Radtech Buyers Guide

Total Page:16

File Type:pdf, Size:1020Kb

Radtech Buyers Guide UV Glossary Feature of Terms Terminology Used for Ultraviolet (UV) Curing Process Design and Measurement This glossary of terms has been assembled in order to provide users, formulators, suppliers and researchers with terms that are used in the design and measurement of UV-curing systems. It was prompted by the scattered and sometimes incorrect terms used in industrial UV-curing technologies. It is intended to provide common and technical meanings as used in and appropriate for UV process design, measurement and specification. General scientific terms are included only where they relate to UV Measurements. The object is to be “user-friendly,” with descriptions and comments on meaning and usage, and minimum use of mathematical and strict definitions, but technically correct. Occasionally, where two or more terms are used similarly, notes will indicate the preferred term. For historical and other reasons, terms applicable to UV curing may vary slightly in their usage from other sciences. This glossary is intended to “close the gap” in technical language, and is recommended for authors, suppliers and designers in UV-curing technologies. absorbance had small amounts of metal halide(s) wavelengths (IR) are called “cold An index of the light or UV absorbed added to the mercury within the bulb. mirrors,” while reflectors having by a medium compared to the light These materials will emit their character- enhanced reflectance to long transmitted through it. Numerically, it is istic wavelengths in addition to the wavelengths are called “hot mirrors.” the logarithm of the ratio of incident mercury emissions. [This term is diffuse spectral irradiance to the transmitted preferred over doped lamps.] A characteristic of a surface that spectral irradiance. It is unitless bandwidth reflects or scatters light or UV equally number. Absorbance implies monochro- The range of wavelengths between in all directions (often confused with matic radiation, although it is some- two identified limits, expressed in the spread reflectance.) times used as an average applied over a same units as wavelength (nm). In doped lamps specified wavelength range. radiometry, it is important that the basis Term applied to UV lamps having absorptivity (absorption coefficient) of the limits (i.e., % response of the metal halide additives to the mercury Absorbance per unit thickness of instrument used) be specified or known. to alter the emission spectrum of the a medium. Band (wavelength range) must be lamp. (Historically this term has been communicated with radiometric data. actinometer used by UV arc lamp manufacturers. It A chemical system or physical device cold mirror is an imprecise usage, as the added that determines the number of photons A type of dichroic reflector that has chemical does not alter the properties in a beam integrally or per unit time. low reflectance to IR compared to its of another.) [The preferred term is For example, solutions of iron (III) reflectance of shorter wavelengths, additive lamps.] oxalate can be used as a chemical visible or UV. Also see dichroic. dose actinometer, while bolometers, cosine response Energy absorbed per unit mass. thermopiles, and photodiodes are Description of the spatial response to A precisely defined term in EB curing devices whose electrical response can incident energy where response is and ionizing radiation technologies: be correlated with the number of proportional to the cosine of the incident 1 gray (Gy) = 1 J/kg = 0.1 Mrad. In photons detected. angle. A radiometer with a diffuser or a UV curing, the term is often used actinometry photo-responsive coating will exhibit instead of the preferred terms for Determination of the number of nearly cosine response. energy measured at a surface. photons in a beam per unit time, or Preferred UV terms are energy, dichroic integrated over time. Exhibiting significantly different effective energy density or exposure (for energy delivered additive lamps reflection or transmission in two different Medium pressure mercury vapor wavelength ranges. Dichroic reflectors to a surface per unit area, not UV lamps (arc or microwave) that have that have reduced reflectance to long energy absorbed). 14 RADTECH REPORT JANUARY/FEBRUARY 2007 dynamic exposure emission spectra incident beam, not scattered or Exposure to a varying irradiance, Radiation from an atom or atoms in reflected, irradiance and fluence such as when a lamp passes over a an excited state, usually displayed rate become identical. Units are surface, or a surface passes under a lamp as radiant power vs wavelength. typically W/cm2 or mW/cm2. or lamps. In that case, energy is the Emission spectra are unique to each Feature flux (radiant flux) time-integral of the irradiance profile. atom or molecule. The spectra may be The flow of photons, in einstein/ observed as narrow line emission (as dynamic range second; one einstein = one mole The span between the minimum in atomic emission spectra), or as of photons. irradiance