Hormonal and Morphological Aspects of Growth and Sexual Maturation in Wild-Caught Male Vervet Monkeys (Chlorocebus Aethiops Pygerythrus) Tegan J

Total Page:16

File Type:pdf, Size:1020Kb

Hormonal and Morphological Aspects of Growth and Sexual Maturation in Wild-Caught Male Vervet Monkeys (Chlorocebus Aethiops Pygerythrus) Tegan J University of Wisconsin Milwaukee UWM Digital Commons Theses and Dissertations December 2012 Hormonal and Morphological Aspects of Growth and Sexual Maturation in Wild-Caught Male Vervet Monkeys (Chlorocebus aethiops pygerythrus) Tegan J. Gaetano University of Wisconsin-Milwaukee Follow this and additional works at: https://dc.uwm.edu/etd Part of the Animal Sciences Commons, Developmental Biology Commons, and the Endocrinology Commons Recommended Citation Gaetano, Tegan J., "Hormonal and Morphological Aspects of Growth and Sexual Maturation in Wild-Caught Male Vervet Monkeys (Chlorocebus aethiops pygerythrus)" (2012). Theses and Dissertations. 30. https://dc.uwm.edu/etd/30 This Thesis is brought to you for free and open access by UWM Digital Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UWM Digital Commons. For more information, please contact [email protected]. HORMONAL AND MORPHOLOGICAL ASPECTS OF GROWTH AND SEXUAL MATURATION IN WILD-CAUGHT MALE VERVET MONKEYS (CHLOROCEBUS AETHIOPS PYGERYTHRUS) by Tegan J. Gaetano A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Anthropology at The University of Wisconsin at Milwaukee December 2012 ABSTRACT ENDOCRINE AND MORPHOLOGICAL ASPECTS OF GROWTH AND SEXUAL MATURATION IN WILD-CAUGHT MALE VERVET MONKEYS (CHLOROCEBUS AETHIOPS PYGERYTHRUS) by Tegan J. Gaetano The University of Wisconsin at Milwaukee, 2012 Under the Supervision of Dr. Trudy R. Turner Knowledge of baseline changes in testosterone (T) and other androgens is central to both investigations of morphological, physiological, and behavioral correlates of inter-individual variation in the timing and shape of key events and transitions over the life course and questions of the evolution of species-specific schedules of maturation in primates. T represents an important determinant of spermatogenesis in male mammals and plays a central role in the expression of male sexual behavior and the development of secondary sex characteristics. This research integrates hormonal and morphometric methods to determine age-related changes in fecal testosterone (fT) metabolites and morphological markers of sexual maturation, including testicular volume, body mass (measured as BMI), and canine length, over the life course in a cross-sectional sample (n = 56) of wild-caught South African male vervet monkeys (Chlorocebus aethiops pygerythrus ). Contrary to expectations of this study, T was not significantly associated with age ( p = 0.1316 by ANOVA). However, BMI (p = 0.00022) and testis volume ( p = 4.335e-06) were strongly related to age, corresponding to the eruption of the canine teeth at adolescence (3-4 years of age). These results iii strongly suggest the existence of an adolescent growth spurt in male vervets. An interpretation of activation of the development of these maturational markers in preparation for challenges encountered at reproductive maturity, including dispersal and reproduction, is tentatively adopted here following Jolly and Phillips-Conroy (2003, 2006). However, future longitudinal observations to determine changes within individuals are necessary to provide greater confidence in this interpretation. iv ACKNOWLEDGEMENTS I would like to first thank the Department of Anthropology at the University of Wisconsin at Milwaukee (UWM) for allowing me the opportunity to pursue this research. I am grateful to so many people, but primary acknowledgement goes to my advisor, Dr. Trudy Turner, whose careful guidance and support throughout the research and writing processes were instrumental to the