Terminology List for the Nervous System

Total Page:16

File Type:pdf, Size:1020Kb

Terminology List for the Nervous System Terminology List for the Nervous System Nerve cell: neuron, cell body, axon, dendrite, axon hillock, axon terminal, synaptic cleft, neuroglia, Schwann cells, myelin, Nodes of Ranvier, neurilemma, endoneurium Human Brain: cerebrum: right and left cerebral hemispheres transverse fissure longitudinal fissure lateral sulcus central sulcus parieto-occipital sulcus precentral gyrus postcentral gyrus frontal lobe parietal lobe temporal lobe occipital lobe insula cortex basal nuclei (=cerebral nuclei or basal ganglia) corpus callosum septum pellucidum fornix internal capsule cerebellum: right and left cerebellar hemispheres vermis cortex arbor vitae diencephalon: epithalamus (pineal body, pineal gland) thalamus intermediate mass hypothalamus infundibulum pituitary gland mammillary bodies brainstem: midbrain (=mesencephalon) corpora quadrigemina superior colliculi inferior colliculi cerebral peduncles pons cerebellar peduncles medulla oblongata pyramids Sheep Brain: Cerebrum: cerebral hemispheres, gyri, sulci, olfactory bulbs, olfactory tracts, optic nerves, optic chiasma, corpus callosum Diencephalon: epithalamus (or pineal gland), thalamus hypothalamus, pituitary gland Cerebellum: arbor vitae Brain Stem: midbrain pons medulla Meninges & Ventricles: dura mater, arachnoid layer, subacrachnoid space, pia mater, falx cerebri, falx cerebelli, tentorium cerebelli, lateral ventricles, third ventricle, cerebral aqueduct, fourth ventricle, choroid plexuses, arachnoid villi (=arachnoid granulations) Spinal cord: central canal, posterior median sulcus, anterior median fissure, gray matter, white matter (tracts), anterior, lateral and posterior horns of grey matter, meninges; dura mater, arachnoid layer, pia mater, subarachnoid space, epidural space General Terminology: nucleus, ganglion, tract, nerve, epineurium, perineurium, endoneurium, nerve fiber PNS-Cranial Nerves: Cerebrum: I. Olfactory Nerve (filaments) (also: olfactory bulbs, olfactory tracts) II. Optic Nerve (also: optic chiasma, optic tracts) Midbrain: III. Oculomotor Nerve IV. Trochlear Nerve pons: V. Trigeminal Nerve VI. Abducens VII. Facial medulla: VIII. Vestibulocochlear Nerve IX. Glossopharyngeal Nerve X. Vagus Nerve XI. Accessory Nerve XII. Hypoglossal Nerve PNS-Spinal Nerves: dorsal root, dorsal root ganglion (sensory), ventral root (motor), Cervical Plexus (C1 - C5), Phrenic Nerve, Brachial Plexus (C5 - C8, T1), Lumbar Plexus (L1 - L4), Sacral Plexus (L4 - S4) Autonomic NS: Sympathetic Branch: sympathetic trunks are comprised of fibers mainly from the thoracic spinal nerves which form a pair of "chain ganglia" anterior and lateral to the vertebral column Parasympathetic Branch: individual fibers from cranial nerves III, VII, IX and X and sacral spinal nerves S2, S3, and S4. Innervation of most visceral organs is from fibers of the Vagus (X) Nerve .