and the maximum irradiance quasi-continuous emission (as in hot mirror molecular emission spectra). A to which a radiometer will accurately A dichroic reflector having a higher mercury plasma emits both line spectra respond. Expressed as a ratio, or in reflectance to IR than to visible or UV. 2 and continuum simultaneously. measured units (e.g., watts/cm ). See dichroic. energy density effective energy density intensity Radiant energy arriving at a surface Radiant energy, within a specified A generic term, with a variety of per unit area, usually expressed in wavelength range, arriving at a surface meanings; undefined, but sometimes joules or millijoules per square per unit area, usually expressed in joules used to mean irradiance. Generally centimeter (J/cm2 or mJ/cm2). It is per square centimeter or millijoules per misapplied in UV curing. Its precise 2 2 the time-integral of irradiance. Same square centimeter (J/cm or mJ/cm ). Is optical meaning is flux/steradian as exposure. For a parallel and expressed in a specified wavelength (W/sr), applied to emission of light; perpendicularly incident beam, not range (without wavelength specification, not useful in UV curing. [Compare scattered or reflected, energy it is essentially meaningless). Commonly irradiance or peak irradiance or λ λ density and fluence become accepted abbreviations are W or E . effective irradiance.] [An alternate term is exposure.] identical. Compare fluence. [Not equivalent to dose.] irradiance effective irradiance Radiant power arriving at a surface exposure Radiant power, within a specified from all forward angles, per unit area. It Effective radiant energy density at a wavelength range, arriving at a surface is expressed in watts per square surface; the time-integral of irradiance per unit area. It is expressed in watts or centimeter or milliwatts per square within a specified bandwidth, expressed milliwatts per square centimeter 2 2 2 2 centimeter (W/cm or mW/cm ). 2 2 in J/cm or mJ/cm . The time-integral (W/cm or mW/cm ) in a specified Compare effective irradiance, of fluence rate, in J/m2 or J/cm2. Also wavelength range (without wavelength spectral irradiance and fluence rate. specification, it is essentially meaning- radiant exposure. In solar UV irradiance profile less.) For brevity, when the wavelength exposure applications, larger units may 2 2 The irradiance pattern a lamp; or, range is clearly understood, the term is be used—J/m or even MJ/m . in the case of dynamic exposure, the shortened to irradiance. Commonly Compare fluence. [Not equivalent to varying irradiance at a point on a accepted abbreviations are Eλ or Iλ. dose.] The definition varies in radiation surface that passes through the field of Compare spectral irradiance. chemistry and in clinical chemistry. illumination of a lamp or lamps; fluence einstein irradiance vs. time. One mole of photons. Sometimes The total radiant energy of all joule (millijoule) equated to the energy of one wavelengths passing from all directions A unit of work or energy (a newton- mole of photons—although this use through an infinitesimally small sphere meter). The time-integral of power. is discouraged. of cross-sectional area dA, divided by dA. Units are typically J/cm2 or mJ/cm2. Abbreviated J or mJ. (Although electromagnetic spectrum derived from a proper name, the term fluence rate An extremely wide range of radiation joule is not capitalized, while its The radiant power of all wave- that travels at the speed of light, and abbreviation is capitalized.) characterized by wavelength. Extends lengths passing from all directions light from radio waves (~104 meters), through through an infinitesimally small sphere Radiant energy in the visible range visible and UV (~10-4 meters), to gamma of cross-sectional area dA, divided by of the electromagnetic spectrum. rays (~10-14 meters). dA. For a parallel and perpendicularly JANUARY/FEBRUARY 2007 RADTECH REPORT 15 line emission power (radiant) see radiant power radiant energy Narrow lines of emission from an The rate of radiant energy or total Energy transfer, expressed in joules atom in an excited state. These are radiant power (W) emitted in all or watt-seconds (J = W(sec). directions by a source. the “spikes” observed in spectrometry. radiant exposure Feature Low-pressure sources exhibit finely power (UV lamp) See exposure. distinguished line emission; higher- Tubular UV lamps are commonly radiochromic pressure sources generally exhibit more described by their operating power in Preferred term is radiachromic. continuous spectra. “watts per inch” or “watts per centime- ter.” This is derived simply from the radiometer monochromatic A device that senses irradiance Light or UV radiated from a electrical power input divided by the incident on its sensor element. Its source that is concentrated in only effective length of the bulb. (It does not construction may incorporate either a very narrow wavelength range have a direct meaning to the output a thermal detector or a photonic (bandwidth). This may be efficiency of a lamp system, to the detector.