completion of this work. Acknowledgement also goes to the other members of my committee, Dr. Rafael Rodriguez and Dr. Benjamin Campbell, whose comments greatly improved an earlier draft of the manuscript. Special acknowledgement goes to Dr. Jennifer Danzy Cramer, who coached me every step of the way, Dr. Christopher Schmitt, who provided invaluable support in the field, Krista Millich, who did the legwork processing the samples, Dr. J. Patrick Gray, for his statistical counseling, and my parents, Kurt and Julieann Gaetano, for their unwavering love and support. I also acknowledge the many individuals who contributed in some way towards this project, from collecting samples in the field to providing emotional support at home: Elzet van Aswegen, Lindsay Barone, Micah Beller, Maryjka Blaszczyk, Riël Coetzer, Carol Daniel, Richard Gaetano, Dr. J. Paul Grobler, Michelle Heidelbach, Matt Kramer, Kathy Krueger, Hanna Legator, Dr. Lizanne Meiring, Oliver “Pez” Morton, Brian Nichols, Dewald du Plessis, Stefani Quam, Dr. Murray Stokoe, Nicholas Theron, the librarians at the UWM Golda Meir library, and everyone at the University of California at Los Angeles (UCLA) Center for Neurobehavioral Genetics. v Generous funding for this research was provided in part by a grant from the National Institute of Health (NIH R01RR016300). Gratitude is also due to the government of South Africa for permission to conduct this research and everyone at the South African National Department of Water and Environmental Affairs, the Free State, Kwa-Zulu Natal, Limpopo, and Eastern Cape provincial permit offices, and DHL. Lastly, I would like to thank the University of the Free State genetics department and the University of Illinois at Urbana-Champaign anthropology department for the use of their lab space and the UWM and UCLA IACUC committees. vi TABLE OF CONTENTS I. INTRODUCTION………………………………………………... .. 1 II. BACKGROUND………………………………………………… .. 5 A. Vervet Monkey Phylogeny……………………………….. 5 B. Vervet Monkey Behavior and Ecology…………………… 11 i. Description ………………………………………..... 11 ii. Diet and Distribution ……………………………… 15 Geographic Distribution and Habitat ………..... .. 15 Diet ………………………………………………. 18 iii. Social Organization ………………………………. 20 Group Composition, Ranging, and Territoriality .. 20 Dispersal ………………………………………… 24 Intragroup Relationships ………………………… 27 iv. Life History ………………………………………... 30 C. Life History Theory……………………………………….. 35 i. Comparative Primate Life Histories ……………….. 37 ii. Male Life History Strategies ………………………. 41 iii. Life History Variables in Ontogeny ………………. 46 D. Hormones and Life History………………………………. 50 i. Testosterone and the Endocrine System …………… 50 ii. Testosterone and Male Life Histories ……………... 53 iii. Testosterone Secretion over the Life Course ……... 56 III. OBJECTIVES/HYPOTHESES…………………………………. 63 IV. METHODS………………………………………………………. 65 A. Study Sites and Populations………………………………... 66 B. Sampling Procedures………………..……………………… 68 C. Data Collection and Analysis………………………………. 70 i. Age Classifications …………………………………… 70 ii. Morphological Measurements…………………………... 72 iii. Hormonal Analysis ……………………………………… 76 vi. Data Analysis ……………………………………………. 78 V. RESULTS…………………………………………………………... 79 VI. DISCUSSION……………………………………………………... 93 VII. CONCLUSION…………………………………………………... 98 VIII. LITERATURE CITED…………………………………………... 100 vii LIST OF FIGURES Figure 1. Morphological traits of the Old World monkey subfamilies….. 7 Figure 2. Molecular phylogeny of the parvorder catarrhini……………… 11 Figure 3. Map of Africa with distribution of Ch. aethiops ………………. 17 Figure 4. Life history constants of primates and other mammals……….. 41 Figure 5. Primate life history model…………………………………….. 50 Figure 6. Map of South Africa with GPS coordinates of trapping sites... 67 Figure 7. Dental patterns of catarrhini…………………………………... 73 Figure 8. Description of morphological measurements………………..... 