Recommended publications
  • Nervous Tissue
    Nervous Tissue • Controls and integrates all body activities within limits that maintain life • Three basic functions – sensing changes with sensory receptors • fullness of stomach or sun on your face – interpreting and remembering those changes – reacting to those changes with effectors • muscular contractions • glandular secretions Major Structures of the Nervous System • Brain, cranial nerves, spinal cord, spinal nerves, ganglia, enteric plexuses and sensory receptors Organization of the Nervous System • CNS is brain and spinal cord • PNS is everything else Nervous System Divisions • Central nervous system (CNS) – consists of the brain and spinal cord • Peripheral nervous system (PNS) – consists of cranial and spinal nerves that contain both sensory and motor fibers – connects CNS to muscles, glands & all sensory receptors Subdivisions of the PNS • Somatic (voluntary) nervous system (SNS) – neurons from cutaneous and special sensory receptors to the CNS – motor neurons to skeletal muscle tissue • Autonomic (involuntary) nervous systems – sensory neurons from visceral organs to CNS – motor neurons to smooth & cardiac muscle and glands • sympathetic division (speeds up heart rate) • parasympathetic division (slow down heart rate) • Enteric nervous system (ENS) – involuntary sensory & motor neurons control GI tract – neurons function independently of ANS & CNS Neurons • Functional unit of nervous system • Have capacity to produce action potentials – electrical excitability • Cell body – single nucleus with prominent nucleolus – Nissl
    [Show full text]
  • The Nervous System
    The Nervous System • A network of billions of nerve cells linked together in a highly organized fashion to form the rapid control center of the body. • Functions include: – Integrating center for homeostasis, movement, and almost all other body functions. – The mysterious source of those traits that we think of as setting humans apart from animals Basic Functions of the Nervous System 1. Sensation • Monitors changes/events occurring in and outside the body. Such changes are known as stimuli and the cells that monitor them are receptors. 2. Integration • The parallel processing and interpretation of sensory information to determine the appropriate response 3. Reaction • Motor output. – The activation of muscles or glands (typically via the release of neurotransmitters (NTs)) Organization of the Nervous System • 2 big initial divisions: 1. Central Nervous System • The brain + the spinal cord – The center of integration and control 2. Peripheral Nervous System • The nervous system outside of the brain and spinal cord • Consists of: – 31 Spinal nerves » Carry info to and from the spinal cord – 12 Cranial nerves » Carry info to and from the brain Peripheral Nervous System • Responsible for communication btwn the CNS and the rest of the body. • Can be divided into: – Sensory Division • Afferent division – Conducts impulses from receptors to the CNS – Informs the CNS of the state of the body interior and exterior – Sensory nerve fibers can be somatic (from skin, skeletal muscles or joints) or visceral (from organs w/i the ventral body cavity) – Motor Division • Efferent division – Conducts impulses from CNS to effectors (muscles/glands) – Motor nerve fibers Motor Efferent Division • Can be divided further: – Somatic nervous system • VOLUNTARY (generally) • Somatic nerve fibers that conduct impulses from the CNS to skeletal muscles – Autonomic nervous system • INVOLUNTARY (generally) • Conducts impulses from the CNS to smooth muscle, cardiac muscle, and glands.
    [Show full text]
  • Spinal Nerves, Ganglia, and Nerve Plexus Spinal Nerves
    Chapter 13 Spinal Nerves, Ganglia, and Nerve Plexus Spinal Nerves Posterior Spinous process of vertebra Posterior root Deep muscles of back Posterior ramus Spinal cord Transverse process of vertebra Posterior root ganglion Spinal nerve Anterior ramus Meningeal branch Communicating rami Anterior root Vertebral body Sympathetic ganglion Anterior General Anatomy of Nerves and Ganglia • Spinal cord communicates with the rest of the body by way of spinal nerves • nerve = a cordlike organ composed of numerous nerve fibers (axons) bound together by connective tissue – mixed nerves contain both afferent (sensory) and efferent (motor) fibers – composed of thousands of fibers carrying currents in opposite directions Anatomy of a Nerve Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Epineurium Perineurium Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Endoneurium Nerve Rootlets fiber Posterior root Fascicle Posterior root ganglion Anterior Blood root vessels Spinal nerve (b) Copyright by R.G. Kessel and R.H. Kardon, Tissues and Organs: A Text-Atlas of Scanning Electron Microscopy, 1979, W.H. Freeman, All rights reserved Blood vessels Fascicle Epineurium Perineurium Unmyelinated nerve fibers Myelinated nerve fibers (a) Endoneurium Myelin General Anatomy of Nerves and Ganglia • nerves of peripheral nervous system are ensheathed in Schwann cells – forms neurilemma and often a myelin sheath around the axon – external to neurilemma, each fiber is surrounded by
