DOCTORAL THESIS the Behavioural Ecology of Personality in Wild Barbary Macaques Tkaczynski, Patrick

Total Page:16

File Type:pdf, Size:1020Kb

DOCTORAL THESIS the Behavioural Ecology of Personality in Wild Barbary Macaques Tkaczynski, Patrick DOCTORAL THESIS The Behavioural Ecology of Personality in Wild Barbary Macaques Tkaczynski, Patrick Award date: 2017 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 07. Oct. 2021 The Behavioural Ecology of Personality in Wild Barbary Macaques By Patrick John Tkaczynski BSc (Hons), MRes A thesis submitted in partial fulfilment of the requirements for the degree of PhD Department of Life Sciences University of Roehampton 2016 1 2 “A personality is the product of a clash between two opposing forces: the urge to create a life of one's own and the insistence by the world around us that we conform.” Hermann Hesse Soul of the Age: Selected Letters, 1891-1962 3 Abstract Personality, that is intra-individual consistency and inter-individual variation in behaviour, is widespread throughout the animal kingdom. This challenges traditional evolutionary assumptions that selection should favour behavioural flexibility, and that variation in behavioural strategies reflects stochastic variation around a single optimal behavioural strategy. Adaptive models to explain personality within the framework of evolutionary and behavioural ecology exist, and are typically empirically explored by identifying proximate associations to, and the functional consequences of, personality expression. To date, such studies have typically quantified a narrow range of personality traits within a species, and focused on captive populations or species with relatively limited behavioural or social repertoires. In this thesis, personality is studied in wild Barbary macaques (Macaca sylvanus). Quantification of personality structure in the species was conducted using a multi-method approach, and subsequently, it was examined whether physiological stress response (a proximate association) was related to personality expression, and whether personality expression affected social (functional) outcomes for individuals. Seven personality constructs were identified in Barbary macaques. Three personality constructs were related to physiological stress responses (Excitability, Tactility and Exploration), with the relationship between stress and personality expression dependent on sex, and in some cases rank or age. Two personality constructs (Excitability and Exploration) were associated with measures of social integration. Subjects generally socially assorted themselves according to personality, tending to be in proximity to individuals with a similar personality to themselves. This study contributes methodologically by 4 demonstrating the plausibility of multi-method approaches to measuring personality in wild primates, and empirically, by generating evidence supporting adaptive models for the evolution of personality, namely that intra-individual consistency in behaviour may be mediated by physiology and that inter- individual variation in behaviour has functional benefits in the formation of social relationships and social structures. 5 Table of Contents Abstract .................................................................................................. 4 List of Figures ....................................................................................... 12 List of tables ......................................................................................... 15 Acknowledgements ............................................................................... 21 1. Introduction ...................................................................................... 24 1.1 The Concept of Personality ................................................................ 25 1.2 Adaptive Models for the Origin and Maintenance of Personality .............. 31 1.3 Quantifying Personality in Animals ..................................................... 35 1.4 Mechanistic Associations of Personality ............................................... 38 1.5 Functional Outcomes of Personality .................................................... 42 1.6 Present Project and Aims .................................................................. 46 2. General Methods ............................................................................... 49 2.1 Study Species ................................................................................. 49 2.2 Study Site and Population ................................................................. 51 2.3 Study Subjects ................................................................................ 54 2.4 Data Collection ................................................................................ 58 2.4.1 Behavioural Sampling ................................................................. 58 2.4.2 Female Reproductive State .......................................................... 63 2.4.3 Field Data Collection Time Periods ................................................ 64 2.5 Dominance Hierarchy Calculations ................................................... 65 2.6 Personality Assessment .................................................................... 66 6 2.7 Stress Physiology Data ..................................................................... 71 2.7.1 Faecal Sample Collection ............................................................. 