Sistemas Exoplanetarios Múltiples

Total Page:16

File Type:pdf, Size:1020Kb

Sistemas Exoplanetarios Múltiples Presentado ante la Facultad de Matem´atica,Astronom´ıay F´ısica como parte de los requerimientos para obtener el t´ıtulode Licenciada en Astronom´ıade la Universidad Nacional de C´ordoba Sistemas Exoplanetarios M´ultiples Melissa Janice Hobson Directora: Mercedes G´omez Julio, 2015 Sistemas Exoplanetarios M´ultiples por Hobson, Melissa J. se distribuye bajo una Licencia Creative Commons Atribuci´on-NoComercial2.5 Argentina. Resumen Actualmente se conocen 473 sistemas exoplanetarios m´ultiples,de los cuales 51 poseen cuatro o m´asplanetas. En este trabajo, presentamos an´alisisestad´ısticosde las propiedades f´ısicastanto de las estrellas que los albergan como de los planetas que los componen, y de las configuraciones orbitales de estos sistemas. Separando los sistemas en chicos (dos o tres planetas) y grandes (cuatro o m´asplanetas), analizamos la metalicidad de las estrellas hu´espedes, agregando como un tercer grupo las estrellas que albergan Hot Jupiters. Estudiamos si los planetas est´anordenados preferentemente por tama~noen sus sistemas. Centr´andonosen los 51 sistemas m´asnumerosos, medimos la raz´onde tama~nosde los planetas y la compactez de los sistemas, y analizamos la posibilidad de una relaci´onentre estos par´ametros. Estudiamos la diversidad de los sistemas planetarios m´ultiplesactualmente conocidos en relaci´on al Sistema Solar. Investigamos las distribuciones espectrales de energ´ıade las estrellas que albergan sistemas planetarios m´ultiplesen busca de posibles discos debris1 en estos sistemas. Realizamos an´alisis comparativos de propiedades estelares y planetarias para los sistemas con y sin excesos en IR, y estimamos temperaturas y radios de los discos para los sistemas con excesos en dos o m´as filtros. 1Literalmente, discos \de escombros". Discos circunestelares formados por polvo y planetsimales; son rema- nentes del proceso de formaci´onplanetaria. 1 Abstract 473 multiple exoplanetary systems are currently known, of which 51 possess four or more planets. In this work, we present statistical analyses of the physical properties of both the host stars and the planets, and of the orbital configurations of these systems. Separating the systems in small (two or three planets) and large (four or more planets), we analyse the metallicity of the host stars, adding as a third comparison group the stars that host Hot Jupiters. We investigate if the planets are are ordered preferentially by size in their systems. Focusing on the 51 most populated systems, we measure the size ratio of the planets and the compactness of the systems, and analyse the possibility of a relationship between these parameters. We study the diversity of the currently known multiple planetary systems in relation to the Solar System. We investigate the spectral energy distributions of the stars hosting multiplanetary systems, searching for possible debris disks2 in these systems. We perform comparative analyses of ste- llar and planetary properties for the systems with and without IR excess, and estimate disk temperatures and radii for the systems with excesses in two or more filters. 