Your Name Here

Total Page:16

File Type:pdf, Size:1020Kb

Your Name Here STRUCTURE ACTIVITY RELATIONSHIPS IN PYRIDOXAL-5’-PHOSPHATE DEPENDENT ENZYMES by SANTIAGO LIMA (Under the Direction of Robert S. Phillips) ABSTRACT Pyridoxal-5’-phosphate (PLP) dependent enzymes are a large and catalytically diverse group of proteins primarily involved in the metabolism of amino acids, amino acid derived compounds, and amino sugars. In this work, three PLP-dependent enzymes, Homo sapiens kynureninase, Pseudomonas dacunhae L-aspartate-β-decarboxylase, and Pyrococcus furiosus tryptophan synthase β-subunit homolog are studied using a variety of biophysical methods. The novel crystal structures for these enzymes are presented, along with the structure of a kynureninase-inhibitor complex, and the analysis of a number of mutants generated to study specific structure activity relationships in them. The results of these analyses reveal the interactions that contribute to substrate specificity in kynureninase, a novel oligomerization scheme and catalytically important residues in aspartate-β-decarboxylase, and the elucidation of the kinetic properties of the P. furiosus tryptophan synthase β-subunit homolog. INDEX WORDS: pyridoxal-5’-phosphate, kynureninase, L-kynurenine hydrolase, 3- hydroxykynurenine, 2HZP, L-aspartate-beta-decarboxylase, aspartate-4- decarboxylase, tryptophan synthase beta subunit homolog, trpb2, tryptophan synthase STRUCTURE ACTIVITY RELATIONSHIPS IN PYRIDOXAL-5’-PHOSPHATE DEPENDENT ENZYMES by SANTIAGO LIMA BS, The University of Georgia, 2001 A Dissertation Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment of the Requirements for the Degree DOCTOR OF PHILOSOPHY ATHENS, GEORGIA 2008 © 2008 Santiago Lima All Rights Reserved STRUCTURE ACTIVITY RELATIONSHIPS IN PYRIDOXAL-5’-PHOSPHATE DEPENDENT ENZYMES by SANTIAGO LIMA Major Professor: Robert S. Phillips Committee: Michael W. W. Adams Cory Momany Bi-Cheng Wang Electronic Version Approved: Maureen Grasso Dean of the Graduate School The University of Georgia May 2008 iv DEDICATION I would like to dedicate this dissertation to my parents and sister who have stood by and supported, always believed in me, and encouraged me to believe in myself. I would also like to dedicate this work to my advisor and friend Dr. Robert S. Phillips for his invaluable guidance, patience, encouragement, and dedication to teaching. v ACKNOWLEDGEMENTS The work contained in this dissertation is the fruit of hard work, luck, and extensive collaboration. I would like to thank Dr. Cory Momany for supplying me with a great experience in learning the techniques and theory behind macromolecular X-ray crystallography. I would also like to thank Dr. Michael W.W. Adams, for his fair and cunning scientific input to my research, and Dr. Bi-Cheng Wang for taking time out of his busy schedule to serve on my committee. vi TABLE OF CONTENTS Page ACKNOWLEDGEMENTS.............................................................................................................v LIST OF TABLES........................................................................................................................ vii LIST OF FIGURES ..................................................................................................................... viii INTRODUCTION AND LITERATURE REVIEW .......................................................................1 CHAPTER 1 Crystal Structure of Homo sapiens kynureninase........................................................18 2 Crystal Structure of Homo sapiens Kynureninase-3-hydroxy-hippuric Acid Inhibitor Complex; Insights into the Molecular Basis of Kynureninase Substrate Specificity ....................................................................................................57 3 The Crystal Structure of the Pseudomonas dacunhae L-Aspartate-Beta Decarboxylase Reveals a Novel Oligomeric Assembly for a Pyridoxal-5’-Phosphate Dependent Enzyme ......................................................................................................82 4 Atomic Structure and Substrate Specificity of the Pyrococcus furiosus Tryptophan Synthase β-Subunit Homolog ....................................................................................110 