72 2.7.2 fGC Extraction ........................................................................... 72 2.7.3 Enzyme Immunoassay ................................................................ 73 2.8 Social Network Analysis .................................................................... 75 2.9 Statistics ........................................................................................ 78 2.9.1 Repeatability Analysis ................................................................. 78 2.9.2 Modelling Approaches ................................................................. 78 3. Quantifying Personality in Barbary Macaques: A Multi-Method Approach ............................................................................................... 81 3.1 Introduction .................................................................................... 82 3.1.1 Aims ......................................................................................... 87 3.2 Methods ......................................................................................... 88 3.2.1 Quantifying Personality Constructs ............................................... 88 Behavioural Coding .................................................................................. 88 Trait Rating ............................................................................................. 91 Experimental Assays ................................................................................ 92 Personality Expression and Experimental Design .......................................... 97 3.2.2 Determining Intra-Individual Consistency and Inter-Individual Variation in the Expression of Personality Constructs .............................. 98 3.2.3 Relation of Behavioural Variables to Constructs Generated Outside of a Natural Setting ................................................................................... 99 7 3.2.4 Testing Convergent and Discriminant Validity of Personality Constructs ........................................................................................................ 99 3.2.5 Determining Barbary Macaque Personality Structure ....................... 99 3.3 Results ......................................................................................... 100 3.3.1 Personality Constructs .............................................................. 100 Behavioural Coding ................................................................................ 100 Trait Rating ........................................................................................... 105 Experimental assays ............................................................................... 110 3.3.2 Inter-Individual Variation and Intra-Individual Consistency in the Expression of Personality Constructs ................................................... 123 Intra-Individual Consistency .................................................................... 123 Inter-Individual Variation ........................................................................ 124 3.3.3 Relation of Behavioural Variables to Trait Rating- and Experimental Assay-Derived Personality Constructs.................................................. 133 3.3.4 Convergent and Discriminant Validity of Personality Constructs ...... 138 3.3.5 Barbary Macaque Personality Structure ....................................... 138 3.4 Discussion .................................................................................... 143 3.4.1 Personality Constructs of Wild Barbary Macaques ........................
Recommended publications
  • Targets, Tactics, and Cooperation in the Play Fighting of Two Genera of Old World Monkeys (Mandrillus and Papio): Accounting for Similarities and Differences
    2019, 32 Heather M. Hill Editor Peer-reviewed Targets, Tactics, and Cooperation in the Play Fighting of Two Genera of Old World Monkeys (Mandrillus and Papio): Accounting for Similarities and Differences Kelly L. Kraus1, Vivien C. Pellis1, and Sergio M. Pellis1 1 Department of Neuroscience, University of Lethbridge, Canada Play fighting in many species involves partners competing to bite one another while avoiding being bitten. Species can differ in the body targets that are bitten and the tactics used to attack and defend those targets. However, even closely related species that attack and defend the same body target using the same tactics can differ markedly in how much the competitiveness of such interactions is mitigated by cooperation. A degree of cooperation is necessary to ensure that some turn-taking between the roles of attacker and defender occurs, as this is critical in preventing play fighting from escalating into serious fighting. In the present study, the dyadic play fighting of captive troops of 4 closely related species of Old World monkeys, 2 each from 2 genera of Papio and Mandrillus, was analyzed. All 4 species have a comparable social organization, are large bodied with considerable sexual dimorphism, and are mostly terrestrial. In all species, the target of biting is the same – the area encompassing the upper arm, shoulder, and side of the neck – and they have the same tactics of attack and defense. However, the Papio species exhibit more cooperation in their play than do the Mandrillus species, with the former using tactics that make biting easier to attain and that facilitate close bodily contact.