2Circumstellar disks formed by dust and planetesimals; they are leftovers of the planetary formation process. 2 Agradecimientos A mi familia (los que est´any los que ya se fueron), que creyeron en m´ıy me acompa~naron a lo largo de este camino. A Mercedes, mi directora, que me gui´oen este proyecto. A mis amigos, que siempre estuvieron a mi lado. 3 ´Indice general Introducci´on 6 1 T´ecnicasde Detecci´on 7 1.1 Sistemas Planetarios . 7 1.2 T´ecnicasde Detecci´on . 8 1.2.1 Tr´ansitosPlanetarios y Variaci´onde Tiempos de Tr´ansito . 8 1.2.2 Velocidad Radial . 14 1.2.3 Imagen Directa . 16 1.2.4 Microlentes Gravitacionales . 18 1.2.5 Timing . 21 1.2.6 Astrometr´ıa. 22 2 Validaci´onde los Candidatos de Kepler 23 2.1 Introducci´on. 23 2.2 Marco Estad´ıstico . 24 2.3 An´alisisde Curvas de Luz . 25 3 Propiedades Estelares y Planetarias 28 3.1 Introducci´on. 28 3.2 Propiedades de las Estrellas . 29 3.2.1 Temperatura Estelar . 29 3.2.2 Masa Estelar . 30 3.2.3 Distancia Estelar . 30 3.3 Comparaci´onentre Sistemas Chicos y Grandes . 31 3.3.1 Metalicidad Estelar . 31 3.3.2 Orden Preferencial . 34 3.3.3 Suma de Masas o Radios Planetarios vs Masa o Radio Estelar . 35 3.4 Sistemas Grandes . 36 3.4.1 Raz´onde Tama~nos. 38 3.4.2 Compactez . 42 3.4.3 Relaci´onentre Compactez y Raz´onde Tama~nos. 43 3.4.4 Estabilidad - Radios de Hill . 45 3.4.5 \Ley" de Titius-Bode . 49 3.4.6 Comparaci´oncon el Sistema Solar . 52 3.5 Comentarios Finales . 54 4 Discos de Polvo 55 4.1 Introducci´on. 55 4.2 Excesos en Distribuciones Espectrales de Energ´ıa . 57 4.3 Sistemas Planetarios M´ultiplesCon y Sin Discos . 59 4.4 Par´ametrosde los Discos . 62 4.5 Comparaci´oncon la Literatura . 69 4.6 Comentarios Finales . 70 Conclusiones 72 4 Ap´endiceA Distribuciones Espectrales de Energ´ıapara Sistemas Exoplanetarios M´ultiplescon Excesos 73 Bibliograf´ıa 94 5 Introducci´on Actualmente (13/05/2015) se conocen m´asde 1900 planetas extrasolares en 1195 sistemas pla- netarios, de los cuales 473 son m´ultiples.Considerando esta gran muestra de sistemas planeta- rios, nos surgen varias preguntas: >Son similares al Sistema Solar? >Son parecidos entre ellos? >Qu´epatrones se pueden encontrar? El objetivo de este Trabajo Especial es, entonces, estudiar las propiedades f´ısicas de los sistemas planetarios conocidos a la fecha buscando similitudes y diferencias con el Sistema So- lar. No buscamos particularizar en cada sistema, sino realizar un an´alisiscomparativo de las caracter´ısticasgenerales. En el Cap´ıtulo1, se detallan las t´ecnicasde detecci´onde exoplanetas y se dan ejemplos de sistemas multiplanetarios encontrados con cada una. El Cap´ıtulo2 explica c´omose validan los candidatos planetarios de la misi´onKepler, con ´enfasis en la validaci´onestad´ısticade sistemas m´ultiples.Este enfoque permiti´o,en 2014, incrementar la muestra de sistemas exoplanetarios m´ultiplesen m´asdel 50 %, lo cual fue de gran importancia para el desarrollo de este trabajo. Los Cap´ıtulos3 y 4 contienen nuestros an´alisissobre la muestra de sistemas exoplanetarios m´ultiples.En el Cap´ıtulo3, se divide a los sistemas planetarios, seg´unla cantidad de planetas, en sistemas chicos (2 o 3 planetas) y sistemas grandes (4 o m´asplanetas). Se estudian comparati- vamente propiedades estelares - masa, temperatura, distancia