Far Infrared Radiation Exposure
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Far Infrared Radiation (FIR): Its Biological Effects and Medical Applications
DOI 10.1515/plm-2012-0034 Photon Lasers Med 2012; 1(4): 255–266 Review Fatma Vatansever and Michael R. Hamblin * Far infrared radiation (FIR): Its biological effects and medical applications Ferne Infrarotstrahlung: Biologische Effekte und medizinische Anwendungen Abstract am menschlichen K ö rper entwickelt werden. Spezielle Lampen und Saunas, die reine FIR-Strahlung (ohne Anteile von Nahinfrarot- und Mittelinfrarotstrahlung) Far infrared (FIR) radiation ( λ = 3 – 100 μ m) is a subdivision liefern, sind immer sicherer und effektiver geworden und of the electromagnetic spectrum that has been investi- werden verbreitet f ü r therapeutische Zwecke genutzt. gated for biological effects. The goal of this review is to Fasern, die mit FIR-emittierenden Keramik-Nanopartikeln cover the use of a further sub-division (3 – 12 μ m) of this impr ä gniert und zu Stoffen weiterverarbeitet werden, waveband, that has been observed in both in vitro and finden Verwendung als Kleidung oder Verbandsstoffe, die in vivo studies, to stimulate cells and tissue, and is consid- aufgrund der generierten FIR-Strahlung gesundheitliche ered a promising treatment modality for certain medical Vorteile bewirken k ö nnen. conditions. Technological advances have provided new techniques for delivering FIR radiation to the human body. Schl ü sselw ö rter: Ferne Infrarotstrahlung (FIR); Strah- Specialty lamps and saunas, delivering pure FIR radiation lungsw ärme; Schwarzk ö rperstrahlung; biogenetische (eliminating completely the near and mid infrared bands), Strahlen; FIR-emittierende Keramiken und Fasern; have became safe, effective, and widely used sources to Infrarotsauna. generate therapeutic effects. Fibers impregnated with FIR emitting ceramic nanoparticles and woven into fabrics, are being used as garments and wraps to generate FIR *Corresponding author: Michael R. -
Glossary of Terms
GLOSSARY OF TERMS Terminology Used for Ultraviolet (UV) Curing Process Design and Measurement This glossary of terms has been assembled in order to provide users, formulators, suppliers and researchers with terms that are used in the design and measurement of UV curing systems. It was prompted by the scattered and sometimes incorrect terms used in industrial UV curing technologies. It is intended to provide common and technical meanings as used in and appropriate for UV process design, measurement, and specification. General scientific terms are included only where they relate to UV Measurements. The object is to be "user-friendly," with descriptions and comments on meaning and usage, and minimum use of mathematical and strict definitions, but technically correct. Occasionally, where two or more terms are used similarly, notes will indicate the preferred term. For historical and other reasons, terms applicable to UV Curing may vary slightly in their usage from other sciences. This glossary is intended to 'close the gap' in technical language, and is recommended for authors, suppliers and designers in UV Curing technologies. absorbance An index of the light or UV absorbed by a medium compared to the light transmitted through it. Numerically, it is the logarithm of the ratio of incident spectral irradiance to the transmitted spectral irradiance. It is unitless number. Absorbance implies monochromatic radiation, although it is sometimes used as an average applied over a specified wavelength range. absorptivity (absorption coefficient) Absorbance per unit thickness of a medium. actinometer A chemical system or physical device that determines the number of photons in a beam integrally or per unit time. -
Skin and Hair Pigmentation Variation in Island Melanesia
AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 000:000–000 (2006) Skin and Hair Pigmentation Variation in Island Melanesia Heather L. Norton,1 Jonathan S. Friedlaender,2 D. Andrew Merriwether,3 George Koki,4 Charles S. Mgone,4 and Mark D. Shriver1* 1Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania 16802 2Department of Anthropology, Temple University, Philadelphia, Pennsylvania 19122 3Department of Anthropology, State University of New York at Binghamton, Binghamton, New York 13901 4Papua New Guinea Institute for Medical Research, Goroka, Eastern Highlands Province 441, Papua New Guinea KEY WORDS skin pigmentation; M index; Island Melanesia; natural selection ABSTRACT Skin and hair pigmentation are two of tation was significantly darker than females in 5 of 6 the most easily visible examples of human phenotypic islands examined. Hair pigmentation showed a negative, variation. Selection-based explanations for pigmentation but weak, correlation with age, while skin pigmentation variation in humans have focused on the relationship be- showed a positive, but also weak, correlation with age. tween melanin and ultraviolet radiation, which is largely Skin and hair pigmentation varied significantly between dependent on latitude. In this study, skin and hair pig- islands as well as between neighborhoods within those mentation were measured as the melanin (M) index, us- islands. Bougainvilleans showed significantly darker skin ing narrow-band reflectance spectroscopy for 1,135 indi- than individuals from any other island considered, and viduals from Island Melanesia. Overall, the results show are darker than a previously described African-American remarkable pigmentation variation, given the small geo- population. These findings are discussed in relation to graphic region surveyed. -
The Space Infrared Interferometric Telescope (SPIRIT): High- Resolution Imaging and Spectroscopy in the Far-Infrared
Leisawitz, D. et al., J. Adv. Space Res., in press (2007), doi:10.1016/j.asr.2007.05.081 The Space Infrared Interferometric Telescope (SPIRIT): High- resolution imaging and spectroscopy in the far-infrared David Leisawitza, Charles Bakera, Amy Bargerb, Dominic Benforda, Andrew Blainc, Rob Boylea, Richard Brodericka, Jason Budinoffa, John Carpenterc, Richard Caverlya, Phil Chena, Steve Cooleya, Christine Cottinghamd, Julie Crookea, Dave DiPietroa, Mike DiPirroa, Michael Femianoa, Art Ferrera, Jacqueline Fischere, Jonathan P. Gardnera, Lou Hallocka, Kenny Harrisa, Kate Hartmana, Martin Harwitf, Lynne Hillenbrandc, Tupper Hydea, Drew Jonesa, Jim Kellogga, Alan Koguta, Marc Kuchnera, Bill Lawsona, Javier Lechaa, Maria Lechaa, Amy Mainzerg, Jim Manniona, Anthony Martinoa, Paul Masona, John Mathera, Gibran McDonalda, Rick Millsa, Lee Mundyh, Stan Ollendorfa, Joe Pellicciottia, Dave Quinna, Kirk Rheea, Stephen Rineharta, Tim Sauerwinea, Robert Silverberga, Terry Smitha, Gordon Staceyf, H. Philip Stahli, Johannes Staguhn j, Steve Tompkinsa, June Tveekrema, Sheila Walla, and Mark Wilsona a NASA’s Goddard Space Flight Center, Greenbelt, MD b Department of Astronomy, University of Wisconsin, Madison, Wisconsin, USA c California Institute of Technology, Pasadena, CA, USA d Lockheed Martin Technical Operations, Bethesda, Maryland, USA e Naval Research Laboratory, Washington, DC, USA f Department of Astronomy, Cornell University, Ithaca, USA g Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA h Astronomy Department, University of Maryland, College Park, Maryland, USA i NASA’s Marshall Space Flight Center, Huntsville, Alabama, USA j SSAI, Lanham, Maryland, USA ABSTRACT We report results of a recently-completed pre-Formulation Phase study of SPIRIT, a candidate NASA Origins Probe mission. SPIRIT is a spatial and spectral interferometer with an operating wavelength range 25 - 400 µm. -
Unlocking the Mystery Ofskincolor
Thienna_INT_6x8_102507 3/26/08 5:10 PM Page 1 UNLOCKING THE MYSTERY OFSKINCOLOR The Strictly Natural Way to dramatically lighten your skin color through diet and lifestyle. Scientific Nutritionist Thiênna Ho, Ph.D. Thienna_INT_6x8_102507 3/26/08 5:10 PM Page 2 Unlocking the Mystery of Skin Color: The Strictly Natural Way to Dramatically Lighten Your Skin Color through Diet and Lifestyle. Copyright © 2007 by Thiênna Ho, Ph.D., and THIÊNNA, Inc. All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without permission in writing from the author. Contact Address: THIÊNNA, Inc. 236 West Portal Ave. #511 San Francisco, CA 94127 www.thienna.com This book is not intended to replace medical advice or be a substitute for a