    [Show full text]
  • Urban Ecology of the Vervet Monkey Chlorocebus Pygerythrus in Kwazulu-Natal, South Africa ______
    Urban Ecology of the Vervet Monkey Chlorocebus pygerythrus in KwaZulu-Natal, South Africa __________________________________ Lindsay L Patterson A thesis presented in fulfilment of the academic requirements for the degree of Doctorate of Philosophy in Ecological Sciences At the University of KwaZulu-Natal, Pietermaritzburg, South Africa August 2017 ABSTRACT The spread of development globally is extensively modifying habitats and often results in competition for space and resources between humans and wildlife. For the last few decades a central goal of urban ecology research has been to deepen our understanding of how wildlife communities respond to urbanisation. In the KwaZulu-Natal Province of South Africa, urban and rural transformation has reduced and fragmented natural foraging grounds for vervet monkeys Chlorocebus pygerythrus. However, no data on vervet urban landscape use exist. They are regarded as successful urban exploiters, yet little data have been obtained prior to support this. This research investigated aspects of the urban ecology of vervet monkeys in three municipalities of KwaZulu-Natal (KZN), as well as factors that may predict human-monkey conflict. Firstly, through conducting an urban wildlife survey, we were able to assess residents’ attitudes towards, observations of and conflict with vervet monkeys, investigating the potential drivers of intragroup variation in spatial ecology, and identifying predators of birds’ nests. We analysed 602 surveys submitted online and, using ordinal regression models, we ascertained that respondents’ attitudes towards vervets were most influenced by whether or not they had had aggressive interactions with them, by the belief that vervet monkeys pose a health risk and by the presence of bird nests, refuse bins and house raiding on their properties.
    [Show full text]
  • The Taxonomy of Primates in the Laboratory Context
    P0800261_01 7/14/05 8:00 AM Page 3 C HAPTER 1 The Taxonomy of Primates T HE T in the Laboratory Context AXONOMY OF P Colin Groves RIMATES School of Archaeology and Anthropology, Australian National University, Canberra, ACT 0200, Australia 3 What are species? D Taxonomy: EFINITION OF THE The biological Organizing nature species concept Taxonomy means classifying organisms. It is nowadays commonly used as a synonym for systematics, though Disagreement as to what precisely constitutes a species P strictly speaking systematics is a much broader sphere is to be expected, given that the concept serves so many RIMATE of interest – interrelationships, and biodiversity. At the functions (Vane-Wright, 1992). We may be interested basis of taxonomy lies that much-debated concept, the in classification as such, or in the evolutionary implica- species. tions of species; in the theory of species, or in simply M ODEL Because there is so much misunderstanding about how to recognize them; or in their reproductive, phys- what a species is, it is necessary to give some space to iological, or husbandry status. discussion of the concept. The importance of what we Most non-specialists probably have some vague mean by the word “species” goes way beyond taxonomy idea that species are defined by not interbreeding with as such: it affects such diverse fields as genetics, biogeog- each other; usually, that hybrids between different species raphy, population biology, ecology, ethology, and bio- are sterile, or that they are incapable of hybridizing at diversity; in an era in which threats to the natural all. Such an impression ultimately derives from the def- world and its biodiversity are accelerating, it affects inition by Mayr (1940), whereby species are “groups of conservation strategies (Rojas, 1992).
