess of thanes, urea urethanes, oligoureas and polyureas. These carbamates, any solvent used being separated off after impurities can only be separated with great di?iculty completion of the reaction, and the product mixture from the products of the process, and therefore, in 40 obtained as residue being extracted with water. ' crease the cost of preparation. DESCRIPTION OF THE INVENTION One exception are the aromatic diurethanes based on methanol obtained from the reaction of aromatic di The present invention relates to a process for the amines and methyl carbamate. In general, these ure preparation of highly pure aromatic di- and/ or polyure thanes have a high melting point, good crystallization 45 thanes by reaction of the corresponding aromatic di properties, and low solubility in organic solvents. and/ or polyamines with unsubstituted carbamates with Therefore, in contrast to aromatic diurethanes based on liberation of ammonia, characterized in that the reaction other alcohols, they separate as pure crystalline solids is carried out in the presence of excess carbamate. The from the reaction mixture or can be separated relatively resultant reaction mixture is freed from any solvents easily by recrystallization from the unwanted impurities 50 used, and the aromatic di- and/or polyurethanes ob which interfere with the decomposition of urethanes. tained therefrom are freed from by-products, excess The high melting point and low solubility of the diure carbamate and unreacted di- and/or polyamines by thanes based on methanol have, however, a disadvanta extraction with water. geous e?ect on the use of the end products for the prep The quantity of carbamate used is preferably from aration of isocyanates. Conversion of the products of 55 about 2 to 50 mol, more preferably from about 10 to 30 the process into isocyanates is carried out by the ther mol, of carbamate per mol of amino group in the aro mal decomposition of the underlying urethanes. This matic di- and/or polyamines. decomposition is carried out technically at tempera Ethyl carbamate, propyl carbamate, isopropyl carba tures above 200° C., in a decomposition apparatus into mate, and mixtures thereof are preferred carbamates. In which the urethanes are continuously introduced in the one particular embodiment, unpuri?ed carbamate ob molten or dissolved state (see e.g. US. Pat. No. tained from the reaction of urea with the corresponding 4,388,246, US. Pat. No. 4,081,472, DE 2,421,503, DE alcohols is used as the carbamate. 2,526,193, DE 3,142,627, DE 3,108,990, and DE The reaction of the aromatic di- and/or polyamines 3,215,591). This method, however, cannot be carried with unsubstituted carbamates is preferably carried out out with diurethanes based on methanol without serious 65 with carbamates prepared in situ, using urea and the disadvantages since their high melting point is above corresponding alcohol for the reaction. the decomposition point, and the low solubility necessi Any solvents used for the reaction are preferably tates high degrees of dilution. This results in impairment removed by distillation. 5,399,736 3 4 In a preferred embodiment of the process, any sol The process according to the invention is suitable for vent present in the reaction mixture obtained is, option the preparation of highly pure aromatic di- and/ or poly ally, removed and the reaction mixture obtained is ex urethanes. These aromatic di- and/or polyurethanes tracted by mixing it intensively with water. The ratio of correspond to the following general formula: mixture to water is from about 0.2:1 to 10:1, preferably 5 from about 0.8:1 to 2:1, at temperatures of from about 20° to 200° C., preferably from about 50° to 100° C., cooling to temperatures of from about 0° to 100° C., wherein preferably from about 20° to 70° C., and then separating R1 represents an optionally substituted aromatic hy off the di- and/or polyurethanes which are obtained as drocarbon group having 5 to 18 carbon atoms, or a liquid or solid phase. optionally substituted diphenylmethane, and/or The aromatic di- and/or polyurethanes obtained after optionally substituted polymeric diphenylmethane extraction are preferably dried and/or recrystallized linked with methylene groups; from organic solvents.