    [Show full text]
  • PN1 (Midha) Microanatomy of Peripheral Nerves-Part1.Pdf
    Peripheral Nerve Basics • Consist of processes of cell bodies found in the DRG, anterior horn, and autonomic ganglia • Organized by several distinct connective tissue layers – the epineurium, perineurium, and endoneurium • Vascular supply provided by the vasa nervorum Peripheral Nerve Basics • Neuronal processes bound into fascicles by perineurium • Fascicles bound into nerves by epineurium • Endoneurium is a division of the perineurium which form thin layers of connective tissue surrounding neuronal fibers in a fascicle Sural nerve in cross-section Epineurium • Loose areolar tissue with sparse, longitudinally-oriented collagen fibers • Some elastic fibers where epineurium abuts perineurium • Able to accommodate a significant amount of nerve stretching and movement • Increases in thickness where nerves cross joints • Constitutes an increasing proportion of nerves as they increase in size • Epineurial fat helps cushion nerves from compressive injury • Decreased epineurial fat found in patients with diabetes Perineurium • Cellular component composed of laminated fibroblasts of up to 15 layers in thickness which are bounded by a basal lamina • Semi-permeable: inner lamellae have tight junctions, providing a barrier to intercellular transport of macromolecules – Tight junctions can be loosened with topical anaesthetics and with osmotic change Perineurium • Exhibits a slightly positive internal pressure – Fascicular contents herniate upon perineurial injury • Under tension longitudinally – Nerve segment shortens upon transection – may complicate surgical repair as nerve can be stretched only approximately 10% before being inhibited by collagen Endoneurium • Intrafascicular connective tissue consisting of a collagenous matrix in the interstitial space • Develops into partitions of dense connective tissue between diverging fascicles and eventually becomes perineurium when the fascicles separate • Collagen fibers are longitudinally-oriented and run along nerve fibers and capillaries.
    [Show full text]
  • Nerve and Nerve Injuries” Sunderland : 50 Years Later
    2019 Nerve and Nerve Injuries” Sunderland : 50 years later Faye Chiou Tan, MD Professor, Dir. EDX, H. Ben Taub PMR, Baylor College of Medicine Chief PMR, Dir. EDX, Harris Health System 2019 Financial Disclosure • Elsevier Book Royalties for “EMG Secrets” textbook • Revance, consultation panel 2019 Warning Videotaping or taking pictures of the slides associated with this presentation is prohibited. The information on the slides is copyrighted and cannot be used without permission and author attribution. Introduction – Sydney Sunderland was Professor of Experimental Neurology at the University of Melbourne. – His textbook “Nerve and Nerve lnjuries” published in 1968 is no longer in print (copies $1000 on the internet) – Here is a review as relates to new technology: Ultrahigh frequency musculoskeletal ultrasound Part I – I. Anatomic and physiologic features of A. Peripheral nerve fibers B. Peripheral nerve trunks I.A. Peripheral nerve fibers – Axoplasm – Increased flow of cytoplasm from cell body into axons during electrical stimulation (Grande and Richter 1950) – Although overall proximal to distal axoplasmic flow, the pattern of streaming in the axon is bidirectional and faster (up to 3-7 cm/day) (Lubinska 1964). I. A. Peripheral nerve fibers – Sheath – Myelinated – Length of internode elongates with growth (Vizoso and Young 1948, Siminoff 1965) – In contrast, remyelination in adults produce short internodes of same length (Leegarrd 1880, Young 1945,…) – Incisures of Schmidt-Lantermann are clefts conical clefts that open when a nerve trunk is stretched thereby preventing distortion of myelin. (Glees, 1943) Schmidt-Lantermann Clefts Sunderland S. Nerve and Nerve Injuries, Sunderland, Livingstone,LTD, Edinburgh/London, 1968, p. 8 I. A.