Recommended publications
  • Radiant Heating with Infrared
    W A T L O W RADIANT HEATING WITH INFRARED A TECHNICAL GUIDE TO UNDERSTANDING AND APPLYING INFRARED HEATERS Bleed Contents Topic Page The Advantages of Radiant Heat . 1 The Theory of Radiant Heat Transfer . 2 Problem Solving . 14 Controlling Radiant Heaters . 25 Tips On Oven Design . 29 Watlow RAYMAX® Heater Specifications . 34 The purpose of this technical guide is to assist customers in their oven design process, not to put Watlow in the position of designing (and guaranteeing) radiant ovens. The final responsibility for an oven design must remain with the equipment builder. This technical guide will provide you with an understanding of infrared radiant heating theory and application principles. It also contains examples and formulas used in determining specifications for a radiant heating application. To further understand electric heating principles, thermal system dynamics, infrared temperature sensing, temperature control and power control, the following information is also available from Watlow: • Watlow Product Catalog • Watlow Application Guide • Watlow Infrared Technical Guide to Understanding and Applying Infrared Temperature Sensors • Infrared Technical Letter #5-Emissivity Table • Radiant Technical Letter #11-Energy Uniformity of a Radiant Panel © Watlow Electric Manufacturing Company, 1997 The Advantages of Radiant Heat Electric radiant heat has many benefits over the alternative heating methods of conduction and convection: • Non-Contact Heating Radiant heaters have the ability to heat a product without physically contacting it. This can be advantageous when the product must be heated while in motion or when physical contact would contaminate or mar the product’s surface finish. • Fast Response Low thermal inertia of an infrared radiation heating system eliminates the need for long pre-heat cycles.
    [Show full text]
  • Far Infrared Radiation Exposure
    INTERNATIONAL COMMISSION ON NON‐IONIZING RADIATION PROTECTION ICNIRP STATEMENT ON FAR INFRARED RADIATION EXPOSURE PUBLISHED IN: HEALTH PHYSICS 91(6):630‐645; 2006 ICNIRP PUBLICATION – 2006 ICNIRP Statement ICNIRP STATEMENT ON FAR INFRARED RADIATION EXPOSURE The International Commission on Non-Ionizing Radiation Protection* INTRODUCTION the health hazards associated with these hot environ- ments. Heat strain and discomfort (thermal pain) nor- THE INTERNATIONAL Commission on Non Ionizing Radia- mally limit skin exposure to infrared radiation levels tion Protection (ICNIRP) currently provides guidelines below the threshold for skin-thermal injury, and this is to limit human exposure to intense, broadband infrared particularly true for sources that emit largely IR-C. radiation (ICNIRP 1997). The guidelines that pertained Furthermore, limits for lengthy infrared exposures would to infrared radiation (IR) were developed initially with an have to consider ambient temperatures. For example, an aim to provide guidance for protecting against hazards infrared irradiance of 1 kW mϪ2 (100 mW cmϪ2)atan from high-intensity artificial sources and to protect work- ambient temperature of 5°C can be comfortably warm- ers in hot industries. Detailed guidance for exposure to ing, but at an ambient temperature of 30°C this irradiance longer far-infrared wavelengths (referred to as IR-C would be painful and produce severe heat strain. There- radiation) was not provided because the energy at longer fore, ICNIRP provided guidelines to limit skin exposure wavelengths from most lamps and industrial infrared to pulsed sources and very brief exposures where thermal sources of concern actually contribute only a small injury could take place faster than the pain response time fraction of the total radiant heat energy and did not and where environmental temperature and the irradiated require measurement.