CONCLUSIONS..........................................................................................................................138 vii LIST OF TABLES Page Table 1.1: Summary of Crystallographic analysis.........................................................................47 Table 2.1: Summary of Crystallographic Analysis........................................................................78 Table 2.2: Summary of L-kynurenine and 3-OH-DL-kynuenine kinetic constants for wild type and kynureninase mutants...............................................................................................79 Table 3.1: Summary of Crystallographic analysis.......................................................................104 Table 4.1: Summary of Crystallographic analysis.......................................................................130 Table 4.1: Summary of kinetic constants measured for tryptophan synthases form S. typhimurium and P. furiosus. .............................................................................................................131 viii LIST OF FIGURES Page Figure 1.1: Ribbon drawing of the kynureninase biologically active unit with secondary structure elements colored in a blue to red progressing scheme. .................................................48 Figure 1.2: Stereo ribbon drawing of the kynureninase monomer with secondary structure elements colored in a blue to red progressing scheme ..................................................49 Figure 1.3: Map calculated with likelihood-weighted 2Fo-Fc coefficients for the area surrounding the pyridoxal-5’-phosphate-Lys-276 internal aldimine complex..............50 Figure 1.4: Stereo image of the kynureninase active site PLP hydrogen bonding interactions.....51 Figure 1.5: Structural superposition between dimers of human and Pseudomonas fluorescens kynureninases. ...............................................................................................................52 Figure 1.6: Stereo image of 3-hydroxy-L-kynurenine docked with human kynureninase. ...........53 Figure 1.7: Ribbon drawing of the Hkyn small domain S20-S21 β-hairpin and equivalent hairpins from the structures with PDB IDs 1qz9, 1m32, 1jf9, 1ibj, 1i29, 1h0c, 1fg3, 1d2f, 1bj4, and 2ch2......................................................................................................54 Figure 1.8: Comparison of the superimposed small domains of aspartate aminotransferase in open and closed conformation with the Homo sapiens kynureninase and the Pseudomonas fluorescens kynureninase .......................................................................55 Figure 1.9: Active site amino acid differences between human and P. fluorescens kynureninases in the vicinity of the 3-hydroxyl moiety of docked 3-hydroxy-L-kynurenine..............56 Figure 2.1: An electron density map showed continuous electron density for 3-HHA atoms ......80 ix Figure 2.2: Stereo representation of the interactions that stabilize 3-HHA (colored green, ball and stick atoms) within the Homo sapiens kynureninase active site ...................................81 Figure 3.1: ABDC monomer with successive secondary structure elements labeled..................105 Figure 3.2: The ABDC active site is composed of residues contributed from two monomer chains related by a 2-fold axis of symmetry...........................................................................106 Figure 3.3: Active sites of structurally superposed ABDC and E. coli AAT ..............................107 Figure 3.4: Ribbon representation of the ABDC dodecamer with each monomer labeled. ........108 Figure 3.5: Schematic illustrating the symmetry relationships between monomers in the ABDC particle.........................................................................................................................109 Figure 4.1: PfTrpB2 monomer with secondary structure elements labeled.................................132 Figure 4.2: A structural superposition between the PfTrpB2 and PfTrpB1 identifies substitutions among residues surrounding the PLP cofactor............................................................133 Figure 4.3: The StTrpAB1 complex has an intramolecular tunnel through which indole is diffused from the α-subunit to the β-subunit...............................................................134 