Recommended publications
  • Report of the Advisory Group to Recommend Priorities for the IARC Monographs During 2020–2024
    IARC Monographs on the Identification of Carcinogenic Hazards to Humans Report of the Advisory Group to Recommend Priorities for the IARC Monographs during 2020–2024 Report of the Advisory Group to Recommend Priorities for the IARC Monographs during 2020–2024 CONTENTS Introduction ................................................................................................................................... 1 Acetaldehyde (CAS No. 75-07-0) ................................................................................................. 3 Acrolein (CAS No. 107-02-8) ....................................................................................................... 4 Acrylamide (CAS No. 79-06-1) .................................................................................................... 5 Acrylonitrile (CAS No. 107-13-1) ................................................................................................ 6 Aflatoxins (CAS No. 1402-68-2) .................................................................................................. 8 Air pollutants and underlying mechanisms for breast cancer ....................................................... 9 Airborne gram-negative bacterial endotoxins ............................................................................. 10 Alachlor (chloroacetanilide herbicide) (CAS No. 15972-60-8) .................................................. 10 Aluminium (CAS No. 7429-90-5) .............................................................................................. 11
    [Show full text]
  • Evolution of Ethyl Carbamate During Madeira Wine Ageing by GC-MS a New Methodology MASTER DISSERTATION
    DM Evolution of Ethyl Carbamate During Madeira Wine Ageing by GC-MS A new methodology MASTER DISSERTATION João Micael da Silva Leça MASTER IN APPLIED BIOCHEMISTRY November | 2014 Evolution of Ethyl Carbamate During Madeira Wine Ageing by GC-MS A new methodology MASTER DISSERTATION João Micael da Silva Leça MASTER IN APPLIED BIOCHEMISTRY SUPERVISOR José Carlos Antunes Marques CO-SUPERVISOR Vanda Nulita Gomes Pereira Evolution of ethyl carbamate during Madeira wine ageing by GC-MS: a new methodology AGRADECIMENTOS Quero começar por agradecer à minha família e em especial à minha mãe, Teresa Silva, à minha avó, Teresa Teixeira, ao meu avô, Quirino Teixeira, à minha tia, Ana Teixeira, à minha madrinha, Sandra Nunes, à minha madrinha, Maria Nunes e aos meus primos Ludgero Gomes e Lília Gomes, por todo o amor e apoio que sempre me deram. Um obrigado à Fátima Spínola pelo seu amor. Um especial obrigado por toda a compreensão, pelo apoio e por todos os momentos bons que já partilhamos. Certamente seria uma pessoa muito diferente se nunca nos tivéssemos conhecido. Obrigado por tudo. Um enorme obrigado à Anabela Moura, à Manuela Godinho e ao Dr. António Godinho por toda a dedicação e apoio. O meu agradecimento torna-se difícil de expressar por palavras. E porque a vida não tem valor sem ser partilhada, um grande obrigado aos meus amigos mais próximos: Vítor Correia, Victor Andrade, Catarina Lume, João Mendes, Igor Nunes, Pedro Leme, Marco Franco, João Silva, Nuno Pestana, Válter Mendes, Julie Campbell, Luís Freitas, Igor Afonso, Roberto Aguiar, Marisa Faria, Dina Maciel, Neide Cardoso, Joaquim Lopes, Miguel Nunes, Paulo Silva, Dinarte Jesus, Hugo Câmara, Núria Fernandes, Vânia Silva, Rodolfo Silva e Ricardo Mendonça.