al Sol, metalicidad - y planetarias - existencia de un orden preferencial, suma total de masas planetarias para cada sistema. Luego, nos concentramos espec´ıficamente en los sistemas grandes e investigamos una serie de propieda- des: la variaci´onde tama~nosde los planetas, cu´ancompactos son los sistemas (es decir, qu´etan cercanos son los planetas entre s´ı),la estabilidad de estos sistemas y la posible existencia de \leyes" de Titius-Bode en los mismos. Finalmente, realizamos una comparaci´oncon el Sistema Solar. Adem´asde una estrella y ocho planetas, el Sistema Solar comprende una gran cantidad de cuerpos menores. La mayor´ıade estos forman parte del cintur´onde asteroides o del cintur´on de Kuiper, objetos que se pueden considerar an´alogosa los discos debris, o discos de polvo, detectados en otras estrellas. En el Cap´ıtulo4 se presenta una b´usquedade evidencias de discos debris en sistemas exoplanetarios m´ultiples,y se exploran algunas caracter´ısticastanto de los potenciales discos como de las estrellas que los albergan. 6 Cap´ıtulo1 T´ecnicas de Detecci´on 1.1 Sistemas Planetarios La primer detecci´onde exoplanetas data de 1992, cuando Wolszczan & Frail (1992) descubrieron un sistema de dos planetas orbitando el pulsar PSR1257 + 12. Hubo que esperar tres a~nospara que se encontrara un planeta en una estrella de secuencia principal, cuando Mayor & Queloz (1995) anunciaron el descubrimiento de 51 Peg b. Desde entonces, se han encontrado miles de planetas mediante un variado conjunto de t´ecnicas de detecci´on.Al 13 de Marzo de 2015, se conoc´ıan1900 planetas extrasolares en 1195 sistemas. En la Figura 1.1, se presenta un gr´aficode los sistemas planetarios conocidos seg´unel n´umerode planetas detectado en cada uno de ellos. Figura 1.1: Sistemas exoplanetarios seg´uncantidad de planetas. Las t´ecnicasusadas para encontrar estos sistemas son: tr´ansitosplanetarios y variaci´onde tiempos de tr´ansito,velocidad radial, imagen directa, microlentes gravitacionales, timing, y as- trometr´ıa.En la Figura 1.2, se muestra un gr´aficode la cantidad de planetas encontrados por cada t´ecnica.Podemos notar que las t´ecnicasde tr´ansitoy de velocidad radial han sido por mucho las m´asproductivas. 7 Figura 1.2: Cantidad de exoplanetas detectados por las distintas t´ecnicas. 1.2 T´ecnicas de Detecci´on En esta secci´onse desarrollan las diferentes t´ecnicasde b´usquedade exoplanetas y se presenta, a modo de ejemplo, un sistema planetario hallado con cada una. 1.2.1 Tr´ansitosPlanetarios y Variaci´onde Tiempos de Tr´ansito La t´ecnicade tr´ansitosplanetarios se basa en la observaci´onde la ca´ıdade luz de una estrella provocada por un planeta que transita, es decir, que pasa entre la estrella y el observador (Figura 1.3). Es la t´ecnicacon mayor cantidad de descubrimientos, como se ve en la Figura 1.2. En la Figura 1.4 se presentan los sistemas encontrados mediante tr´ansitosplanetarios, junto con una t´ecnicaasociada (variaci´onde tiempos de tr´ansito)a la cual nos referiremos al final de la presente secci´on. Figura 1.3: Curva de luz de una estrella con un planeta transitante (Cr´edito:ESA / Hans Deeg). 8 Figura 1.4: Sistemas exoplanetarios detectados mediante tr´ansitosplanetarios y variaci´onde tiempos de tr´ansito.