physician. Any application of the information set forth in the following pages is at the reader’s discretion. The author expressly disclaims responsibility for any adverse effects arising from the following advice given in this book without appropriate medical supervision. The reader should consult with his or her physician before making any use of the information in this book. ISBN 978-0-9792103-0-3 1. Nutrition 2. Health Book design by www.KareenRoss.com Photo credit for Thiênna after photo and Thiênna & Jimmy after photo goes to Sophia Field. Thienna_INT_6x8_102507 3/26/08 5:10 PM Page 25 CHAPTER 1 The Mysterious Variety of Human Skin Color nchantingly beautiful in every one of its shades from palest albino toE deepest ebony, human skin color is mysterious in its variety. -
Princeton University Laser Safety Training Guide
Laser Safety Training Guide Environmental Health and Safety http://www.princeton.edu/ehs September 2007 LASER SAFETY TRAINING GUIDE TABLE OF CONTENTS SECTION 1: LASER FUNDAMENTALS 3 LASER Theory And Operation 4 Components Of A Laser 5 Types Of Lasers 6 SECTION 2: LASER HAZARDS 8 BEAM-RELATED HAZARDS 8 Types of Beam Exposure 9 Eye 9 Skin 12 NON-BEAM HAZARDS 12 Electrical Hazards 13 Laser Generated Air Contaminants -- The “Plume” 14 Collateral and Plasma Radiation 14 Fire Hazards 15 Compressed Gases 15 Laser Dyes 15 SECTION 3: LASER HAZARD CLASSIFICATION 17 SECTION 4: LASER CONTROL MEASURES 19 Maximum Permissible Exposure (MPE) 19 Accessible Exposrue Limit 19 Optical Density (OD) 19 Nominal Hazard Zone (NHZ) 20 Control Measures by Laser Classification 21 Protective Equipment 27 Protective Eyewear 27 Laser Eye Protection Selection Process 27 Other Protective Equipment 28 Special Controls for UltraViolet and Infrared Lasers 29 SECTION 5: LASER SAFETY AT PRINCETON UNIVERSITY 30 SECTION 6: GLOSSARY 33 APPENDIX A: SELECTED ANSI STANDARD TABLES 36 APPENDIX B: LASER SAFETY TIPS 43 APPENDIX C: LASER SAFETY CHECKLIST 44 2 Section 1: LASER FUNDAMENTALS Introduction The word laser is an acronym for Light Amplification by Stimulated Emission of Radiation. Lasers are used as research aides in many departments at Princeton University. In this document, the word laser will be limited to electromagnetic radiation-emitting devices using light amplification by stimulated emission of radiation at wavelengths from 180 nanometers to 1 millimeter. The electromagnetic spectrum includes energy ranging from gamma rays to electricity. Figure 1 illustrates the total electromagnetic spectrum and wavelengths of the various regions. -
Vitamin D and Cancer
WORLD HEALTH ORGANIZATION INTERNATIONAL AGENCY FOR RESEARCH ON CANCER Vitamin D and Cancer IARC 2008 WORLD HEALTH ORGANIZATION INTERNATIONAL AGENCY FOR RESEARCH ON CANCER IARC Working Group Reports Volume 5 Vitamin D and Cancer - i - Vitamin D and Cancer Published by the International Agency for Research on Cancer, 150 Cours Albert Thomas, 69372 Lyon Cedex 08, France © International Agency for Research on Cancer, 2008-11-24 Distributed by WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel: +41 22 791 3264; fax: +41 22 791 4857; email: [email protected]) Publications of the World Health Organization enjoy copyright protection in accordance with the provisions of Protocol 2 of the Universal Copyright Convention. All rights reserved. The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the World Health Organization concerning the legal status of any country, territory, city, or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or of certain manufacturer’s products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters. The authors alone are responsible for the views expressed in this publication. The International Agency for Research on Cancer welcomes requests for permission to reproduce or translate its publications, in part or in full. -
Ethnicity and Skin Autofluorescence-Based Risk-Engines for Cardiovascular Disease and Diabetes Mellitus