    [Show full text]
  • The Behavioral Ecology of the Tibetan Macaque
    Fascinating Life Sciences Jin-Hua Li · Lixing Sun Peter M. Kappeler Editors The Behavioral Ecology of the Tibetan Macaque Fascinating Life Sciences This interdisciplinary series brings together the most essential and captivating topics in the life sciences. They range from the plant sciences to zoology, from the microbiome to macrobiome, and from basic biology to biotechnology. The series not only highlights fascinating research; it also discusses major challenges associ- ated with the life sciences and related disciplines and outlines future research directions. Individual volumes provide in-depth information, are richly illustrated with photographs, illustrations, and maps, and feature suggestions for further reading or glossaries where appropriate. Interested researchers in all areas of the life sciences, as well as biology enthu- siasts, will find the series’ interdisciplinary focus and highly readable volumes especially appealing. More information about this series at http://www.springer.com/series/15408 Jin-Hua Li • Lixing Sun • Peter M. Kappeler Editors The Behavioral Ecology of the Tibetan Macaque Editors Jin-Hua Li Lixing Sun School of Resources Department of Biological Sciences, Primate and Environmental Engineering Behavior and Ecology Program Anhui University Central Washington University Hefei, Anhui, China Ellensburg, WA, USA International Collaborative Research Center for Huangshan Biodiversity and Tibetan Macaque Behavioral Ecology Anhui, China School of Life Sciences Hefei Normal University Hefei, Anhui, China Peter M. Kappeler Behavioral Ecology and Sociobiology Unit, German Primate Center Leibniz Institute for Primate Research Göttingen, Germany Department of Anthropology/Sociobiology University of Göttingen Göttingen, Germany ISSN 2509-6745 ISSN 2509-6753 (electronic) Fascinating Life Sciences ISBN 978-3-030-27919-6 ISBN 978-3-030-27920-2 (eBook) https://doi.org/10.1007/978-3-030-27920-2 This book is an open access publication.
    [Show full text]
  • High-Ranking Geladas Protect and Comfort Others After Conflicts
    www.nature.com/scientificreports OPEN High-Ranking Geladas Protect and Comfort Others After Conficts Elisabetta Palagi1, Alessia Leone1, Elisa Demuru1 & Pier Francesco Ferrari2 Post-confict afliation is a mechanism favored by natural selection to manage conficts in animal Received: 2 January 2018 groups thus avoiding group disruption. Triadic afliation towards the victim can reduce the likelihood Accepted: 30 August 2018 of redirection (benefts to third-parties) and protect and provide comfort to the victim by reducing its Published: xx xx xxxx post-confict anxiety (benefts to victims). Here, we test specifc hypotheses on the potential functions of triadic afliation in Theropithecus gelada, a primate species living in complex multi-level societies. Our results show that higher-ranking geladas provided more spontaneous triadic afliation than lower- ranking subjects and that these contacts signifcantly reduced the likelihood of further aggression on the victim. Spontaneous triadic afliation signifcantly reduced the victim’s anxiety (measured by scratching), although it was not biased towards kin or friends. In conclusion, triadic afliation in geladas seems to be a strategy available to high-ranking subjects to reduce the social tension generated by a confict. Although this interpretation is the most parsimonious one, it cannot be totally excluded that third parties could also be afected by the negative emotional state of the victim thus increasing a third party’s motivation to provide comfort. Therefore, the debate on the linkage between third-party afliation and emotional contagion in monkeys remains to be resolved. Conficts in social animals can have various immediate and long-term outcomes. Immediately following a con- fict, opponents may show a wide range of responses, from tolerance and avoidance of open confict, to aggres- sion1.
    [Show full text]
  • Patterns of Cranial Shape Variation in the Papionini (Primates
    Michelle Singleton Patterns of cranial shape variation in the Department of Anatomy, Papionini (Primates: Cercopithecinae) Midwestern University, 555 31st Street, Downers Grove, Traditional classifications of the Old World monkey tribe Papionini Illinois 60515, U.S.A. (Primates: Cercopithecinae) recognized the mangabey genera E-mail: Cercocebus and Lophocebus as sister taxa. However, molecular studies [email protected] have consistently found the mangabeys to be diphyletic, with Cercocebus and Mandrillus forming a clade to the exclusion of all other Received 10 January 2001 papionins. Recent studies have identified cranial and postcranial Revision received features which distinguish the Cercocebus–Mandrillus clade, however 26 October 2001 and the detailed similarities in cranial shape between the mangabey accepted 12 December 2001 genera are more difficult to reconcile with the molecular evidence. ff Keywords: Papionini, Given the large size di erential between members of the papionin molecular clades, it has frequently been suggested that allometric mangabey diphyly, cranial ff homoplasy, allometry, e ects account for homoplasy in papionin cranial form. A combina- geometric morphometrics. tion of geometric morphometric, bivariate, and multivariate methods was used to evaluate the hypothesis that allometric scaling contributes to craniofacial similarities between like-sized papionin taxa. Patterns of allometric and size-independent cranial shape variation were subsequently described and related to known papionin phylogenetic relationships and patterns of development. Results confirm that allometric scaling of craniofacial shape characterized by positive facial allometry and negative neurocranial allometry is present across adult papionins. Pairwise comparisons of regression lines among genera revealed considerable homogeneity of scaling within the Papionini, however statistically significant differ- ences in regression lines also were noted.