Figure 4.4: The StTrpAB1 complex has an intramolecular tunnel through which indole is diffused from the α-subunit to the β-subunit...............................................................135 Figure 4.5: Spectral changes associated with the sequential addition of 5 mM L-L-cys, and 0.1 mM indole, to a solution containing PfTrpB2.............................................................136 Figure 4.6: Initial rate vs [S] profiles for the L-ser/L-cys + indole condensation catalyzed by PfTrpB1, PfTrpAB1, StTrpAB1, and StTrpB1...........................................................137 1 INTRODUCTION AND LITERATURE REVIEW Pyridoxal-5’-phosphate (PLP) is the phosphate ester and catalytically active form of vitamin B6. Enzymes utilizing PLP as a cofactor are among the most catalytically diverse group of proteins, containing members in five of six (1) Enzyme Commission (2) (EC) groups, which equates to approximately 4% of the reactions catalogued in the EC (3). It is believed
Recommended publications
  • METABOLIC EVOLUTION in GALDIERIA SULPHURARIA By
    METABOLIC EVOLUTION IN GALDIERIA SULPHURARIA By CHAD M. TERNES Bachelor of Science in Botany Oklahoma State University Stillwater, Oklahoma 2009 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY May, 2015 METABOLIC EVOLUTION IN GALDIERIA SUPHURARIA Dissertation Approved: Dr. Gerald Schoenknecht Dissertation Adviser Dr. David Meinke Dr. Andrew Doust Dr. Patricia Canaan ii Name: CHAD M. TERNES Date of Degree: MAY, 2015 Title of Study: METABOLIC EVOLUTION IN GALDIERIA SULPHURARIA Major Field: PLANT SCIENCE Abstract: The thermoacidophilic, unicellular, red alga Galdieria sulphuraria possesses characteristics, including salt and heavy metal tolerance, unsurpassed by any other alga. Like most plastid bearing eukaryotes, G. sulphuraria can grow photoautotrophically. Additionally, it can also grow solely as a heterotroph, which results in the cessation of photosynthetic pigment biosynthesis. The ability to grow heterotrophically is likely correlated with G. sulphuraria ’s broad capacity for carbon metabolism, which rivals that of fungi. Annotation of the metabolic pathways encoded by the genome of G. sulphuraria revealed several pathways that are uncharacteristic for plants and algae, even red algae. Phylogenetic analyses of the enzymes underlying the metabolic pathways suggest multiple instances of horizontal gene transfer, in addition to endosymbiotic gene transfer and conservation through ancestry. Although some metabolic pathways as a whole appear to be retained through ancestry, genes encoding individual enzymes within a pathway were substituted by genes that were acquired horizontally from other domains of life. Thus, metabolic pathways in G. sulphuraria appear to be composed of a ‘metabolic patchwork’, underscored by a mosaic of genes resulting from multiple evolutionary processes.
    [Show full text]
  • Table 2. Significant
    Table 2. Significant (Q < 0.05 and |d | > 0.5) transcripts from the meta-analysis Gene Chr Mb Gene Name Affy ProbeSet cDNA_IDs d HAP/LAP d HAP/LAP d d IS Average d Ztest P values Q-value Symbol ID (study #5) 1 2 STS B2m 2 122 beta-2 microglobulin 1452428_a_at AI848245 1.75334941 4 3.2 4 3.2316485 1.07398E-09 5.69E-08 Man2b1 8 84.4 mannosidase 2, alpha B1 1416340_a_at H4049B01 3.75722111 3.87309653 2.1 1.6 2.84852656 5.32443E-07 1.58E-05 1110032A03Rik 9 50.9 RIKEN cDNA 1110032A03 gene 1417211_a_at H4035E05 4 1.66015788 4 1.7 2.82772795 2.94266E-05 0.000527 NA 9 48.5 --- 1456111_at 3.43701477 1.85785922 4 2 2.8237185 9.97969E-08 3.48E-06 Scn4b 9 45.3 Sodium channel, type IV, beta 1434008_at AI844796 3.79536664 1.63774235 3.3 2.3 2.75319499 1.48057E-08 6.21E-07 polypeptide Gadd45gip1 8 84.1 RIKEN cDNA 2310040G17 gene 1417619_at 4 3.38875643 1.4 2 2.69163229 8.84279E-06 0.0001904 BC056474 15 12.1 Mus musculus cDNA clone 1424117_at H3030A06 3.95752801 2.42838452 1.9 2.2 2.62132809 1.3344E-08 5.66E-07 MGC:67360 IMAGE:6823629, complete cds NA 4 153 guanine nucleotide binding protein, 1454696_at -3.46081884 -4 -1.3 -1.6 -2.6026947 8.58458E-05 0.0012617 beta 1 Gnb1 4 153 guanine nucleotide binding protein, 1417432_a_at H3094D02 -3.13334396 -4 -1.6 -1.7 -2.5946297 1.04542E-05 0.0002202 beta 1 Gadd45gip1 8 84.1 RAD23a homolog (S.