    [Show full text]
  • Nervous Tissue
    Nervous Tissue • Controls and integrates all body activities within limits that maintain life • Three basic functions – sensing changes with sensory receptors • fullness of stomach or sun on your face – interpreting and remembering those changes – reacting to those changes with effectors • muscular contractions • glandular secretions 12-1 Major Structures of the Nervous System • Brain, cranial nerves, spinal cord, spinal nerves, ganglia, enteric plexuses and sensory receptors 12-2 Organization of the Nervous System • CNS is brain and spinal cord • PNS is everything else 12-3 Nervous System Divisions • Central nervous system (CNS) – consists of the brain and spinal cord • Peripheral nervous system (PNS) – consists of cranial and spinal nerves that contain both sensory and motor fibers – connects CNS to muscles, glands & all sensory receptors 12-4 Subdivisions of the PNS • Somatic (voluntary) nervous system (SNS) – neurons from cutaneous and special sensory receptors to the CNS – motor neurons to skeletal muscle tissue • Autonomic (involuntary) nervous systems – sensory neurons from visceral organs to CNS – motor neurons to smooth & cardiac muscle and glands • sympathetic division (speeds up heart rate) • parasympathetic division (slow down heart rate) • Enteric nervous system (ENS) – involuntary sensory & motor neurons control GI tract – neurons function independently of ANS & CNS 12-5 Neurons • Functional unit of nervous system • Have capacity to produce action potentials – electrical excitability • Cell body • Cell processes = dendrites
    [Show full text]
  • Nomina Histologica Veterinaria, First Edition
    NOMINA HISTOLOGICA VETERINARIA Submitted by the International Committee on Veterinary Histological Nomenclature (ICVHN) to the World Association of Veterinary Anatomists Published on the website of the World Association of Veterinary Anatomists www.wava-amav.org 2017 CONTENTS Introduction i Principles of term construction in N.H.V. iii Cytologia – Cytology 1 Textus epithelialis – Epithelial tissue 10 Textus connectivus – Connective tissue 13 Sanguis et Lympha – Blood and Lymph 17 Textus muscularis – Muscle tissue 19 Textus nervosus – Nerve tissue 20 Splanchnologia – Viscera 23 Systema digestorium – Digestive system 24 Systema respiratorium – Respiratory system 32 Systema urinarium – Urinary system 35 Organa genitalia masculina – Male genital system 38 Organa genitalia feminina – Female genital system 42 Systema endocrinum – Endocrine system 45 Systema cardiovasculare et lymphaticum [Angiologia] – Cardiovascular and lymphatic system 47 Systema nervosum – Nervous system 52 Receptores sensorii et Organa sensuum – Sensory receptors and Sense organs 58 Integumentum – Integument 64 INTRODUCTION The preparations leading to the publication of the present first edition of the Nomina Histologica Veterinaria has a long history spanning more than 50 years. Under the auspices of the World Association of Veterinary Anatomists (W.A.V.A.), the International Committee on Veterinary Anatomical Nomenclature (I.C.V.A.N.) appointed in Giessen, 1965, a Subcommittee on Histology and Embryology which started a working relation with the Subcommittee on Histology of the former International Anatomical Nomenclature Committee. In Mexico City, 1971, this Subcommittee presented a document entitled Nomina Histologica Veterinaria: A Working Draft as a basis for the continued work of the newly-appointed Subcommittee on Histological Nomenclature. This resulted in the editing of the Nomina Histologica Veterinaria: A Working Draft II (Toulouse, 1974), followed by preparations for publication of a Nomina Histologica Veterinaria.