    [Show full text]
  • A Comparison of the Karyotype of Five Species in Genus Macaca
    © 2006 The Japan Mendel Society Cytologia 71(2): 161–167, 2006 A Comparison of the Karyotype of Five Species in Genus Macaca (Primate, Cercopithecidae) in Thailand by Using Conventional Staining, G-banding and High-Resolution Technique Alongkoad Tanomtong*,1, Sumpars Khunsook1, Wiwat Kaensa1 and Ruengwit Bunjongrat2 1 Genetics Program, Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand 2 Genetics Program, Department of Botany, Faculty of Science, Chulalongkorn University, Phayathai, Bangkok, 10330, Thailand Received February 7, 2006; accepted March 1, 2006 Summary Cytogenetics of 5 macaque species from genus Macaca in Thailand were studied using lymphocyte cultures and high-resolution techniques. Their chromosome numbers are 2nϭ42, 20 pairs of autosome, and 1 pair of sex-chromosome. M. arctoides and M. mulatta have a fundamental number (NF) 84 in male and female but the others have 83 in male and 84 in female. They have 6 large, 4 medium, 8 small metacentric chromosomes and 8 large, 12 medium, 2 small submetacentric chromosomes respectively. M. fascicularis and M. mulatta have medium metacentric X chromo- some. M. assamensis, M. nemestrina and M. arctoides have medium submetacentric X chromosome. M. arctoides has small submetacentric Y chromosomes, M. mulatta has small metacentric Y chro- mosomes, while M. assamensis, M. fascicularis and M. nemestrina have small telocentric Y chromo- somes. By using G-banding in metaphase and high-resolution technique in late prophase, the results show that the bands are 274, 273, 273, 275, 273 and 351, 350, 350, 352, 350 respectively. Their auto- some and X chromosome are similar but their Y chromosome is different.
    [Show full text]
  • Home Range and Habitat Use of Crop-Raiding Barbary Macaques in the Upper Ourika Valley, Western High Atlas Mountains, Morocco
    International Journal of Avian & Wildlife Biology Research Article Open Access Home range and habitat use of crop-raiding barbary macaques in the upper ourika valley, western high atlas mountains, morocco Abstract Volume 3 Issue 1 - 2018 Ranging behavior and habitat use reflect the interaction between ecological factors and Salwa Namous, Mohammed Znari patterns of the individual behaviors. We investigated these aspects in a crop-raiding Cadi Ayyad University, Morocco group of Barbary macaques (Macaca sylvanus) between July and August 2012 in a degraded and poor-fruit forest environment in the Upper Ourika valley, western High Correspondence: Mohammed Znari, Cadi Ayyad University, Atlas mountains, Morocco. We evaluated the influences of the spatial distribution of Faculty of Science Semlalia, Boulevard Prince Moulay Abdellah, food resources on ranging behavior and habitat use. Total home range size for the PO Box: 2390, Marrakech, Morocco, Tel +212 697 78 39 59, Fax studied group was 24 ha and the mean daily path length was 1420 m, much lower than +212 524 437412, Email [email protected] those reported for most of the other macaque species. Barbary macaques did not use their home ranges uniformly; 50% of location records occurred within 25% of their Received: October 28, 2017 | Published: January 17, 2018 home range. They use differently the various zones of their home range and more intense occupation of around (cliffs and lower small valley) and within field crops. This can be related to the concentration of food resources in these latters. Keywords: barbary macaque (macaca sylvanus), habitat use, ranging behavior, ourika valley, morocco Introduction are highly folivorous with young leaves accounting for the bulk of monthly diet almost year-round.