    [Show full text]
  • The Role of Polyamine Uptake Transporters on Growth and Development of Arabidopsis Thaliana
    THE ROLE OF POLYAMINE UPTAKE TRANSPORTERS ON GROWTH AND DEVELOPMENT OF ARABIDOPSIS THALIANA Jigarkumar Patel A Dissertation Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY May 2015 Committee: Paul Morris, Advisor Wendy D Manning Graduate Faculty Representative Vipaporn Phuntumart Scott Rogers Ray Larsen © 2015 Jigarkumar Patel All Rights Reserved iii ABSTRACT Paul Morris, Advisor Transgenic manipulation of polyamine levels has provided compelling evidence that polyamines enable plants to respond to environmental cues by activation of stress and developmental pathways. Here we show that the chloroplasts of A. thaliana and soybeans contain both an arginine decarboxylase, and an arginase/agmatinase. These two enzymes combine to synthesize putrescine from arginine. Since the sequences of plant arginases show conservation of key residues and the predicted 3D structures of plant agmatinases overlap the crystal structure of the enzyme from Deinococcus radiodurans, we suggest that these enzymes can synthesize putrescine, whenever they have access to the substrate agmatine. Finally, we show that synthesis of putrescine by ornithine decarboxylase takes place in the ER. Thus A. thaliana has two, and soybeans have three separate pathways for the synthesis of putrescine. This study also describes key changes in plant phenotypes in response to altered transport of polyamines. iv Dedicated to my father, Jayantilal Haribhai Patel v ACKNOWLEDGMENTS I would like to thank my advisor, Dr. Paul F. Morris, for helping me learn and grow during my Ph.D. Dr. Morris has an open door policy, and he was always available to answer my questions and provide helpful suggestions.
    [Show full text]
  • Upregulated Kynurenine Pathway Enzymes in Aortic Atherosclerotic Aneurysm: Macrophage Kynureninase Downregulates Inflammation
    The official journal of the Japan Atherosclerosis Society and the Asian Pacific Society of Atherosclerosis and Vascular Diseases Original Article J Atheroscler Thromb, 2021; 28: 000-000. http://doi.org/10.5551/jat.58248 Upregulated Kynurenine Pathway Enzymes in Aortic Atherosclerotic Aneurysm: Macrophage Kynureninase Downregulates Inflammation Masanori Nishimura1, 2, Atsushi Yamashita2, Yunosuke Matsuura3, Junichi Okutsu4, Aiko Fukahori4, Tsuyoshi Hirata4, Tomohiro Nishizawa5, Hirohito Ishii1, Kazunari Maekawa2, Eriko Nakamura2, Kazuo Kitamura3, Kunihide Nakamura1 and Yujiro Asada2 1Division of Cardiovascular Surgery, Department of Surgery, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan 2Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan 3Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan 4Translational Research Department, Daiichi Sankyo RD Novare Co., Ltd., Tokyo, Japan 5Specialty Medicine Research Laboratories I, Daiichi Sankyo Co., Ltd., Tokyo, Japan Aims: Inflammation and hypertension contribute to the progression of atherosclerotic aneurysm in the aorta. Vascular cell metabolism is regarded to modulate atherogenesis, but the metabolic alterations that occur in ath- erosclerotic aneurysm remain unknown. The present study aimed to identify metabolic pathways and metabo- lites in aneurysmal walls and examine their roles in atherogenesis. Methods: Gene expression using microarray and metabolite levels in the early atherosclerotic lesions and aneu- rysmal walls obtained from 42 patients undergoing aortic surgery were investigated (early lesion n=11, aneu- rysm n=35) and capillary electrophoresis–time-of-flight mass spectrometry (early lesion n=14, aneurysm n=38). Using immunohistochemistry, the protein expression and localization of the identified factors were examined (early lesion n=11, non-aneurysmal advanced lesion n=8, aneurysm n=11).