    [Show full text]
  • Glossary of Terms
    GLOSSARY OF TERMS Terminology Used for Ultraviolet (UV) Curing Process Design and Measurement This glossary of terms has been assembled in order to provide users, formulators, suppliers and researchers with terms that are used in the design and measurement of UV curing systems. It was prompted by the scattered and sometimes incorrect terms used in industrial UV curing technologies. It is intended to provide common and technical meanings as used in and appropriate for UV process design, measurement, and specification. General scientific terms are included only where they relate to UV Measurements. The object is to be "user-friendly," with descriptions and comments on meaning and usage, and minimum use of mathematical and strict definitions, but technically correct. Occasionally, where two or more terms are used similarly, notes will indicate the preferred term. For historical and other reasons, terms applicable to UV Curing may vary slightly in their usage from other sciences. This glossary is intended to 'close the gap' in technical language, and is recommended for authors, suppliers and designers in UV Curing technologies. absorbance An index of the light or UV absorbed by a medium compared to the light transmitted through it. Numerically, it is the logarithm of the ratio of incident spectral irradiance to the transmitted spectral irradiance. It is unitless number. Absorbance implies monochromatic radiation, although it is sometimes used as an average applied over a specified wavelength range. absorptivity (absorption coefficient) Absorbance per unit thickness of a medium. actinometer A chemical system or physical device that determines the number of photons in a beam integrally or per unit time.
    [Show full text]
  • Princeton University Laser Safety Training Guide
    Laser Safety Training Guide Environmental Health and Safety http://www.princeton.edu/ehs September 2007 LASER SAFETY TRAINING GUIDE TABLE OF CONTENTS SECTION 1: LASER FUNDAMENTALS 3 LASER Theory And Operation 4 Components Of A Laser 5 Types Of Lasers 6 SECTION 2: LASER HAZARDS 8 BEAM-RELATED HAZARDS 8 Types of Beam Exposure 9 Eye 9 Skin 12 NON-BEAM HAZARDS 12 Electrical Hazards 13 Laser Generated Air Contaminants -- The “Plume” 14 Collateral and Plasma Radiation 14 Fire Hazards 15 Compressed Gases 15 Laser Dyes 15 SECTION 3: LASER HAZARD CLASSIFICATION 17 SECTION 4: LASER CONTROL MEASURES 19 Maximum Permissible Exposure (MPE) 19 Accessible Exposrue Limit 19 Optical Density (OD) 19 Nominal Hazard Zone (NHZ) 20 Control Measures by Laser Classification 21 Protective Equipment 27 Protective Eyewear 27 Laser Eye Protection Selection Process 27 Other Protective Equipment 28 Special Controls for UltraViolet and Infrared Lasers 29 SECTION 5: LASER SAFETY AT PRINCETON UNIVERSITY 30 SECTION 6: GLOSSARY 33 APPENDIX A: SELECTED ANSI STANDARD TABLES 36 APPENDIX B: LASER SAFETY TIPS 43 APPENDIX C: LASER SAFETY CHECKLIST 44 2 Section 1: LASER FUNDAMENTALS Introduction The word laser is an acronym for Light Amplification by Stimulated Emission of Radiation. Lasers are used as research aides in many departments at Princeton University. In this document, the word laser will be limited to electromagnetic radiation-emitting devices using light amplification by stimulated emission of radiation at wavelengths from 180 nanometers to 1 millimeter. The electromagnetic spectrum includes energy ranging from gamma rays to electricity. Figure 1 illustrates the total electromagnetic spectrum and wavelengths of the various regions.