    [Show full text]
  • Ethyl Carbamate Formation in Sub-Optimal Wine Storage Conditions and Influence of the Yeast Starter
    03-larcher_05b-tomazic 26/03/13 18:21 Page65 ETHYL CARBAMATE FORMATION IN SUB-OPTIMAL WINE STORAGE CONDITIONS AND INFLUENCE OF THE YEAST STARTER Roberto LARCHER, Sergio MOSER, Ainhoa Usua MENOLLI, Loris TONIDANDEL and Giorgio NICOLINI* Unità Chimica Vitienologica e Agroalimentare, Centro Trasferimento Tecnologico - Fond. Edmund Mach, Via E. Mach 1, 38 010 San Michele all’Adige (TN), Italy Abstract Résumé Aim : To evaluate the potential risk of ethyl carbamate (EC) Objectif : Évaluer le risque potentiel de formation de carbamate formation in wine by studying its production kinetics at sub- d'éthyle (CE) dans le vin par l'étude de la cinétique de production à optimal storage temperatures. des températures de stockage sous-optimales. Methods and results : The kinetics of EC formation was Méthodes et résultats : La cinétique de formation de CE a été investigated in 60 white wines obtained from 6 varietal juices étudiée chez 60 vins blancs issus de six moûts variétaux fermentés fermented with 10 yeast strains. The wines were analysed for their avec 10 souches de levure. Les vins ont été analysés pour leur urea content at bottling, then EC formation was monitored during teneur en urée à la mise en bouteilles, puis la formation de CE a été in-bottle storage at < 12 °C for 150 days followed by 152 days at contrôlée au cours du stockage en bouteilles à < 12 °C pendant 40 °C. Storage at < 12 °C had no effect on EC formation, 150 jours, suivis par 152 jours à 40 °C. Le stockage à < 12 °C n'a regardless of initial urea content ; however, at 40 °C we found a eu aucun effet sur la formation de CE, quelle que soit la teneur en positive correlation between initial urea content and final EC urée initiale.
    [Show full text]
  • EICG-Hot Spots
    State of California AIR RESOURCES BOARD PUBLIC HEARING TO CONSIDER AMENDMENTS TO THE EMISSION INVENTORY CRITERIA AND GUIDELINES REPORT FOR THE AIR TOXICS “HOT SPOTS” PROGRAM STAFF REPORT: INITIAL STATEMENT OF REASONS DATE OF RELEASE: September 29, 2020 SCHEDULED FOR CONSIDERATION: November 19, 2020 Location: Please see the Public Agenda which will be posted ten days before the November 19, 2020, Board Meeting for any appropriate direction regarding a possible remote-only Board Meeting. If the meeting is to be held in person, it will be held at the California Air Resources Board, Byron Sher Auditorium, 1001 I Street, Sacramento, California 95814. This report has been reviewed by the staff of the California Air Resources Board and approved for publication. Approval does not signify that the contents necessarily reflect the views and policies of the Air Resources Board, nor does mention of trade names or commercial products constitute endorsement or recommendation for use. This Page Intentionally Left Blank TABLE OF CONTENTS EXECUTIVE SUMMARY .......................................................................................... 1 I. INTRODUCTION AND BACKGROUND ................................................................. 5 II. THE PROBLEM THAT THE PROPOSAL IS INTENDED TO ADDRESS .................... 6 III. BENEFITS ANTICIPATED FROM THE REGULATORY ACTION, INCLUDING THE BENEFITS OR GOALS PROVIDED IN THE AUTHORIZING STATUTE .................... 8 IV. AIR QUALITY ..........................................................................................................
    [Show full text]
  • Environmental-Friendly Synthesis of Alkyl Carbamates from Urea and Alcohols with Silica Gel Supported Catalysts
    catalysts Article Environmental-Friendly Synthesis of Alkyl Carbamates from Urea and Alcohols with Silica Gel Supported Catalysts Yubo Ma 1,2 , Lei Wang 1,3,*, Xiaodong Yang 4,* and Ronghui Zhang 5 1 School of Chemical Engineering, Chongqing Chemical Industry Vocational College, Chongqing 401220, China; [email protected] 2 Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China 3 Department of Chemistry and Chemical Engineering, Xinjiang University, Urumqi 830011, China 4 Institute of Resources and Environment Science, Xinjiang University, Urumqi 830011, China 5 Guangdong Key Laboratory of Intelligent Transportation System, School of Engineering, Sun Yat-sen University, Guangzhou 510275, China; [email protected] * Correspondence: [email protected] (L.W.); [email protected] (X.Y.) Received: 7 October 2018; Accepted: 19 November 2018; Published: 23 November 2018 Abstract: TiO2/SiO2, Cr2O3-NiO/SiO2, and TiO2-Cr2O3/SiO2 were prepared by the impregnation method for alkyl carbamate synthesis using urea as the carbonyl source. Up to 97.5% methyl carbamate yield, 97% ethyl carbamate yield, and 96% butyl carbamate yield could be achieved, respectively. The catalysts were characterized by ICP-AES, BET, XRD, XPS, NH3-TPD, and EPMA. Catalytic activity investigation revealed that TiO2/SiO2, Cr2O3-NiO/SiO2, and TiO2-Cr2O3/SiO2 were effective catalysts for methyl carbamate (MC), ethyl carbamate (EC), and butyl carbamate (BC), respectively. The recycling tests suggested that these silica gel supported catalyst system is active, stable, and reusable. A total of 96–97% alkyl carbamate (methyl, ethyl, and butyl) could be obtained in a 2 L autoclave, and these data suggested that our catalyst system is relatively easy to scale up.