    [Show full text]
  • HIV-1 Envelope Mimicry of Host Enzyme Kynureninase Does Not Disrupt Tryptophan Metabolism
    HIV-1 Envelope Mimicry of Host Enzyme Kynureninase Does Not Disrupt Tryptophan Metabolism This information is current as Todd Bradley, Guang Yang, Olga Ilkayeva, T. Matt Holl, of September 29, 2021. Ruijun Zhang, Jinsong Zhang, Sampa Santra, Christopher B. Fox, Steve G. Reed, Robert Parks, Cindy M. Bowman, Hilary Bouton-Verville, Laura L. Sutherland, Richard M. Scearce, Nathan Vandergrift, Thomas B. Kepler, M. Anthony Moody, Hua-Xin Liao, S. Munir Alam, Roger McLendon, Jeffrey I. Everitt, Christopher B. Newgard, Downloaded from Laurent Verkoczy, Garnett Kelsoe and Barton F. Haynes J Immunol 2016; 197:4663-4673; Prepublished online 14 November 2016; doi: 10.4049/jimmunol.1601484 http://www.jimmunol.org/content/197/12/4663 http://www.jimmunol.org/ Supplementary http://www.jimmunol.org/content/suppl/2016/11/12/jimmunol.160148 Material 4.DCSupplemental References This article cites 67 articles, 31 of which you can access for free at: http://www.jimmunol.org/content/197/12/4663.full#ref-list-1 by guest on September 29, 2021 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc.
    [Show full text]
  • RT² Profiler PCR Array (Rotor-Gene® Format) Human Amino Acid Metabolism I
    RT² Profiler PCR Array (Rotor-Gene® Format) Human Amino Acid Metabolism I Cat. no. 330231 PAHS-129ZR For pathway expression analysis Format For use with the following real-time cyclers RT² Profiler PCR Array, Rotor-Gene Q, other Rotor-Gene cyclers Format R Description The Human Amino Acid Metabolism I RT² Profiler PCR Array profiles the expression of 84 key genes important in biosynthesis and degradation of functional amino acids. Of the 20 amino acids required for protein synthesis, six of them (arginine, cysteine, glutamine, leucine, proline, and tryptophan), collectively known as the functional amino acids, regulate key metabolic pathways involved in cellular growth, and development, as well as other important biological processes such as immunity and reproduction. For example, leucine activates mTOR signaling and increases protein synthesis, leading to lymphocyte proliferation. Therefore, a lack of leucine can compromise immune function. Metabolic pathways interrelated with the biosynthesis and degradation of these amino acids include vitamin and cofactor biosynthesis (such as SAM or S-Adenosyl Methionine) as well as neurotransmitter metabolism (such as glutamate). This array includes genes for mammalian functional amino acid metabolism as well as genes involved in methionine metabolism, important also for nutrient sensing and sulfur metabolism. Using realtime PCR, you can easily and reliably analyze the expression of a focused panel of genes involved in functional amino acid metabolism with this array. For further details, consult the RT² Profiler PCR Array Handbook. Shipping and storage RT² Profiler PCR Arrays in the Rotor-Gene format are shipped at ambient temperature, on dry ice, or blue ice packs depending on destination and accompanying products.
    [Show full text]
  • Supplementary Materials
    Supplementary Materials COMPARATIVE ANALYSIS OF THE TRANSCRIPTOME, PROTEOME AND miRNA PROFILE OF KUPFFER CELLS AND MONOCYTES Andrey Elchaninov1,3*, Anastasiya Lokhonina1,3, Maria Nikitina2, Polina Vishnyakova1,3, Andrey Makarov1, Irina Arutyunyan1, Anastasiya Poltavets1, Evgeniya Kananykhina2, Sergey Kovalchuk4, Evgeny Karpulevich5,6, Galina Bolshakova2, Gennady Sukhikh1, Timur Fatkhudinov2,3 1 Laboratory of Regenerative Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia 2 Laboratory of Growth and Development, Scientific Research Institute of Human Morphology, Moscow, Russia 3 Histology Department, Medical Institute, Peoples' Friendship University of Russia, Moscow, Russia 4 Laboratory of Bioinformatic methods for Combinatorial Chemistry and Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia 5 Information Systems Department, Ivannikov Institute for System Programming of the Russian Academy of Sciences, Moscow, Russia 6 Genome Engineering Laboratory, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia Figure S1. Flow cytometry analysis of unsorted blood sample. Representative forward, side scattering and histogram are shown. The proportions of negative cells were determined in relation to the isotype controls. The percentages of positive cells are indicated. The blue curve corresponds to the isotype control. Figure S2. Flow cytometry analysis of unsorted liver stromal cells. Representative forward, side scattering and histogram are shown. The proportions of negative cells were determined in relation to the isotype controls. The percentages of positive cells are indicated. The blue curve corresponds to the isotype control. Figure S3. MiRNAs expression analysis in monocytes and Kupffer cells. Full-length of heatmaps are presented.