Recommended publications
  • A Naprendszer-Hasonlósági Index
    Szegedi Tudományegyetem Természettudományi és Informatikai Kar Kísérleti Fizikai Tanszék Szakdolgozat A Naprendszer-hasonlósági index Készítette: Mészáros Richárd Fizika BSc szakos hallgató Témavezető: Dr. Szatmáry Károly egyetemi tanár Szeged 2020 Tartalomjegyzék 1. Bevezetés……………………………………………………………………..2 2. Az exobolygók felfedezési módszerei………………………………………..2 2.1. Közvetlen módszerek………………………………………………..2 2.2. Közvetett módszerek………………………………………..……….3 3. Az exobolygók osztályozása………………………………………...……….6 4. A Föld-hasonlósági index…………………………………………………….7 5. A Naprendszer-hasonlósági index……………………………………………8 5.1. Első verzió……………………………………………….…………..8 5.2. Második verzió……………………………………………………..11 5.3. Eredmények……………………………………………………...…13 6. Összefoglalás………………………………………………………………..24 Köszönetnyilvánítás……………………………………………………………24 Irodalomjegyzék………………………………………………………………..25 1 1. Bevezetés A felfedezett exobolygók asztrobiológiai potenciáljának vizsgálatára 2011-ben bevezetésre került a Föld-hasonlósági index (ESI, Schulze-Makuch et al. 2011,[2]). Dolgozatom témájául a felfedezett exobolygó rendszerek hasonló módon való vizsgálatát választottam. A második és harmadik fejezetben összefoglalom az exobolygók keresési módszereit és ezen bolygók típusait. A negyedik fejezetben röviden bemutatom a Föld-hasonlósági indexet. Az ötödik fejezetben a Föld-hasonlósági index mintájára bevezetem a Naprendszer-hasonlósági index fogalmát. Ismertetem kiszámításának módját, és alkalmazom a legalább 4 bolygót tartalmazó exobolygó rendszerekre. A kapott eredményekből
    [Show full text]
  • Planets Galore
    physicsworld.com Feature: Exoplanets Detlev van Ravenswaay/Science Photo Library Planets galore With almost 1700 planets beyond our solar system having been discovered, climatologists are beginning to sketch out what these alien worlds might look like, as David Appell reports And so you must confess Jupiters, black Jupiters or puffy Jupiters; there are David Appell is a That sky and earth and sun and all that comes to be hot Neptunes and mini-Neptunes; exo-Earths, science writer living Are not unique but rather countless examples of a super-Earths and eyeball Earths. There are planets in Salem, Oregon, class. that orbit pulsars, or dim red dwarf stars, or binary US, www. Lucretius, Roman poet and philosopher, from star systems. davidappell.com De Rerum Natura, Book II Astronomers are in heaven and planetary scien- tists have an entirely new zoo to explore. “This is the The only thing more astonishing than their diver- best time to be an exoplanetary astronomer,” says sity is their number. We’re talking exoplanets exoplanetary astronomer Jason Wright of Pennsyl- – planets around stars other than our Sun. And vania State University. “Things have really exploded they’re being discovered in Star Trek quantities: recently.” Proving the point is that a third of all 1692 as this article goes to press, and another 3845 abstracts at a recent meeting of the American Astro- unconfirmed candidates. nomical Society were related to exoplanets. The menagerie includes planets that are pink, This explosion is largely thanks to the Kepler space blue, brown or black. Some have been labelled hot observatory.
    [Show full text]
  • Characterizing Exoplanet Habitability
    Characterizing Exoplanet Habitability Ravi kumar Kopparapu NASA Goddard Space Flight Center Eric T. Wolf University of Colorado, Boulder Victoria S. Meadows University of Washington Habitability is a measure of an environment’s potential to support life, and a habitable exoplanet supports liquid water on its surface. However, a planet’s success in maintaining liquid water on its surface is the end result of a complex set of interactions between planetary, stellar, planetary system and even Galactic characteristics and processes, operating over the planet’s lifetime. In this chapter, we describe how we can now determine which exoplanets are most likely to be terrestrial, and the research needed to help define the habitable zone under different assumptions and planetary conditions. We then move beyond the habitable zone concept to explore a new framework that looks at far more characteristics and processes, and provide a comprehensive survey of their impacts on a planet’s ability to acquire and maintain habitability over time. We are now entering an exciting era of terrestiral exoplanet atmospheric characterization, where initial observations to characterize planetary composition and constrain atmospheres is already underway, with more powerful observing capabilities planned for the near and far future. Understanding the processes that affect the habitability of a planet will guide us in discovering habitable, and potentially inhabited, planets. There are countless suns and countless earths all rotat- have the capability to characterize the most promising plan- ing around their suns in exactly the same way as the seven ets for signs of habitability and life. We are at an exhilarat- planets of our system.