74 Figure 9. Formula used for calculating BMI…………………………..... 76 Figure 10. Box and beanplots of linear regressions for Schema 1…….... 85 Figure 11. Box and beanplots of linear regressions for Schema 2…….... 87 Figure 12. Box and beanplots of linear regressions for Schema 3…..….. 90 Figure 13. Scatterplots of relationships among the dependent variables... 92 viii LIST OF TABLES Table 1. Summary of pelage color variation in Ch. aethiops …………… 12 Table 2. Summary of vervet group size, home range size, and diet……. 21 Table 3. Summary of the relationship between T and SSCs……………. 57 Table 4. Timing of acquisition of SSCs for male vervets………………. 63 Table 5. Description of trapping sites…………………………………... 68 Table 6. Age categories defined according to dental eruption………….. 73 Table 7. Age breakdown of sample according to classification schema... 75 Table 8. Summary of descriptive statistics…………………………….... 80 Table 9. Summary of ANOVA for log fT and log BMI……………….... 81 Table 10. Summary of ANOVA test for pair-wise comparisons for log fT and log BMI…………………………………………………….... 82 Table 11. Summary of Kruskal-Wallis test for relative canine length and relative testis volume……………………………………………... 82 Table 12. Summary of post Kruskal-Wallis test for multiple comparisons for relative canine length and relative testis volume……………... 8 ix 1 I. INTRODUCTION The concept of life history trade-offs has been instrumental to explanations of observed variation in the timing and shape of key events, transitions, and phases in the life course by providing a framework that considers all aspects of an organism. Life history theory describes differential strategies of allocation of resources among components of fitness (e.g. energy invested in survival versus reproduction) through the organizing principle of trade-offs. Trade-offs refers to the negative relationship between life history components and can be imagined as a series of facultative decisions as regards the allocation of energy to one aspect of the life course over another.
Recommended publications
  • Targets, Tactics, and Cooperation in the Play Fighting of Two Genera of Old World Monkeys (Mandrillus and Papio): Accounting for Similarities and Differences
    2019, 32 Heather M. Hill Editor Peer-reviewed Targets, Tactics, and Cooperation in the Play Fighting of Two Genera of Old World Monkeys (Mandrillus and Papio): Accounting for Similarities and Differences Kelly L. Kraus1, Vivien C. Pellis1, and Sergio M. Pellis1 1 Department of Neuroscience, University of Lethbridge, Canada Play fighting in many species involves partners competing to bite one another while avoiding being bitten. Species can differ in the body targets that are bitten and the tactics used to attack and defend those targets. However, even closely related species that attack and defend the same body target using the same tactics can differ markedly in how much the competitiveness of such interactions is mitigated by cooperation. A degree of cooperation is necessary to ensure that some turn-taking between the roles of attacker and defender occurs, as this is critical in preventing play fighting from escalating into serious fighting. In the present study, the dyadic play fighting of captive troops of 4 closely related species of Old World monkeys, 2 each from 2 genera of Papio and Mandrillus, was analyzed. All 4 species have a comparable social organization, are large bodied with considerable sexual dimorphism, and are mostly terrestrial. In all species, the target of biting is the same – the area encompassing the upper arm, shoulder, and side of the neck – and they have the same tactics of attack and defense. However, the Papio species exhibit more cooperation in their play than do the Mandrillus species, with the former using tactics that make biting easier to attain and that facilitate close bodily contact.