    [Show full text]
  • Mandrillus Leucophaeus Poensis)
    Ecology and Behavior of the Bioko Island Drill (Mandrillus leucophaeus poensis) A Thesis Submitted to the Faculty of Drexel University by Jacob Robert Owens in partial fulfillment of the requirements for the degree of Doctor of Philosophy December 2013 i © Copyright 2013 Jacob Robert Owens. All Rights Reserved ii Dedications To my wife, Jen. iii Acknowledgments The research presented herein was made possible by the financial support provided by Primate Conservation Inc., ExxonMobil Foundation, Mobil Equatorial Guinea, Inc., Margo Marsh Biodiversity Fund, and the Los Angeles Zoo. I would also like to express my gratitude to Dr. Teck-Kah Lim and the Drexel University Office of Graduate Studies for the Dissertation Fellowship and the invaluable time it provided me during the writing process. I thank the Government of Equatorial Guinea, the Ministry of Fisheries and the Environment, Ministry of Information, Press, and Radio, and the Ministry of Culture and Tourism for the opportunity to work and live in one of the most beautiful and unique places in the world. I am grateful to the faculty and staff of the National University of Equatorial Guinea who helped me navigate the geographic and bureaucratic landscape of Bioko Island. I would especially like to thank Jose Manuel Esara Echube, Claudio Posa Bohome, Maximilliano Fero Meñe, Eusebio Ondo Nguema, and Mariano Obama Bibang. The journey to my Ph.D. has been considerably more taxing than I expected, and I would not have been able to complete it without the assistance of an expansive list of people. I would like to thank all of you who have helped me through this process, many of whom I lack the space to do so specifically here.
    [Show full text]
  • The Consequences of Habitat Loss and Fragmentation on the Distribution, Population Size, Habitat Preferences, Feeding and Rangin
    The consequences of habitat loss and fragmentation on the distribution, population size, habitat preferences, feeding and ranging Ecology of grivet monkey (Cercopithecus aethiopes aethiops) on the human dominated habitats of north Shoa, Amhara, Ethiopia: A Study of human-grivet monkey conflict 1 Table of contents Page 1. Introduction 1 1.1. Background And Justifications 3 1.2. Statement Of The Problem 6 1.3. Objectives 7 1.3.1. General Objective 7 1.3.2. Specific Objectives 8 1.4. Research Hypotheses Under Investigation 8 2. Description Of The Study Area 8 3. Methodology 11 3.1. Habitat Stratification, Vegetation Mapping And Land Use Cover 11 Change 3.2. Distribution Pattern And Population Estimate Of Grivet Monkey 11 3.3. Behavioral Data 12 3.4. Human Grivet Monkey Conflict 15 3.5. Habitat Loss And Fragmentation 15 4. Expected Output 16 5. Challenges Of The Project 16 6. References 17 i 1. Introduction World mammals status analysis on global scale shows that primates are the most threatened mammals (Schipper et al., 2008) making them indicators for investigating vulnerability to threats. Habitat loss and destruction are often considered to be the most serious threat to many tropical primate populations because of agricultural expansion, livestock grazing, logging, and human settlement (Cowlishaw and Dunbar, 2000). Deforestation and forest fragmentation have marched together with the expansion of agricultural frontiers, resulting in both habitat loss and subdivision of the remaining habitat (Michalski and Peres, 2005). This forest degradation results in reduction in size or fragmentation of the original forest habitat (Fahrig, 2003). Habitat fragmentation is often defined as a process during which “a large expanse of habitat is transformed into a number of smaller patches of smaller total area, isolated from each other by a matrix of habitats unlike the original”.