    [Show full text]
  • The “Road Map”
    PRACTICAL ROADMAP NERVOUS TISSUE DR N GRAVETT NEURONS • MOTOR • SENSORY Anterior (ventral) horn Dorsal root of spinal of spinal cord cord Multipolar Pseudounipolar ANTERIOR HORN CELLS • Slide 64 Spinal Cord (vervet monkey) Stain: Kluver and Berrera Technique NOTE: with this technique, myelin stains dark blue and basophilic substances such as rER and nuclei stain violet. In this case we use “blue” and “purple” to describe the staining and not eosinophilic and basophilic. SPINAL CORD Anterior Ventral Horn Arachnoid Ventricle Pia Mater Grey Matter White Matter Posterior Horn Dura Mater Dorsal ANTERIOR HORN CELL Neuropil Cell Body Dendrite Vesicular Nucleus Nucleolus Nucleus of Nissl Bodies Neuroglial Cell ANTERIOR HORN CELL Neuropil Cell Body Vesicular Nucleus Nucleolus Nissl Body Nucleus of Neuroglial Cell Dendrite Nissl Body Axon Hillock Axon SPINAL (DORSAL ROOT) GANGLION CELLS • Slide 62 Spinal Ganglion Stain: H&E NOTE: The spinal ganglion is also known as the dorsal root ganglia and contains pseudounipolar neuron cell bodies. SPINAL (DORSAL ROOT) GANGLIA Cell Bodies Processes (Axons and Dendrites) SPINAL (DORSAL ROOT) GANGLIA Cell Bodies Processes (Axons and Dendrites) NOTE: The neuronal cell bodies of the dorsal root ganglia are “clumped” together, and one cannot see any processes entering or leaving the cell bodies. The processes (axons and dendrites) are seen towards the edge/periphery of the group of cell bodies. SPINAL (DORSAL ROOT) GANGLIA Satellite cells (arranged in ring like fashion around the cell body) Cell Body Nucleolus Vesicular Fine Granular Nucleus Nissl Substance Nucleus of Satellite cell PERIPHERAL BRANCH OF A SPINAL NERVE • Slide 32 Median Nerve Stain: Mallory’s Technique NOTE: Three dyes are used in Mallory’s technique, which results in collagen fibres (such as connective tissue) staining blue, the “neurokeratin” staining red, and nuclei staining reddish-orange PERIPHERAL NERVE Myelinated Axons Vein L.S.
    [Show full text]
  • Cells of the Nervous System Two Major Cell/Tissue Types in Nervous System
    Cells of the Nervous System two major cell/tissue types in Nervous System: neurons – impulse conduction 100 Billion generally no mitosis neuroglia – support, protection, insulation, etc [need specialized cells because of unique sensitivity of neurons to their environment] 900 Billion some mitosis Neuroglia 1. astrocytes 2. oligodendroglia 3. microglia 4. ependymal cells 5. Schwann cells 1. Astrocytes largest and most abundant type form tight webs around brains capillaries =blood/brain barrier small molecules (O2, CO2, alcohol) diffuse rapidly larger molecules penetrate slowly or not at all this blockage of free exchange between capillaries and tissues is unique for nervous tissue => prevents sudden and extreme fluctuations in composition of tissue fluid in CNS => protects irreplaceable neurons from damage 2. Oligodendrocytes (oligodendroglia) smaller cells, fewer processes clustered around nerve cell bodies help hold nerve fibers together produce myelin sheath (electrical insulation) around neurons in CNS [myelin=fatty substance] 3. Microglia small stationary cells in inflamed or degenerating brain tissue they: enlarge move about 1 carry out phagocytosis of microbes and cellular debris 4. Ependymal Cells ciliated cells line ventricles and spinal canal help to circulate CerebroSpinal Fluid 5. Schwann Cells found only in PNS form a segmental wrapping around nerve fibers each segment is produced by 1 Schwann cell gaps between cells = Nodes of Ranvier form neurilemma and myelin sheath in PNS neurons myelin (in CNS and PNS) can be: thick =
    [Show full text]
  • School of Physical Education and Sports Science
    ARISTOTELIAN UNIVERSITY OF THESSALONIKI School of Physical Education and Sports Science Bachelor's Thesis: "MYOFASCIAL NETWORK IN PHYSICAL ACTIVITY AND TRAINING" Name: Tsourvakas Konstantinos Supervisor: Papadopoulos Panagiotis PhD Thessaloniki, June 2018 1 ABSTRACT Physical activity can lead people, regardless of age, to a healthier and more quality life. Especially nowadays, that most people follow an intense routine, good physical condition is an essential factor to take care of in order to achieve health and well- being. This project refers to the myofascial system of the human body. It is about a scientific review whose purpose is to highlight the importance of self myofascial release (SMR), to quote the process of SMR through the use of specific tools and methods, and the analysis of its effects to the human body. In the first place, the fascial network of the human body is described, along with the properties, the function and the usefulness of the fascia. Subsequently, the assignment focuses on the significance of self myofascial release for the human body and mostly the way it increases and improves the range of motion. In addition, there is a presentation of SMR's techniques and methods with the application of tools such as foam rollers, roller massagers and tennis balls. The assignment ends up with conclusions and suggestions on further improvement of range of motion. 2 TABLE OF CONTENTS Abstract……………………………………………………………………….………2 Table of Contents ……………………….......………………………………………...3 1. Introduction...………………………………………………………………..……...4 2. The Fascial System………………………………………………..………………..5 2.1 Definition….…………………………………………………..…………………..5 2.2 Structure….……………………………………………………………..…………5 2.3 Function………………………………………………………………..…………22 3. Importance of training fascia …………….....……………………………………..27 3.1 Principles of training fascia....................................................................................27 3.2 Fascia and elastic recoil.........................................................................................31 4.