    [Show full text]
  • Laser Terms Glossary
    LASER TERMS GLOSSARY Texas State University – San Marcos 2/25/07 Risk Management & Safety LASER TERMS GLOSSARY Introduction - This section lists information pertinent to laser safety. The definitions in this glossary will not cover every term associated with lasers but does cover a majority of the terms. If a term should be encountered in your work with lasers and is not in this glossary, consult your supervisor or call the Texas State University Risk Management and Safety Office. Laser Terms ABSORPTION: means the transformation of radiant energy to a different form by interaction with matter. ACCESS CONTROL: Entry must be restricted to authorized laser personnel during the operation of laser equipment. ACCESSIBLE EMISSION LIMIT (AEL): - means the maximum accessible emission level permitted within a particular class. WAVELENGTH DURATION CLASS 1 CLASS 2 CLASS 3a CLASS 3b CLASS 4 (μm) (s) (W) (W) (W) (W) (W) Ultraviolet 0.18 to 0.302 3x104 ≤ 9.6x10-9 - Between 1 to 5 > Class 3a but > 0.5 0.302 to 0.4 3x104 ≤ 3.2x10-6 times Class 1 ≤ 0.5 Visible > Class 1 Less than 5 > Class 3a but 0.4 to 0.7 10 ≤ 0.4x10-3 > 0.5 but < 0.001 times Class 2 ≤ 0.5 Near IR ≤ 0.4x10-3 Between 1 to 5 > Class 3a but 0.7 to 1.05 ≥ 10 - > 0.5 to <1.9x10-3 times Class 1 ≤ 0.5 IR 1.05 to 1.15 ≤ 1.9x10-3 ≤ 1.9x10-3 Between 1 to 5 > Class 3a but 1.15 to 1.2 ≥ 10 - > 0.5 to 1.5x10-2 times Class 1 ≤ 0.5 1.2 to 1.4 ≤ 1.5x10-2 Far IR Between 1 to 5 > Class 3a but 1.4 to 100 ≥ 10 ≤ 9.6x10-3 - > 0.5 times Class 1 ≤ 0.5 AGENCY: means the Texas Department of State Health Services Radiation Control agency.
    [Show full text]
  • Radiometry and Photometry
    Radiometry and Photometry Wei-Chih Wang Department of Power Mechanical Engineering National TsingHua University W. Wang Materials Covered • Radiometry - Radiant Flux - Radiant Intensity - Irradiance - Radiance • Photometry - luminous Flux - luminous Intensity - Illuminance - luminance Conversion from radiometric and photometric W. Wang Radiometry Radiometry is the detection and measurement of light waves in the optical portion of the electromagnetic spectrum which is further divided into ultraviolet, visible, and infrared light. Example of a typical radiometer 3 W. Wang Photometry All light measurement is considered radiometry with photometry being a special subset of radiometry weighted for a typical human eye response. Example of a typical photometer 4 W. Wang Human Eyes Figure shows a schematic illustration of the human eye (Encyclopedia Britannica, 1994). The inside of the eyeball is clad by the retina, which is the light-sensitive part of the eye. The illustration also shows the fovea, a cone-rich central region of the retina which affords the high acuteness of central vision. Figure also shows the cell structure of the retina including the light-sensitive rod cells and cone cells. Also shown are the ganglion cells and nerve fibers that transmit the visual information to the brain. Rod cells are more abundant and more light sensitive than cone cells. Rods are 5 sensitive over the entire visible spectrum. W. Wang There are three types of cone cells, namely cone cells sensitive in the red, green, and blue spectral range. The approximate spectral sensitivity functions of the rods and three types or cones are shown in the figure above 6 W. Wang Eye sensitivity function The conversion between radiometric and photometric units is provided by the luminous efficiency function or eye sensitivity function, V(λ).
    [Show full text]
  • EL for Broadband Optical Radiation Karl Schulmeister ICNIRP SC-IV Member Seibersdorf Laboratories, Austria
    ICNIRP 7th International NIR Workshop Edinburgh, United Kingdom, 9-11 May 2012 EL for Broadband Optical Radiation Karl Schulmeister ICNIRP SC-IV Member Seibersdorf Laboratories, Austria Broadband Optical Radiation Karl Schulmeister ICNIRP 7th International NIR Workshop Edinburgh, United Kingdom, 9-11 May 2012 100 nm ~400 nm 780 nm 1 mm UV vis IR Broadband Optical Radiation Karl Schulmeister ICNIRP 7th International NIR Workshop Edinburgh, United Kingdom, 9-11 May 2012 Exposure Limits •UV –s() • UV-A • Retina photochemical • Retina thermal •Infraredeye • Skin (vis. and IR) Photographs courtesy of P Söderberg JP Cesarini and Univ. Michigan, Kellogg Eye Center Broadband Optical Radiation Karl Schulmeister ICNIRP 7th International NIR Workshop Edinburgh, United Kingdom, 9-11 May 2012 Exposure Limits •UV –s() • UV-A • Retina photochemical • Retina thermal • Infrared eye • Skin (vis. and IR) Broadband Optical Radiation Karl Schulmeister ICNIRP 7th International NIR Workshop Edinburgh, United Kingdom, 9-11 May 2012 Current Guidelines: ICNIRP Guidelines on limits of exposure to broad-band incoherent optical radiation (0.38-3µm) Health Phys. 73: 539-554; 1997 New Edition of Guidelines for visible and IR: Open Consultation 2011 Health Physics Publication: End 2012/Beginning 2013 Product Standards updated in parallel: CIES009/ IEC 62471 (Lamp Product Safety Standard) IEC 60825-1 (Laser Product Safety Standard) Broadband Optical Radiation Karl Schulmeister ICNIRP 7th International NIR Workshop Edinburgh, United Kingdom, 9-11 May 2012 Absorption location and mechanism overview •UV-C, B •UV-A P H O T O- •vis C H E M I C A L E = h * •IR-A •IR-B, C T H E R M A L Broadband Optical Radiation Karl Schulmeister ICNIRP 7th International NIR Workshop Edinburgh, United Kingdom, 9-11 May 2012 Changes in Guidelines .