    [Show full text]
  • The Use of Personality Assessments in Designing Environmental Enrichment for Garnett's Bushbabies (Otolemur Garnettii)
    The University of Southern Mississippi The Aquila Digital Community Dissertations Summer 8-2008 The Use of Personality Assessments in Designing Environmental Enrichment for Garnett's Bushbabies (Otolemur garnettii) Lauren Elizabeth Highfill University of Southern Mississippi Follow this and additional works at: https://aquila.usm.edu/dissertations Part of the Biological Psychology Commons, and the Experimental Analysis of Behavior Commons Recommended Citation Highfill, Lauren Elizabeth, "The Use of Personality Assessments in Designing Environmental Enrichment for Garnett's Bushbabies (Otolemur garnettii)" (2008). Dissertations. 1143. https://aquila.usm.edu/dissertations/1143 This Dissertation is brought to you for free and open access by The Aquila Digital Community. It has been accepted for inclusion in Dissertations by an authorized administrator of The Aquila Digital Community. For more information, please contact [email protected]. The University of Southern Mississippi THE USE OF PERSONALITY ASSESSMENTS IN DESIGNING ENVIRONMENTAL ENRICHMENT FOR GARNETT'S BUSHBABIES (OTOLEMUR GARNETTII) by Lauren Elizabeth Highfill A Dissertation Submitted to the Graduate Studies Office of The University of Southern Mississippi in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Approved: August 2008 COPYRIGHT BY LAUREN ELIZABETH HIGHFILL AUGUST 2008 The University of Southern Mississippi THE USE OF PERSONALITY ASSESSMENTS IN DESIGNING ENVIRONMENTAL ENRICHMENT FOR GARNETT'S BUSHBABIES (OTOLEMUR GARNETTII) by Lauren
    [Show full text]
  • Degrees of Freedom in Social Bonds of Crested Macaque Females
    Animal Behaviour 123 (2017) 411e426 Contents lists available at ScienceDirect Animal Behaviour journal homepage: www.elsevier.com/locate/anbehav Degrees of freedom in social bonds of crested macaque females * Julie Duboscq a, b, c, d, , Christof Neumann a, b, e, f, 1, Muhammad Agil g, Dyah Perwitasari-Farajallah h, i, Bernard Thierry c, d, Antje Engelhardt a, b, 2 a Junior Research Group of Primate Sexual Selection, German Primate Center, Gottingen,€ Germany b Courant Research Centre for the Evolution of Social Behaviour, Gottingen,€ Germany c Universite de Strasbourg, Institut Pluridisciplinaire Hubert Curien, Strasbourg, France d Centre National de la Recherche Scientifique, Departement Ecologie, Physiologie et Ethologie, Strasbourg, France e Junior Research Group of Primate Kin Selection, Max-Planck-Institute for Evolutionary Anthropology, Leipzig, Germany f Institute of Biology, Faculty of Bioscience, Pharmacy and Psychology, University of Leipzig, Leipzig, Germany g Faculty of Veterinary Sciences, Bogor Agricultural University, Bogor, Indonesia h Primate Research Center, Bogor Agricultural University, Bogor, Indonesia i Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Bogor, Indonesia article info Social bonds between group members affect individual fitness and wellbeing. While the impact of bond Article history: strength is well studied, the consequences of bond predictability and equitability are often overlooked. Received 5 July 2016 Similarly, whether bonds reflect short-term contingencies and/or long-term social strategies remains Initial acceptance 29 July 2016 understudied. We investigated these questions in female crested macaques, Macaca nigra, which display Final acceptance 18 October 2016 a tolerant social style within a nepotistic hierarchical social structure. We analysed the structure of social Available online 18 December 2016 bonds by testing whether similarity within dyads (in kinship, dominance and age) predicted the MS.
    [Show full text]