    [Show full text]
  • Pricelist Abstraction (Jean-Marie Gitard (Mr STRANGE))
    Artmajeur JEAN-MARIE GITARD (MR STRANGE) (FRANCE) ARTMAJEUR.COM/JEANMARIEGITARD Pricelist: Abstraction 22 Artworks Image Title Status Price Spirale For Sale $318.14 Digital Arts, 98x82x0.1 cm ©2020 Ref 13786553 artmajeur.link/l94q4U HERAKLION For Sale $365.45 Digital Arts, 75x100x0.1 cm ©2019 Ref 13659182 artmajeur.link/velV6l PHAEDRA 112 Ca For Sale $259.01 Digital Arts, 50x50x0.1 cm ©2020 Ref 13609553 artmajeur.link/zOOdl6 GLIESE 668 Cc Limited Edition For Sale $259.01 Digital Arts, 50x50x0.1 cm ©2018 Ref 13609547 artmajeur.link/tVScWB KOI-1686.01 For Sale $353.62 Digital Arts, 80x80x0.1 cm ©2018 Ref 12809219 artmajeur.link/lqEm9T 1 / 4 Image Title Status Price LHS 1723 b For Sale $353.62 Digital Arts, 100x75x0.1 cm ©2018 Ref 12809207 artmajeur.link/iEB3Ph Kepler-438 b For Sale $341.8 Digital Arts, 82x82x0.1 cm ©2019 Ref 12300905 artmajeur.link/8D7uGT Luyten b For Sale $365.45 Digital Arts, 100x75x0.1 cm ©2019 Ref 12300896 artmajeur.link/wnZk2l Proxima Centauri b For Sale $341.8 Digital Arts, 82x82x0.1 cm ©2017 Ref 12283532 artmajeur.link/Y8zZkd Gliese 667 Cc For Sale $341.8 Digital Arts, 82x82x0.1 cm ©2018 Ref 12283529 artmajeur.link/LMBNRI K2-72-e For Sale $353.62 Digital Arts, 96x80x0.1 cm ©2018 Ref 12283526 artmajeur.link/FZDM29 2 / 4 Image Title Status Price TRAPPIST-1d For Sale $353.62 Digital Arts, 100x75x0.1 cm ©2018 Ref 12274691 artmajeur.link/xSVnNP Tau Ceti e For Sale $353.62 Digital Arts, 75x100x0.1 cm ©2017 Ref 12274649 artmajeur.link/DbFvHV KOI-3010.01 For Sale $341.8 Digital Arts, 82x82x0.1 cm ©2019 Ref 12274613 artmajeur.link/pGjEoY
    [Show full text]
  • The Universe Contents 3 HD 149026 B
    History . 64 Antarctica . 136 Utopia Planitia . 209 Umbriel . 286 Comets . 338 In Popular Culture . 66 Great Barrier Reef . 138 Vastitas Borealis . 210 Oberon . 287 Borrelly . 340 The Amazon Rainforest . 140 Titania . 288 C/1861 G1 Thatcher . 341 Universe Mercury . 68 Ngorongoro Conservation Jupiter . 212 Shepherd Moons . 289 Churyamov- Orientation . 72 Area . 142 Orientation . 216 Gerasimenko . 342 Contents Magnetosphere . 73 Great Wall of China . 144 Atmosphere . .217 Neptune . 290 Hale-Bopp . 343 History . 74 History . 218 Orientation . 294 y Halle . 344 BepiColombo Mission . 76 The Moon . 146 Great Red Spot . 222 Magnetosphere . 295 Hartley 2 . 345 In Popular Culture . 77 Orientation . 150 Ring System . 224 History . 296 ONIS . 346 Caloris Planitia . 79 History . 152 Surface . 225 In Popular Culture . 299 ’Oumuamua . 347 In Popular Culture . 156 Shoemaker-Levy 9 . 348 Foreword . 6 Pantheon Fossae . 80 Clouds . 226 Surface/Atmosphere 301 Raditladi Basin . 81 Apollo 11 . 158 Oceans . 227 s Ring . 302 Swift-Tuttle . 349 Orbital Gateway . 160 Tempel 1 . 350 Introduction to the Rachmaninoff Crater . 82 Magnetosphere . 228 Proteus . 303 Universe . 8 Caloris Montes . 83 Lunar Eclipses . .161 Juno Mission . 230 Triton . 304 Tempel-Tuttle . 351 Scale of the Universe . 10 Sea of Tranquility . 163 Io . 232 Nereid . 306 Wild 2 . 352 Modern Observing Venus . 84 South Pole-Aitken Europa . 234 Other Moons . 308 Crater . 164 Methods . .12 Orientation . 88 Ganymede . 236 Oort Cloud . 353 Copernicus Crater . 165 Today’s Telescopes . 14. Atmosphere . 90 Callisto . 238 Non-Planetary Solar System Montes Apenninus . 166 How to Use This Book 16 History . 91 Objects . 310 Exoplanets . 354 Oceanus Procellarum .167 Naming Conventions . 18 In Popular Culture .