    [Show full text]
  • BIOCHEMISTRY of TRYPTOPHAN in HEALTH and DISEASE Contents
    Molec. Aspects Med. Vol. 6, pp. 101-197, 1982 0098-2997/82/020101-97548.50/0 Printed in Great Britain. All rights reserved. Copyright © Pergamon Press Ltd. BIOCHEMISTRY OF TRYPTOPHAN IN HEALTH AND DISEASE David A. Bender Courtauld Institute of Biochemistry, The Middlesex Hospital Medical School, London WIP 7PN, U.K. Contents Chapter 1 THE DISCOVERY OF TRYPTOPHAN, ITS PHYSIOLOGICAL SIGNIFICANCE AND METABOLIC FATES 103 Tryptophan and glucose metabolism 105 Xanthurenic acid and insulin 105 The glucose tolerance factor 106 Inhibition of gluconeogenesis by tryptophan metabolites i07 Metabolic fates of tryptophan 108 Protein synthesis 108 Oxidative metabolism Ii0 5-Hydroxyindole synthesis 111 Intestinal bacterial metabolism iii Chapter 2 THE 5-HYDROXYINDOLE PATHWAY OF TRYPTOPHAN METABOLISM; SEROTONIN AND OTHER CENTRALLY ACTIVE TRYPTOPHAN METABOLITES 112 Tryptophan 5-hydroxylase 112 Inhibition of tryptophan hydroxylase and the carcinoid syndrome 116 Aromatic amino acid decarboxylase 118 The specificity of aromatic amino acid decarboxylase 120 Tryptophan metabolism in the pineal gland 121 Monoamine oxidase 124 The uptake of tryptophan into the brain 124 The binding of tryptophan to serum albumin 127 Competition for uptake by other neutral amino acids 129 Changes in tryptophan metabolism in response to food intake 129 Tryptophan uptake into the brain in liver failure 131 Sleep and tryptophan metabolism 134 101 102 D.A. Bender Tryptophan and serotonin in psychiatric disorders 135 Affective disorders 136 Evidence for a deficit of serotonin or tryptophan
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Generate Metabolic Map Poster
    Authors: Pallavi Subhraveti Ron Caspi Peter Midford Peter D Karp An online version of this diagram is available at BioCyc.org. Biosynthetic pathways are positioned in the left of the cytoplasm, degradative pathways on the right, and reactions not assigned to any pathway are in the far right of the cytoplasm. Transporters and membrane proteins are shown on the membrane. Ingrid Keseler Periplasmic (where appropriate) and extracellular reactions and proteins may also be shown. Pathways are colored according to their cellular function. Gcf_001591825Cyc: Bacillus vietnamensis NBRC 101237 Cellular Overview Connections between pathways are omitted for legibility. Anamika Kothari sn-glycerol phosphate phosphate pro phosphate phosphate phosphate thiamine molybdate D-xylose D-ribose glutathione 3-phosphate D-mannitol L-cystine L-djenkolate lanthionine α,β-trehalose phosphate phosphate [+ 3 more] α,α-trehalose predicted predicted ABC ABC FliY ThiT XylF RbsB RS10935 UgpC TreP PutP RS10200 PstB PstB RS10385 RS03335 RS20030 RS19075 transporter transporter of molybdate of phosphate α,β-trehalose 6-phosphate L-cystine D-xylose D-ribose sn-glycerol D-mannitol phosphate phosphate thiamine glutathione α α phosphate phosphate phosphate phosphate L-djenkolate 3-phosphate , -trehalose 6-phosphate pro 1-phosphate lanthionine molybdate phosphate [+ 3 more] Metabolic Regulator Amino Acid Degradation Amine and Polyamine Biosynthesis Macromolecule Modification tRNA-uridine 2-thiolation Degradation ATP biosynthesis a mature peptidoglycan a nascent β an N-terminal-
    [Show full text]
  • THE ROLE of KYNURENINE, a TRYPTOPHAN METABOLITE THAT INCREASES with AGE, in MUSCLE ATROPHY and LIPID PEROXIDATION) by Helen Eliz