    [Show full text]
  • Lecture 19: Nerve Synthesis in Vivo (Regeneration)
    Nerve synthesis in vivo (regeneration)* 1. Anatomy and function of a peripheral nerve. 2. Experimental parameters for study of induced regeneration. 3. Synthesis of myelinated axons and BM (nerve fibers) 4. Evidence (?) of synthesis of an endoneurium. 5. Synthesis of a nerve trunk (including summary of kinetics of synthesis). 6. Comparative regenerative activity of various reactants. _______ *Tissue and Organ Regeneration in Adults, Yannas, Springer, 2001, Ch. 6. 1. Anatomy and function of a peripheral nerve. I Nervous system = central nervous system (CNS) + peripheral nervous system (PNS) Image: public domain (by Wikipedia User: Persion Poet Gal) Nervous System: CNS and PNS CNS PNS Chamberlain, Yannas, et al., 1998 Landstrom, Aria. “Nerve Regeneration Induced by Collagen-GAG Matrix in Collagen Tubes.” MS Thesis, MIT, 1994. Focus of interest: nerve fibers and axons Nerve fibers comprise axons wrapped in a myelin sheath, itself surrounded by BM (diam. 10-30 μm in rat sciatic nerve). Axons are extensions (long processes) of neurons located in spinal cord. They comprise endoplasmic reticulum and microtubules. 1. Anatomy and function of a peripheral nerve. II Myelinated axons (diam. 1-15 μm) are wrapped in a myelin sheath; nonmyelinated axons also exist. They are the elementary units for conduction of electric signals in the body. Myelin formed by wrapping a Schwann cell membrane many times around axon perimeter. No ECM inside nerve fibers. Myelin sheath is a wrapping of Schwann cell membranes around certain axons. 1. Anatomy and function of a peripheral nerve. III Nonmyelinated axons (diam. <1 μm) function in small pain nerves. Although surrounded by Schwann cells, they lack myelin sheath; Schwann cells are around them but have retained their cytoplasm.
    [Show full text]
  • Myelin Sheath Are Called Myelinated Nerve Fibers
    Physiology of the Nerve & Muscle System(2) Second Stage/ University of Anbar-College of Dentistry By : Dr. Rana Hazim Ph.D. Human Physiology. Dep. Basic Science The axon has a long central core of cytoplasm called axoplasm. The axoplasm is covered by the tubular sheath like membrane called axolemma which is the continuation of the cell membrane of nerve cell body. The axoplasm along with the axolemma is called the axis cylinder of the nerve fiber (Fig. 1). Axoplasm contains mitochondria, neurofibrils and axoplasmic vesicles. But, Nissl bodies are absent in the axon Figure (1) :- A- Myelinated never fiber B- Non- myelinated nerve Myelinated nerve fiber The nerve fibers which are insulated by myelin sheath are called myelinated nerve fibers. Non - myelinated nerve fiber The nerve fiber described above is the non-myelinated nerve fiber which is not covered by myelin sheath Myelin Sheath Myelin sheath is a thick lipoprotein sheath that insulates the myelinated nerve fiber. Myelin sheath is not a continuous sheath. It is absent at regular intervals. The area where the myelin sheath is absent is called node of Ranvier . The segment of the nerve fiber between two nodes is called internode. Myelin sheath is responsible for the white color of the nerve fibers. Chemistry of Myelin Sheath Myelin sheath is formed by concentric layers of proteins alternating with lipids. The lipids are cholesterol and lecithin. The formation of myelin sheath around the axon is called the myelinogenesis. It is formed by Schwann cells in neurilemma. Functions of myelin sheath 1- Faster conduction: Myelin sheath is responsible for faster conduction of impulse through the nerve fibers.
    [Show full text]