    [Show full text]
  • Glossary of Laser Terms Absorb to Transform Radiant Energy Into a Different Form, with a Resultant Rise in Temperature. Absorpt
    Glossary of Laser Terms Absorb To transform radiant energy into a different form, with a resultant rise in temperature. Absorption Transformation of radiant energy to a different form of energy by the interaction with matter, depending on temperature and wavelength. Accessible Emission Level The magnitude of accessible laser (or collateral) radiation of a specific wavelength or emission duration at a particular point as measured by appropriate methods and devices. Also means radiation to which human access is possible in accordance with the definitions of the laser's hazard classification. Accessible Emission Limit (AEL) The maximum accessible emission level permitted within a particular class. In ANSI Z 136.1, AEL is determined as the product of accessible emission Maximum Permissible Exposure limit (MPE) and the area of the limiting aperture (7 mm for visible and near-infrared lasers). Aperture An opening through which radiation can pass. Argon A gas used as a laser medium. It emits blue-green light primarily at 448 and 515 nm. Attenuation The decrease in energy (or power) as a beam passes through an absorbing or scattering medium. Aversion Response Movement of the eyelid or the head to avoid an exposure to a noxious stimulant, bright light. It can occur within 0.25 seconds, and it includes the blink reflex time. Beam A collection of rays that may be parallel, convergent, or divergent. Beam Diameter The distance between diametrically opposed points in the cross section of a circular beam where the intensity is reduced by a factor of e-1 (0.368) of the peak level (for safety standards).
    [Show full text]
  • Degradation in PV Encapsulation Transmittance: an Interlaboratory Study Towards a Climate-Specific Test Preprint David C
    Degradation in PV Encapsulation Transmittance: An Interlaboratory Study Towards a Climate-Specific Test Preprint David C. Miller, Eleonora Annigoni, Amal Ballion, Jayesh G. Bokria, Laura S. Bruckman, David M. Burns, Xinxin Chen, Lamont Elliott, Jiangtao Feng, Roger H. French, Sean Fowler, Xiaohong Gu, Peter L. Hacke, Christian C. Honeker, Michael D. Kempe, Hussam Khonkar, Michael Köhl, Laure-Emmanuelle Perret-Aebi, Nancy H. Phillips, Kurt P. Scott, Fanny Sculati-Meillaud, Tsuyoshi Shioda, Shigeo Suga, Shin Watanabe, and John H. Wohlgemuth See inside for authors’ affiliations Presented at the 42nd IEEE Photovoltaic Specialists Conference New Orleans, Louisiana June 14–19, 2015 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Conference Paper NREL/CP-5J00-63508 August 2015 Contract No. DE-AC36-08GO28308 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance), a contractor of the US Government under Contract No. DE-AC36-08GO28308. Accordingly, the US Government and Alliance retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes. This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights.