    [Show full text]
  • The Taxonomy of Primates in the Laboratory Context
    P0800261_01 7/14/05 8:00 AM Page 3 C HAPTER 1 The Taxonomy of Primates T HE T in the Laboratory Context AXONOMY OF P Colin Groves RIMATES School of Archaeology and Anthropology, Australian National University, Canberra, ACT 0200, Australia 3 What are species? D Taxonomy: EFINITION OF THE The biological Organizing nature species concept Taxonomy means classifying organisms. It is nowadays commonly used as a synonym for systematics, though Disagreement as to what precisely constitutes a species P strictly speaking systematics is a much broader sphere is to be expected, given that the concept serves so many RIMATE of interest – interrelationships, and biodiversity. At the functions (Vane-Wright, 1992). We may be interested basis of taxonomy lies that much-debated concept, the in classification as such, or in the evolutionary implica- species. tions of species; in the theory of species, or in simply M ODEL Because there is so much misunderstanding about how to recognize them; or in their reproductive, phys- what a species is, it is necessary to give some space to iological, or husbandry status. discussion of the concept. The importance of what we Most non-specialists probably have some vague mean by the word “species” goes way beyond taxonomy idea that species are defined by not interbreeding with as such: it affects such diverse fields as genetics, biogeog- each other; usually, that hybrids between different species raphy, population biology, ecology, ethology, and bio- are sterile, or that they are incapable of hybridizing at diversity; in an era in which threats to the natural all. Such an impression ultimately derives from the def- world and its biodiversity are accelerating, it affects inition by Mayr (1940), whereby species are “groups of conservation strategies (Rojas, 1992).
    [Show full text]
  • Patterns of Cranial Shape Variation in the Papionini (Primates
    Michelle Singleton Patterns of cranial shape variation in the Department of Anatomy, Papionini (Primates: Cercopithecinae) Midwestern University, 555 31st Street, Downers Grove, Traditional classifications of the Old World monkey tribe Papionini Illinois 60515, U.S.A. (Primates: Cercopithecinae) recognized the mangabey genera E-mail: Cercocebus and Lophocebus as sister taxa. However, molecular studies [email protected] have consistently found the mangabeys to be diphyletic, with Cercocebus and Mandrillus forming a clade to the exclusion of all other Received 10 January 2001 papionins. Recent studies have identified cranial and postcranial Revision received features which distinguish the Cercocebus–Mandrillus clade, however 26 October 2001 and the detailed similarities in cranial shape between the mangabey accepted 12 December 2001 genera are more difficult to reconcile with the molecular evidence. ff Keywords: Papionini, Given the large size di erential between members of the papionin molecular clades, it has frequently been suggested that allometric mangabey diphyly, cranial ff homoplasy, allometry, e ects account for homoplasy in papionin cranial form. A combina- geometric morphometrics. tion of geometric morphometric, bivariate, and multivariate methods was used to evaluate the hypothesis that allometric scaling contributes to craniofacial similarities between like-sized papionin taxa. Patterns of allometric and size-independent cranial shape variation were subsequently described and related to known papionin phylogenetic relationships and patterns of development. Results confirm that allometric scaling of craniofacial shape characterized by positive facial allometry and negative neurocranial allometry is present across adult papionins. Pairwise comparisons of regression lines among genera revealed considerable homogeneity of scaling within the Papionini, however statistically significant differ- ences in regression lines also were noted.
    [Show full text]
  • Mandrillus Leucophaeus Poensis)
    Ecology and Behavior of the Bioko Island Drill (Mandrillus leucophaeus poensis) A Thesis Submitted to the Faculty of Drexel University by Jacob Robert Owens in partial fulfillment of the requirements for the degree of Doctor of Philosophy December 2013 i © Copyright 2013 Jacob Robert Owens. All Rights Reserved ii Dedications To my wife, Jen. iii Acknowledgments The research presented herein was made possible by the financial support provided by Primate Conservation Inc., ExxonMobil Foundation, Mobil Equatorial Guinea, Inc., Margo Marsh Biodiversity Fund, and the Los Angeles Zoo. I would also like to express my gratitude to Dr. Teck-Kah Lim and the Drexel University Office of Graduate Studies for the Dissertation Fellowship and the invaluable time it provided me during the writing process. I thank the Government of Equatorial Guinea, the Ministry of Fisheries and the Environment, Ministry of Information, Press, and Radio, and the Ministry of Culture and Tourism for the opportunity to work and live in one of the most beautiful and unique places in the world. I am grateful to the faculty and staff of the National University of Equatorial Guinea who helped me navigate the geographic and bureaucratic landscape of Bioko Island. I would especially like to thank Jose Manuel Esara Echube, Claudio Posa Bohome, Maximilliano Fero Meñe, Eusebio Ondo Nguema, and Mariano Obama Bibang. The journey to my Ph.D. has been considerably more taxing than I expected, and I would not have been able to complete it without the assistance of an expansive list of people. I would like to thank all of you who have helped me through this process, many of whom I lack the space to do so specifically here.