RESEARCH ARTICLE Ethnicity and skin autofluorescence-based risk-engines for cardiovascular disease and diabetes mellitus Muhammad Saeed Ahmad1,2☯*, Torben Kimhofer2☯*, Sultan Ahmad1, Mohammed Nabil AlAma3, Hala Hisham Mosli4, Salwa Ibrahim Hindawi5, Dennis O. Mook-Kanamori6, KatarõÂna SÏ ebekova 7, Zoheir Abdullah Damanhouri1,8, Elaine Holmes1,2 1 Drug Metabolism Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia, 2 Biomolecular Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College a1111111111 London, South Kensington, London, United Kingdom, 3 Cardiology Unit, Department of Medicine, King a1111111111 Abdulaziz University Hospital, Jeddah, Saudi Arabia, 4 Department of Medicine, Faculty of Medicine, King a1111111111 Abdulaziz University, Jeddah, Saudi Arabia, 5 Department of Haematology, Faculty of Medicine, King a1111111111 Abdulaziz University, Jeddah, Saudi Arabia, 6 Department of Primary Care/Public Health and Clinical a1111111111 Epidemiology, Leiden University Medical Center, Leiden, The Netherlands, 7 Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia, 8 Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia ☯ These authors contributed equally to this work. * [email protected] (MSA); [email protected] (TK) OPEN ACCESS Citation: Ahmad MS, Kimhofer T, Ahmad S, AlAma MN, Mosli HH, Hindawi SI, et al. (2017) Ethnicity Abstract and skin autofluorescence-based risk-engines for cardiovascular disease and diabetes mellitus. PLoS Skin auto fluorescence (SAF) is used as a proxy for the accumulation of advanced glycation ONE 12(9): e0185175. https://doi.org/10.1371/ end products (AGEs) and has been proposed to stratify patients into cardiovascular disease journal.pone.0185175 (CVD) and diabetes mellitus (DM) risk groups. -
Differences in Human Pigmentation: Measurement, Geographic Variation, and Causes* G
Vol. 60. o. 6 TilE J OU RNA L OF I NVESTIGATIVE DEilMATOLOGY Printed in U.S.A. Copyri ght© 1973 by The Williams & Wilkins Co. DIFFERENCES IN HUMAN PIGMENTATION: MEASUREMENT, GEOGRAPHIC VARIATION, AND CAUSES* G. AINS WORTH HARRISON, PH.D. INTRODUCTION affected b y o nly a s ingle pair of ge nes. Since most of the genetic studies of population differences in T he racial differences in pi gmentation t hat have pigmentation relate to skin color, I shall , for the been studied by ant hropolog ists are t he readily most part, confine my d isc ussion to it. observable o nes t hat occur in skin, ha ir, a nd t he eye. T he co lor of t hese structures is due to a THE MEASUREM ENT OF SKIN CO LOR number of factors, but variation in them, espe For a long time, t he study o f skin co lor variation cia lly as it occurs between popu l at i m~s, ~p pe ~ r s to. in fi eld sit uations was beset with difficult problem be largely due to the amount and dtstn butwn of of m easurement. At first, measurements involved t he pigment melanin. This was first _most firml y_ visual co mpari son with sets of co lor standards such established fo r skin in t he now classtcal work of as the Va n Luschan t iles or the colored papers used Edwards and Duntley (1939) and has subsequently by Gates ( 1949) . These were hi ghly unsatisfactory been demonstrated fo r hair and the iris diaphragm not onl y because of the subjectivity of visual of the eye. -
Laser Terms Glossary
LASER TERMS GLOSSARY Texas State University – San Marcos 2/25/07 Risk Management & Safety LASER TERMS GLOSSARY Introduction - This section lists information pertinent to laser safety. The definitions in this glossary will not cover every term associated with lasers but does cover a majority of the terms. If a term should be encountered in your work with lasers and is not in this glossary, consult your supervisor or call the Texas State University Risk Management and Safety Office. Laser Terms ABSORPTION: means the transformation of radiant energy to a different form by interaction with matter. ACCESS CONTROL: Entry must be restricted to authorized laser personnel during the operation of laser equipment. ACCESSIBLE EMISSION LIMIT (AEL): - means the maximum accessible emission level permitted within a particular class. WAVELENGTH DURATION CLASS 1 CLASS 2 CLASS 3a CLASS 3b CLASS 4 (μm) (s) (W) (W) (W) (W) (W) Ultraviolet 0.18 to 0.302 3x104 ≤ 9.6x10-9 - Between 1 to 5 > Class 3a but > 0.5 0.302 to 0.4 3x104 ≤ 3.2x10-6 times Class 1 ≤ 0.5 Visible > Class 1 Less than 5 > Class 3a but 0.4 to 0.7 10 ≤ 0.4x10-3 > 0.5 but < 0.001 times Class 2 ≤ 0.5 Near IR ≤ 0.4x10-3 Between 1 to 5 > Class 3a but 0.7 to 1.05 ≥ 10 - > 0.5 to <1.9x10-3 times Class 1 ≤ 0.5 IR 1.05 to 1.15 ≤ 1.9x10-3 ≤ 1.9x10-3 Between 1 to 5 > Class 3a but 1.15 to 1.2 ≥ 10 - > 0.5 to 1.5x10-2 times Class 1 ≤ 0.5 1.2 to 1.4 ≤ 1.5x10-2 Far IR Between 1 to 5 > Class 3a but 1.4 to 100 ≥ 10 ≤ 9.6x10-3 - > 0.5 times Class 1 ≤ 0.5 AGENCY: means the Texas Department of State Health Services Radiation Control agency. -