    [Show full text]
  • EPA's Hazardous Waste Listing
    Hazardous Waste Listings A User-Friendly Reference Document September 2012 Table of Contents Introduction ..................................................................................................................................... 3 Overview of the Hazardous Waste Identification Process .............................................................. 5 Lists of Hazardous Wastes .............................................................................................................. 5 Summary Chart ............................................................................................................................... 8 General Hazardous Waste Listing Resources ................................................................................. 9 § 261.11 Criteria for listing hazardous waste. .............................................................................. 11 Subpart D-List of Hazardous Wastes ............................................................................................ 12 § 261.31 Hazardous wastes from non-specific sources. ............................................................... 13 Spent solvent wastes (F001 – F005) ......................................................................................... 13 Wastes from electroplating and other metal finishing operations (F006 - F012, and F019) ... 18 Dioxin bearing wastes (F020 - F023, and F026 – F028) .......................................................... 22 Wastes from production of certain chlorinated aliphatic hydrocarbons (F024
    [Show full text]
  • Safety Data Sheet - Version 5.0 Preparation Date 4/3/2017 Latest Revision Date (If Revised) 4/13/2021 SDS Expiry Date 4/11/2024
    Safety Data Sheet - Version 5.0 Preparation Date 4/3/2017 Latest Revision Date (If Revised) 4/13/2021 SDS Expiry Date 4/11/2024 1. IDENTIFICATION OF THE SUBSTANCE/MIXTURE AND OF THE COMPANY/UNDERTAKING 1.1 Product Identifier Chemical Name Fenoxycarb Catalogue # F248870 1.2 Relevant Identified Uses of the Substance or Mixture and Uses Advised Against Product Uses To be used only for scientific research and development. Not for use in humans or animals. 1.3 Details of the Supplier of the Safety Data Sheet Company Toronto Research Chemicals 2 Brisbane Road Toronto, ON M3J 2J8 CANADA Telephone +14166659696 FAX +14166654439 Email [email protected] 1.4 Emergency Telephone Number Emergency# +1(416) 665-9696 between 0800-1700 (GMT-5) 2. HAZARDS IDENTIFICATION 2.1/2.2 Classification of the Substance or Mixture and Label Elements GHS Hazards Classification (According to EU Regulation 1272/2008 and US OSHA 1910.1200) Carcinogenicity (Category 2) Hazardous to the Aquatic Environment, Acute Hazard (Category 1) Hazardous to the Aquatic Environment, Long-Term Hazard (Category 1) GHS Hazards Identification (According to EU Regulation 1272/2008 and US OSHA 1910.1200) Signal Word Warning GHS Hazard Statements H351 Suspected of causing cancer. H400 Very toxic to aquatic life. H410 Very toxic to aquatic life with long lasting effects. GHS Precautionary Statements P273 Avoid release to the environment. P391 Collect spillage. 2.3 Unclassified Hazards/Hazards Not Otherwise Classified No data available. 3. COMPOSITION/INFORMATION ON INGREDIENTS 3.1 Substances Molecular Formula: C17H19NO4 Molecular Weight: 301.34 CAS Registry #: 72490-01-8 EC#: 276-696-7 Synonyms Insegar; Logic; Logic (growth regulator); Phenoxycarb; Ro 13-5223; ABG 6215; Eclipse; Eclipse (growth regulator); Ethyl [2-(4- phenoxyphenoxy)ethyl]carbamate; [2-(4-Phenoxyphenoxy)ethyl]carbamic Acid Ethyl Ester; N-[2-(4-Phenoxyphenoxy)ethyl] carbamic Acid Ethyl Ester; Toronto Research Chemicals - F248870 Page 1 This Safety Data Sheet contains 16 sections.