    [Show full text]
  • Title Morphology of the Humerus and Femur in African Mangabeys And
    Morphology of the Humerus and Femur in African Mangabeys Title and Guenons: Functional Adaptation and Implications for the Evolution of Positional Behavior Author(s) NAKATSUKASA, Masato African study monographs. Supplementary issue (1994), 21: 1- Citation 61 Issue Date 1994-08 URL https://doi.org/10.14989/68371 Right Type Journal Article Textversion publisher Kyoto University African Study Monographs, Suppl. 21: 1-61, August 1994 MORPHOLOGY OF THE HUMERUS AND FEMUR IN AFRICAN MANGABEYS AND GUENONS: FUNCTIONAL ADAPTATION AND IMPLICATIONS FOR THE EVOLUTION OF POSITIONAL BEHAVIOR Masato NAKATSUKASA Department ofAnatomy and Biology, Osaka Medical College ABSTRACT The morphology of the humerus and femur was examined in three mangabey species (Cercocebus albigena, Cercocebus torquatus, Cercocebus galeritus) and three guenon species (Cercopithecus mitis, Cercopithecus mona, Cercopithecus aethiops). Cercocebus albigena, Cercopithecus mitis and Cercopithecus mona are strictly arboreal whereas Cercocebus torquatus, Cercocebus galeritus and Cercopithecus aethiops are more frequently utilize terrestrial substrates. Morphological differences, which presumably reflect different positional behaviors, were found within both Cercocebus and Cercopithecus genera. The arboreal Cercocebus albigena differs from the more terrestrial Cercocebus torquatus and Cercocebus galeritus in having more mobile joints and more gracile bones. In Cercocebus torquatus and Cercocebus galeritus, joint movements tends to be restricted to the parasagittal plane emphasizing the economy of parasagittal excursion of the limbs. Similar tendencies were observed between the arboreal Cercopithecus mitis and Cercopithecus mona and the semi-terrestrial Cercopithecus aethiops. However, the morphological distinctions, associated to arboreality vs. terrestriality, are not identical between Cercocebus and Cercopithecus. Semi-terrestrial mangabeys exhibit stronger adaptations for terrestriality by comparison with the semi-terrestrial guenon.
    [Show full text]
  • NATIONAL STUDBOOK Pig Tailed Macaque (Macaca Leonina)
    NATIONAL STUDBOOK Pig Tailed Macaque (Macaca leonina) Published as a part of the Central Zoo Authority sponsored project titled “Development and maintenance of studbooks for selected endangered species in Indian zoos” Data: Till December 2013 Published: March 2014 NATIONAL STUDBOOK Pig Tailed Macaque (Macaca leonine) Published as a part of the Central Zoo Authority sponsored project titled “Development and maintenance of studbooks for selected endangered species in Indian zoos” Compiled and analyzed by Ms. Nilofer Begum Junior Research Fellow Project Consultant Dr. Anupam Srivastav, Ph.D. Supervisors Dr. Parag Nigam Shri. P.C. Tyagi Copyright © WII, Dehradun, and CZA, New Delhi, 2014 This report may be quoted freely but the source must be acknowledged and cited as: Nigam P., Nilofer B., Srivastav A. & Tyagi P.C. (2014) National Studbook of Pig-tailed Macaque (Macaca leonina), Wildlife Institute of India, Dehradun and Central Zoo Authority, New Delhi. FOREWORD For species threatened with extinction in their natural habitats ex-situ conservation offers an opportunity for ensuring their long-term survival. This can be ensured by scientific management to ensure their long term genetic viability and demographic stability. Pedigree information contained in studbooks forms the basis for this management. The Central Zoo Authority (CZA) in collaboration with zoos in India has initiated a conservation breeding program for threatened species in Indian zoos. As a part of this endeavor a Memorandum of Understanding has been signed with the Wildlife Institute of India for compilation and update of studbooks of identified species in Indian zoos. As part of the project outcomes the WII has compiled the studbook for Pig tailed macaque (Macaca leonina) in Indian zoos.