Radiometry and Photometry
Radiometry and Photometry Wei-Chih Wang Department of Power Mechanical Engineering National TsingHua University W. Wang Materials Covered • Radiometry - Radiant Flux - Radiant Intensity - Irradiance - Radiance • Photometry - luminous Flux - luminous Intensity - Illuminance - luminance Conversion from radiometric and photometric W. Wang Radiometry Radiometry is the detection and measurement of light waves in the optical portion of the electromagnetic spectrum which is further divided into ultraviolet, visible, and infrared light. Example of a typical radiometer 3 W. Wang Photometry All light measurement is considered radiometry with photometry being a special subset of radiometry weighted for a typical human eye response. Example of a typical photometer 4 W. Wang Human Eyes Figure shows a schematic illustration of the human eye (Encyclopedia Britannica, 1994). The inside of the eyeball is clad by the retina, which is the light-sensitive part of the eye. The illustration also shows the fovea, a cone-rich central region of the retina which affords the high acuteness of central vision. Figure also shows the cell structure of the retina including the light-sensitive rod cells and cone cells. Also shown are the ganglion cells and nerve fibers that transmit the visual information to the brain. Rod cells are more abundant and more light sensitive than cone cells. Rods are 5 sensitive over the entire visible spectrum. W. Wang There are three types of cone cells, namely cone cells sensitive in the red, green, and blue spectral range. The approximate spectral sensitivity functions of the rods and three types or cones are shown in the figure above 6 W. Wang Eye sensitivity function The conversion between radiometric and photometric units is provided by the luminous efficiency function or eye sensitivity function, V(λ). -
EL for Broadband Optical Radiation Karl Schulmeister ICNIRP SC-IV Member Seibersdorf Laboratories, Austria
ICNIRP 7th International NIR Workshop Edinburgh, United Kingdom, 9-11 May 2012 EL for Broadband Optical Radiation Karl Schulmeister ICNIRP SC-IV Member Seibersdorf Laboratories, Austria Broadband Optical Radiation Karl Schulmeister ICNIRP 7th International NIR Workshop Edinburgh, United Kingdom, 9-11 May 2012 100 nm ~400 nm 780 nm 1 mm UV vis IR Broadband Optical Radiation Karl Schulmeister ICNIRP 7th International NIR Workshop Edinburgh, United Kingdom, 9-11 May 2012 Exposure Limits •UV –s() • UV-A • Retina photochemical • Retina thermal •Infraredeye • Skin (vis. and IR) Photographs courtesy of P Söderberg JP Cesarini and Univ. Michigan, Kellogg Eye Center Broadband Optical Radiation Karl Schulmeister ICNIRP 7th International NIR Workshop Edinburgh, United Kingdom, 9-11 May 2012 Exposure Limits •UV –s() • UV-A • Retina photochemical • Retina thermal • Infrared eye • Skin (vis. and IR) Broadband Optical Radiation Karl Schulmeister ICNIRP 7th International NIR Workshop Edinburgh, United Kingdom, 9-11 May 2012 Current Guidelines: ICNIRP Guidelines on limits of exposure to broad-band incoherent optical radiation (0.38-3µm) Health Phys. 73: 539-554; 1997 New Edition of Guidelines for visible and IR: Open Consultation 2011 Health Physics Publication: End 2012/Beginning 2013 Product Standards updated in parallel: CIES009/ IEC 62471 (Lamp Product Safety Standard) IEC 60825-1 (Laser Product Safety Standard) Broadband Optical Radiation Karl Schulmeister ICNIRP 7th International NIR Workshop Edinburgh, United Kingdom, 9-11 May 2012 Absorption location and mechanism overview •UV-C, B •UV-A P H O T O- •vis C H E M I C A L E = h * •IR-A •IR-B, C T H E R M A L Broadband Optical Radiation Karl Schulmeister ICNIRP 7th International NIR Workshop Edinburgh, United Kingdom, 9-11 May 2012 Changes in Guidelines .