    [Show full text]
  • Evaluation of Certain Food Contaminants A
    WHO Technical Report Series 930 EVALUATION This report represents the conclusions of a Joint FAO/WHO EVALUATION OF CERTAIN Expert Committee convened to evaluate the safety of various food contaminants, with the aim to advise on risk management FOOD CONTAMINANTS options for the purpose of public health protection. OF The first part of the report contains a general discussion of the CERTAIN principles governing the toxicological evaluation of contaminants and assessments of intake. A summary follows of the Committee’s evaluations of technical, toxicological and intake A data for certain food contaminants (acrylamide, ethyl FOOD carbamate, inorganic tin, polybrominated diphenyl ethers and polycyclic aromatic hydrocarbons). Cadmium was assessed to CONTAMINANTS determine the impact of different maximum limits on intake. Annexed to the report are tables summarizing the Committee’s recommendations for intakes and toxicological evaluations of Sixty-fourth report of the the food contaminants considered, and a description of the Joint FAO/WHO Expert Committee on statistical methods for dose–response modelling as applied at this meeting. Food Additives WHO T echnical Report S ISBN 92-4-120930-5 er ies — 930 9 789241 209304 aA World Health Organization Geneva 930 COVER 1 12/21/05, 15:30 This report contains the collective views of an international group of experts and does not necessarily represent the decisions or the stated policy of the World Health Organization or of the Food and Agriculture Organization of the United Nations WHO Technical Report Series 930 EVALUATION OF CERTAIN FOOD CONTAMINANTS Sixty-fourth report of the Joint FAO/WHO Expert Committee on Food Additives World Health Organization Geneva 2006 E i ECCPR 1 1/27/06, 11:03 WHO Library Cataloguing-in-Publication Data Joint FAO/WHO Expert Committee on Food Additives (2005 : Rome, Italy) Evaluation of certain food contaminants : sixty-fourth report of the Joint FAO/WHO Expert Committee on Food Additives.
    [Show full text]
  • Prioritizing Chemical Constituents in Tobacco Products and Smoke to Predict Developmental Osteotoxicity in Human Embryonic Stem Cells
    California State University, San Bernardino CSUSB ScholarWorks Electronic Theses, Projects, and Dissertations Office of aduateGr Studies 12-2018 PRIORITIZING CHEMICAL CONSTITUENTS IN TOBACCO PRODUCTS AND SMOKE TO PREDICT DEVELOPMENTAL OSTEOTOXICITY IN HUMAN EMBRYONIC STEM CELLS Joseph Madrid Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd Part of the Cell Biology Commons, and the Developmental Biology Commons Recommended Citation Madrid, Joseph, "PRIORITIZING CHEMICAL CONSTITUENTS IN TOBACCO PRODUCTS AND SMOKE TO PREDICT DEVELOPMENTAL OSTEOTOXICITY IN HUMAN EMBRYONIC STEM CELLS" (2018). Electronic Theses, Projects, and Dissertations. 767. https://scholarworks.lib.csusb.edu/etd/767 This Thesis is brought to you for free and open access by the Office of aduateGr Studies at CSUSB ScholarWorks. It has been accepted for inclusion in Electronic Theses, Projects, and Dissertations by an authorized administrator of CSUSB ScholarWorks. For more information, please contact [email protected]. PRIORITIZING CHEMICAL CONSTITUENTS IN TOBACCO PRODUCTS AND SMOKE TO PREDICT DEVELOPMENTAL OSTEOTOXICITY IN HUMAN EMBRYONIC STEM CELLS A Thesis Presented to the Faculty of California State University, San Bernardino In Partial Fulfillment of the Requirements for the Degree Master of Science in Biology by Joseph Valenzuela Madrid December 2018 PRIORITIZING CHEMICAL CONSTITUENTS IN TOBACCO PRODUCTS AND SMOKE TO PREDICT DEVELOPMENTAL OSTEOTOXICITY IN HUMAN EMBRYONIC STEM CELLS A Thesis Presented to the Faculty of California State University, San Bernardino by Joseph Valenzuela Madrid December 2018 Approved by: Dr. Nicole Bournias, Committee Chair, Biology Dr. Nicole zur Nieden, Committee Member, UCR, Biology Dr. Jeffrey Thompson, Committee Member © 2018 Joseph Valenzuela Madrid ABSTRACT Though it is well known that tobacco related products can cause prenatal maldevelopment, very little is known on how tobacco products affect bone tissue as it develops in the embryo.