    [Show full text]
  • The Genome of the Vervet (Chlorocebus Aethiops Sabaeus)
    Downloaded from genome.cshlp.org on October 1, 2021 - Published by Cold Spring Harbor Laboratory Press Resource The genome of the vervet (Chlorocebus aethiops sabaeus) Wesley C. Warren,1 Anna J. Jasinska,2,3 Raquel García-Pérez,4 Hannes Svardal,5 Chad Tomlinson,1 Mariano Rocchi,6 Nicoletta Archidiacono,6 Oronzo Capozzi,6 Patrick Minx,1 Michael J. Montague,1 Kim Kyung,1 LaDeana W. Hillier,1 Milinn Kremitzki,1 Tina Graves,1 Colby Chiang,1 Jennifer Hughes,7 Nam Tran,2 Yu Huang,2 Vasily Ramensky,2 Oi-wa Choi,2 Yoon J. Jung,2 Christopher A. Schmitt,2 Nikoleta Juretic,8 Jessica Wasserscheid,8 Trudy R. Turner,9,10 Roger W. Wiseman,11 Jennifer J. Tuscher,11 Julie A. Karl,11 Jörn E. Schmitz,12 Roland Zahn,13 David H. O’Connor,11 Eugene Redmond,14 Alex Nisbett,14 Béatrice Jacquelin,15 Michaela C. Müller-Trutwin,15 Jason M. Brenchley,16 Michel Dione,17 Martin Antonio,17 Gary P. Schroth,18 Jay R. Kaplan,19 Matthew J. Jorgensen,19 Gregg W.C. Thomas,20 Matthew W. Hahn,20 Brian J. Raney,21 Bronwen Aken,22 Rishi Nag,22 Juergen Schmitz,23 Gennady Churakov,23,24 Angela Noll,23 Roscoe Stanyon,25 David Webb,26 Francoise Thibaud-Nissen,26 Magnus Nordborg,5 Tomas Marques-Bonet,4 Ken Dewar,8 George M. Weinstock,27 Richard K. Wilson,1 and Nelson B. Freimer2 1The Genome Institute, Washington University School of Medicine, St. Louis, Missouri 63108, USA; 2Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, California 90095, USA; 3Institute of Bioorganic Chemistry, Polish Academy
    [Show full text]
  • Mitochondrial Phylogeography of Baboons (Papio Spp.)–Indication For
    BMC Evolutionary Biology BioMed Central Research article Open Access Mitochondrial phylogeography of baboons (Papio spp.) – Indication for introgressive hybridization? Dietmar Zinner*1, Linn F Groeneveld2,3, Christina Keller1,4 and Christian Roos5 Address: 1Cognitive Ethology, Deutsches Primatenzentrum, Kellnerweg 4, D-37077 Göttingen, Germany, 2Behavioral Ecology and Sociobiology, Deutsches Primatenzentrum, Kellnerweg 4, D-37077 Göttingen, Germany, 3Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Neustadt, Germany, 4Göttinger Zentrum für Biodiversitätsforschung und Ökologie, Untere Karspüle 2, D-37073 Göttingen, Germany and 5Gene Bank of Primates and Primate Genetics, Deutsches Primatenzentrum, Kellnerweg 4, D-37077 Göttingen, Germany Email: Dietmar Zinner* - [email protected]; Linn F Groeneveld - [email protected]; Christina Keller - [email protected]; Christian Roos - [email protected] * Corresponding author Published: 23 April 2009 Received: 4 July 2008 Accepted: 23 April 2009 BMC Evolutionary Biology 2009, 9:83 doi:10.1186/1471-2148-9-83 This article is available from: http://www.biomedcentral.com/1471-2148/9/83 © 2009 Zinner et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Baboons of the genus Papio are distributed over wide ranges of Africa and even colonized parts of the Arabian Peninsula. Traditionally, five phenotypically distinct species are recognized, but recent molecular studies were not able to resolve their phylogenetic relationships. Moreover, these studies revealed para- and polyphyletic (hereafter paraphyletic) mitochondrial clades for baboons from eastern Africa, and it was hypothesized that introgressive hybridization might have contributed substantially to their evolutionary history.