    THE ROLE OF KYNURENINE, A TRYPTOPHAN METABOLITE THAT INCREASES WITH AGE, IN MUSCLE ATROPHY AND LIPID PEROXIDATION) By Helen Elizabeth Kaiser Submitted to the Faculty of the Graduate School of Augusta University in partial fulfillment of the Requirements of the Degree of (Doctor of Philosophy in Cellular Biology and Anatomy) April 2020 COPYRIGHT© 2020 by Helen Kaiser ACKNOWLEDGEMENTS I wish to express my deepest gratitude to my mentor Dr. Mark Hamrick. His support and advice were invaluable to my learning and development as a scientist. I would like to especially recognize Dr. Hamrick’s honesty to data, and kindness to everyone around him. It was an honor to work as his student, and to be a part of this project. I would like to thank my committee members, Drs. Carlos Isales, Meghan McGee-Lawrence, and Yutao Liu, for their continued support, guidance, and helpful suggestions. They have helped to shape and focus this project, and have augmented my experience as a student during the development of my dissertation. Additionally, I want to recognize and thank Dr. Sadanand Fulzele for sharing his wealth of knowledge in techniques, and always keeping his door open for student’s questions. Next, a most heartfelt thanks to my lab mates: Andrew Khayrullin, Bharati Mendhe, Ling Ruan and Emily Parker. This project has been a team effort, all of them have been fundamental to its success. I further want to show my appreciation for the rest of the department of Cellular Biology and Anatomy at Augusta University. The histology core members Donna Kumiski and Penny Roon for their direct help in sectioning, and contributions to this project.
    [Show full text]
  • Ornithine Decarboxylase Regulates M1 Macrophage Activation And
    Ornithine decarboxylase regulates M1 macrophage PNAS PLUS activation and mucosal inflammation via histone modifications Dana M. Hardbowera,b, Mohammad Asimb, Paula B. Luisc, Kshipra Singhb, Daniel P. Barryb, Chunying Yangd,e, Meredith A. Steevese, John L. Clevelandd,e, Claus Schneiderc, M. Blanca Piazuelob, Alain P. Gobertb, and Keith T. Wilsona,b,f,g,h,1 aDepartment of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232; bDivision of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232; cDepartment of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232; dDepartment of Tumor Biology, Moffitt Cancer Center and Research Institute, Tampa, FL 33612; eDepartment of Cancer Biology, The Scripps Research Institute, Jupiter, FL 33458; fDepartment of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN 37232; gCenter for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN 37232; and hVeterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37232 Edited by Carl F. Nathan, Weill Medical College of Cornell University, New York, NY, and approved December 20, 2016 (received for review September 6, 2016) Macrophage activation is a critical step in host responses during pathogens is macrophage activation. Macrophages have the ca- bacterial infections. Ornithine decarboxylase (ODC), the rate-limiting pacity to alter cytokine/chemokine production and various other enzyme in polyamine metabolism, has been well studied in epithelial functions along the spectrum of M1 or M2 activation based on the cells and is known to have essential roles in many different cellular stimulus detected (12–14). M1 macrophages represent a highly functions. However, its role in regulating macrophage function during proinflammatory and antimicrobial subset of macrophages (12–14).
    [Show full text]