    [Show full text]
  • Epa Hazardous Waste Codes
    EPA HAZARDOUS WASTE CODES Code Waste description Code Waste description D001 Ignitable waste D023 o-Cresol D002 Corrosive waste D024 m-Cresol D003 Reactive waste D025 p-Cresol D004 Arsenic D026 Cresol D005 Barium D027 1,4-Dichlorobenzene D006 Cadmium D028 1,2-Dichloroethane D007 Chromium D029 1,1-Dichloroethylene D008 Lead D030 2,4-Dinitrotoluene D009 Mercury D031 Heptachlor (and its epoxide) D010 Selenium D032 Hexachlorobenzene D011 Silver D033 Hexachlorobutadiene D012 Endrin(1,2,3,4,10,10-hexachloro-1,7-epoxy- D034 Hexachloroethane 1,4,4a,5,6,7,8,8a-octahydro-1,4-endo, endo- 5,8-dimeth-ano-naphthalene) D035 Methyl ethyl ketone D013 Lindane (1,2,3,4,5,6-hexa- D036 Nitrobenzene chlorocyclohexane, gamma isomer) D037 Pentachlorophenol D014 Methoxychlor (1,1,1-trichloro-2,2-bis [p- methoxyphenyl] ethane) D038 Pyridine D015 Toxaphene (C10 H10 Cl8, Technical D039 Tetrachloroethylene chlorinated camphene, 67-69 percent chlorine) D040 Trichlorethylene D016 2,4-D (2,4-Dichlorophenoxyacetic acid) D041 2,4,5-Trichlorophenol D017 2,4,5-TP Silvex (2,4,5- D042 2,4,6-Trichlorophenol Trichlorophenoxypropionic acid) D043 Vinyl chloride D018 Benzene D019 Carbon tetrachloride D020 Chlordane D021 Chlorobenzene D022 Chloroform B-1 EPA HAZARDOUS WASTE CODES (Continued) Code Waste description Code Waste description HAZARDOUS WASTE FROM NONSPECIFIC solvents: cresols, cresylic acid, and SOURCES nitrobenzene; and the still bottoms from the recovery of these solvents; all spent solvent F001 The following spent halogenated solvents mixtures/blends containing, before use, a used in degreasing: Tetrachloroethylene, total of ten percent or more (by volume) of trichlorethylene, methylene chloride, 1,1,1- one or more of the above nonhalogenated trichloroethane, carbon tetrachloride and solvents or those solvents listed in F001, chlorinated fluorocarbons; all spent solvent F002, and F005; and still bottoms from the mixtures/blends used in degreasing recovery of these spent solvents and spent containing, before use, a total of ten solvent mixtures.