    [Show full text]
  • The Reproductive Trajectories of Bachelor Geladas
    THE REPRODUCTIVE TRAJECTORIES OF BACHELOR GELADAS by David J. Pappano A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Anthropology) in The University of Michigan 2013 Doctoral Committee: Professor Jacinta C. Beehner, Chair Professor Abigail W. Bigham Professor John C. Mitani Professor Elizabeth A. Tibbetts © David J. Pappano All rights reserved 2013 DEDICATION For my parents, Teresa and Donald Pappano For indulging a child’s curiosity in bats, snakes, and other animals described in Golden Guides to Nature. Most parents would have just read fairy tales to their children. And my best friend and partner, Ashley For your patience, kindness, and love in years past and those yet to come. ii ACKNOWLEDGEMENTS Over the past six years, I have been fortunate to have the support of friends, family, colleagues, and funding agencies that have made this dissertation possible. I am grateful for their input at all levels of this endeavor—from conception to completion. My time at the University of Michigan has been among the most formative and memorable experiences of my life, and I hope that many of the friends and colleagues I have met over these past years will continue to be a part of my life in the years to come. This research would not have been possible without the generous support of several government and non-profit funding agencies. A Graduate Research Fellowship from the National Science Foundation and the James Spuhler Fellowship through the Department of Anthropology largely funded my studies at Michigan. I am also grateful to the National Science Foundation for support through a Doctoral Dissertation Improvement Grant.
    [Show full text]
  • Areas 1- Ern Africa
    Kroeber Anthropological Society Papers, Nos. 71-72, 1990 Diet, Species Diversity and Distribution of African Fossil Baboons Brenda R. Benefit and Monte L. McCrossin Based on measurements ofmolarfeatures shown to befunctionally correlated with the proportions of fruits and leaves in the diets ofextant monkeys, Plio-Pleistocenepapionin baboonsfrom southern Africa are shown to have included more herbaceous resources in their diets and to have exploited more open country habitats than did the highlyfrugivorousforest dwelling eastern African species. The diets ofall species offossil Theropithecus are reconstructed to have included morefruits than the diets ofextant Theropithecus gelada. Theropithecus brumpti, T. quadratirostris and T. darti have greater capacitiesfor shearing, thinner enamel and less emphases on the transverse component ofmastication than T. oswaldi, and are therefore interpreted to have consumed leaves rather than grass. Since these species are more ancient than the grass-eating, more open country dwelling T. oswaldi, the origin ofthe genus Thero- pithecus is attributed tofolivorous adaptations by largepapionins inforest environments rather than to savannah adapted grass-eaters. Reconstructions ofdiet and habitat are used to explain differences in the relative abundance and diversity offossil baboons in eastern andsouthern Africa. INTRODUCTION abundance between eastern and southern Africa is observed for members of the Papionina (Papio, Interpretations of the dietary habits of fossil Cercocebus, Parapapio, Gorgopithecus, and Old World monkeys have been based largely on Dinopithecus). [We follow Szalay and Delson analogies to extant mammals with lophodont teeth (1979) in recognizing two tribes of cercopithe- (Jolly 1970; Napier 1970; Delson 1975; Andrews cines, Cercopithecini and Papionini, and three 1981; Andrews and Aiello 1984; Temerin and subtribes of the Papionini: Theropithecina (gela- Cant 1983).