    [Show full text]
  • LUXEON IR Family Eye Safety Assembly and Handling Guidelines
    INFRARED LUXEON IR Family Eye Safety Assembly and Handling Guidelines Introduction Light Emitting Diodes (LEDs) are becoming the standard light source for illumination infrared (IR) applications. High power LEDs have a high optical radiating power and a small light emitting surface, resulting in brightness of the light emission surface that is significant with respect to the lamps safety standard. The IEC-62471:2006 standard “Photobiological safety of lamps and lamp systems” is applicable when considering the eye and skin safety impact by LEDs. This application brief covers LEDs and lamps with IR wavelengths. The standard (IEC-62471:2006) defines exposure limits (EL) for eye and skin which depend on exposure duration and on whether a lamp emits in continuous or pulsed mode. Depending on the radiating power and brightness, lamps and LEDs are categorized into risk groups. Depending on the risk group classification, the manufacturer may need to put warning labels on products and\or packaging and include instructions for users. In this application brief some examples are given on how to classify the risk group. It gives an overview of the IEC-62471 standard and does not necessarily cover all application conditions. For final product classification and eye safety certification, the manufacturer should check with accredited laboratories that can assist in the exact classification of the product with IR LEDs. This application brief will focus on IR-A (700nm-1000nm) radiation and contains examples of exposure limit calculations. As the focus is on IR exposure, the photochemical hazards from UV, blue light and retinal blue hazard are assumed to be negligible.
    [Show full text]
  • Principles and Techniques of Remote Sensing
    EE/Ae 157a Introduction to the Physics and Techniques of Remote Sensing Week 2: Nature and Properties of Electromagnetic Waves 2-1 TOPICS TO BE COVERED • Fundamental Properties of Electromagnetic Waves – Electromagnetic Spectrum, Maxwell’s Equations, Wave Equation, Quantum Properties of EM Radiation, Polarization, Coherency, Group and Phase Velocity, Doppler Effect • Nomenclature and Definition of Radiation Quantities – Radiation Quantities, Spectral Quantities, Luminous Quantities • Generation of Electromagnetic Radiation • Detection of Electromagnetic Radiation • Overview of Interaction of EM Waves with Matter • Interaction Mechanisms Throughout the Electromagnetic Spectrum 2-2 ELECTROMAGNETIC SPECTRUM 2-3 MAXWELL’S EQUATIONS B E t D H J t B 0r H D 0 rE E 0 B 0 2-4 WAVE EQUATION From Maxwell’s Equations, we find: E H 0 r t 2E 0 r 0 r t 2 E E 2E 2E 2E 0 0 r 0 r t2 This is the free-space wave equation 2-5 SOLUTION TO THE WAVE EQUATION For a sinusoidal field, the wave equation reduces to 2 2 E 2 E 0 cr The solution to this equation is of the form E Aei kr t The speed of light is given by 1 c0 cr 0 r 0r r r 2-6 QUANTUM PROPERTIES OF EM RADIATION • Maxwell’s equations describe mathematically smooth motion of fields. • For very short wavelengths, it fails to describe certain significant phenomena when the wave interacts with matter. • In those cases, a quantum description is more appropriate. • In this description, the EM radiation is presented by a quantized burst with energy Q proportional to the
    [Show full text]
  • Radiometric Quantities and Units Used in Photobiology And
    Photochemistry and Photobiology, 2007, 83: 425–432 Radiometric Quantities and Units Used in Photobiology and Photochemistry: Recommendations of the Commission Internationale de l’Eclairage (International Commission on Illumination) David H. Sliney* International Commission on Illumination (CIE), Vienna, Austria and Laser ⁄ Optical Radiation Program, US Army Center for Health Promotion and Preventive Medicine, Gunpowder, MD Received 14 November 2006; accepted 16 November 2006; published online 20 November 2006 DOI: 10.1562 ⁄ 2006-11-14-RA-1081 ABSTRACT The International Commission on Illumination, the CIE, has provided international guidance in the science, termi- To characterize photobiological and photochemical phenomena, nology and measurement of light and optical radiation since standardized terms and units are required. Without a uniform set 1913. The International Lighting Vocabulary (parts of which of descriptors, much of the scientific value of publications can be are also issued as an ISO or IEC standard) has been an lost. Attempting to achieve an international consensus for a international reference for photochemists and photobiolo- common language has always been difficult, but now with truly gists for many decades; and the next revision is due to be international scientific publications, it is all the more important. published later this year or next (2). Despite its stature, As photobiology and photochemistry both represent the fusion of many research scientists are unfamiliar with some of the several scientific disciplines, it is not surprising that the physical subtle distinctions between several widely used radiometric terms used to describe exposures and dosimetric concepts can terms. Tables 1–4 provide several standardized terms that vary from author to author.
    [Show full text]