    [Show full text]
  • Appendix I - HAZARDOUS CONSTITUENTS
    Title 128 - Department of Environmental Quality Appendix I - HAZARDOUS CONSTITUENTS Common Name Chemical Abstracts Name Chemical Hazardous Abstracts Waste No. No. A2213 Ethanimidothioic acid, 2- 30558-43-1 U394 (dimethylamino)-N-hydroxy-2 oxo-, methyl ester Acetonitrile Same 75-05-8 U003 Acetophenone Ethanone, 1-phenyl- 98-86-2 U004 2-Acetylaminefluarone Acetamide, N-9H-fluoren-2-yl- 53-96-3 U005 Acetyl chloride Same 75-36-5 U006 1-Acetyl-2-thiourea Acetamide, N-(aminothioxomethyl)- 591-08-2 P002 Acrolein 2-Propenal 107-02-8 P003 Acrylamide 2-Propenamide 79-06-1 U007 Acrylonitrile 2-Propenenitrile 107-13-1 U009 Aflatoxins Same 1402-68-2 Aldicarb Propanal, 2-methyl-2-(methylthio)-, 116-06-3 P070 O-[(methylamino)carbonyl]oxime Aldicarb sulfone Propanal, 2-methyl-2- 1646-88-4 P203 (methylsulfonyl)-, O[(methylamino)carbonyl] oxime Aldrin 1,4,5,8-Dimethanonaphthalene, 309-00-2 P004 1,2,3,4,10,10-10-hexachloro 1,4,4a,5,8,8a-hexahydro-, (1alpha,4alpha,4abeta,5alpha,8alph a,8abeta)- Allyl alcohol 2-Propen-1-ol 107-18-6 P005 Effective Date: December 14, 2014 I-1 Title 128 Appendix I Common Name Chemical Abstracts Name Chemical Hazardous Abstracts Waste No. No. Allyl chloride 1-Propane, 3-chloro 107-05-1 Aluminum phosphide Same 20859-73-8 P006 4-Aminobiphenyl [1,1'-Biphenyl]-4-amine 92-67-1 5-(Aminomethyl)-3- 3(2H)-Isoxazolone, 5-(aminomethyl) 2763-96-4 P007 isoxazolol 4-Aminopyridine 4-Pyridinamine 504-24-5 P008 Amitrole 1H-1,2,4-Triazol-3-amine 61-82-5 U011 Ammonium vanadate Vanadic acid, ammonium salt 7803-55-6 P119 Aniline Benzenamine 62-53-3
    [Show full text]
  • Ethyl Carbamate 1. Exposure Data
    ETHYL CARBAMATE There appears to be no general consensus on a common trivial name for this sub- stance: ethyl carbamate and urethane (or urethan) are both commonly used; however, a preference for ethyl carbamate was noted in the more recent literature. The name urethane is also sometimes applied to high-molecular-weight polyurethanes used as foams, elastomers and coatings. Such products are not made from and do not generate the chemical ethyl carbamate on decomposition. Due to this possible confusion, the term ethyl carbamate has been used in this monograph. 1. exposure Data 1.1 Chemical and physical data 1.1.1. synonyms CAS Registry No.:.51–79–6 synonyms: Carbamic acid ethyl ester; ethylurethan; ethyl urethan; ethyl urethane; urethan; urethane 1.1.2. Chemical.formula.and.relative.molecular.mass NH2COOC2H5 Relative molecular mass: 89.1 1.1.3. Chemical.and.physical.properties.of.the.pure.substance From Budavari (2000) (a) Description: Colourless, almost odourless, columnar crystals or white granular powder; the pH of an aqueous solution is neutral (b) Boiling-point: 182–184.°C (c) Melting-point: 48–50.°C (d) solubility: Dissolves in water (1 g/0.5 mL), ethanol (1 g/0.8 mL), chloroform (1 g/0.9 mL), ether (1 g/1.5 mL), glycerol (1 g/2.5 mL) and olive oil (1 g/32 mL) (e).Volatility: Sublimes readily at 103°C at 54 mm Hg; volatile at room temperature –1281– 1282 IARC MONOGRAPHS VOLUME 96 1.1.4. Technical.products.and.impurities Trade names for ethyl carbamate include Leucothane, Leucethane and Pracarbamine.
    [Show full text]