    [Show full text]
  • Ancestral Facial Morphology of Old World Higher Primates (Anthropoidea/Catarrhini/Miocene/Cranium/Anatomy) BRENDA R
    Proc. Natl. Acad. Sci. USA Vol. 88, pp. 5267-5271, June 1991 Evolution Ancestral facial morphology of Old World higher primates (Anthropoidea/Catarrhini/Miocene/cranium/anatomy) BRENDA R. BENEFIT* AND MONTE L. MCCROSSINt *Department of Anthropology, Southern Illinois University, Carbondale, IL 62901; and tDepartment of Anthropology, University of California, Berkeley, CA 94720 Communicated by F. Clark Howell, March 11, 1991 ABSTRACT Fossil remains of the cercopithecoid Victoia- (1, 5, 6). Contrasting craniofacial configurations of cercopithe- pithecus recently recovered from middle Miocene deposits of cines and great apes are, in consequence, held to be indepen- Maboko Island (Kenya) provide evidence ofthe cranial anatomy dently derived with regard to the ancestral catarrhine condition of Old World monkeys prior to the evolutionary divergence of (1, 5, 6). This reconstruction has formed the basis of influential the extant subfamilies Colobinae and Cercopithecinae. Victoria- cladistic assessments ofthe phylogenetic relationships between pithecus shares a suite ofcraniofacial features with the Oligocene extant and extinct catarrhines (1, 2). catarrhine Aegyptopithecus and early Miocene hominoid Afro- Reconstructions of the ancestral catarrhine morphotype pithecus. AU three genera manifest supraorbital costae, anteri- are based on commonalities of subordinate morphotypes for orly convergent temporal lines, the absence of a postglabellar Cercopithecoidea and Hominoidea (1, 5, 6). Broadly distrib- fossa, a moderate to long snout, great facial
    [Show full text]
  • The Phenetic Affinities of Rungwecebus Kipunji
    Journal of Human Evolution 56 (2009) 25–42 Contents lists available at ScienceDirect Journal of Human Evolution journal homepage: www.elsevier.com/locate/jhevol The phenetic affinities of Rungwecebus kipunji Michelle Singleton Department of Anatomy, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA article info abstract Article history: The kipunji, a recently discovered primate endemic to Tanzania’s Southern Highlands and Udzungwa Received 31 August 2007 Mountains, was initially referred to the mangabey genus Lophocebus (Cercopithecinae: Papionini), but Accepted 28 July 2008 subsequent molecular analyses showed it to be more closely related to Papio. Its consequent referral to a new genus, Rungwecebus, has met with skepticism among papionin researchers, who have questioned Keywords: both the robustness of the phylogenetic results and the kipunji’s morphological distinctiveness. This Rungwecebus circumstance has been exacerbated by the immaturity of the single available specimen (FMNH 187122), Lophocebus an M1-stage juvenile. Therefore, a geometric morphometric analysis of juvenile papionin cranial shape Papio Papionini was used to explore the kipunji’s phenetic affinities and evaluate morphological support for its sepa- Geometric morphometrics ration from Lophocebus. Three-dimensional craniometric landmarks and semi-landmarks were collected on a sample of 124 subadult (dp4-M2 stage) cercopithecid crania. Traditional interlandmark distances were compared and a variety of multivariate statistical shape analyses were performed for the zygo- maxillary region (diagnostic in mangabeys) and the cranium as a whole. Raw and size-adjusted inter- landmark distances show the kipunji to have a relatively taller, shorter neurocranium and broader face and cranial base than is seen in M1-stage Lophocebus.
    [Show full text]