    [Show full text]
  • Solar System Analogues Among Exoplanetary Systems
    Solar System analogues among exoplanetary systems Maria Lomaeva Lund Observatory Lund University ´´ 2016-EXA105 Degree project of 15 higher education credits June 2016 Supervisor: Piero Ranalli Lund Observatory Box 43 SE-221 00 Lund Sweden Populärvetenskaplig sammanfattning Människans intresse för rymden har alltid varit stort. Man har antagit att andra plan- etsystem, om de existerar, ser ut som vårt: med mindre stenplaneter i banor närmast stjärnan och gas- samt isjättar i de yttre banorna. Idag känner man till drygt 2 000 exoplaneter, d.v.s., planeter som kretsar kring andra stjärnor än solen. Man vet även att vissa av dem saknar motsvarighet i solsystemet, t. ex., heta jupitrar (gasjättar som har migrerat inåt och kretsar väldigt nära stjärnan) och superjordar (stenplaneter större än jorden). Därför blir frågan om hur unikt solsystemet är ännu mer intressant, vilket vi försöker ta reda på i det här projektet. Det finns olika sätt att detektera exoplaneter på men två av dem har gett flest resultat: transitmetoden och dopplerspektroskopin. Med transitmetoden mäter man minsknin- gen av en stjärnas ljus när en planet passerar framför den. Den metoden passar bäst för stora planeter med små omloppsbanor. Dopplerspektroskopin använder sig av Doppler effekten som innebär att ljuset utsänt från en stjärna verkar blåare respektive rödare när en stjärna förflyttar sig fram och tillbaka från observatören. Denna rörelse avslöjar att det finns en planet som kretsar kring stjärnan och påverkar den med sin gravita- tion. Dopplerspektroskopin är lämpligast för massiva planeter med små omloppsbanor. Under projektets gång har vi inte bara letat efter solsystemets motsvarigheter utan även studerat planetsystem som är annorlunda.
    [Show full text]
  • Survival of Exomoons Around Exoplanets 2
    Survival of exomoons around exoplanets V. Dobos1,2,3, S. Charnoz4,A.Pal´ 2, A. Roque-Bernard4 and Gy. M. Szabo´ 3,5 1 Kapteyn Astronomical Institute, University of Groningen, 9747 AD, Landleven 12, Groningen, The Netherlands 2 Konkoly Thege Mikl´os Astronomical Institute, Research Centre for Astronomy and Earth Sciences, E¨otv¨os Lor´and Research Network (ELKH), 1121, Konkoly Thege Mikl´os ´ut 15-17, Budapest, Hungary 3 MTA-ELTE Exoplanet Research Group, 9700, Szent Imre h. u. 112, Szombathely, Hungary 4 Universit´ede Paris, Institut de Physique du Globe de Paris, CNRS, F-75005 Paris, France 5 ELTE E¨otv¨os Lor´and University, Gothard Astrophysical Observatory, Szombathely, Szent Imre h. u. 112, Hungary E-mail: [email protected] January 2020 Abstract. Despite numerous attempts, no exomoon has firmly been confirmed to date. New missions like CHEOPS aim to characterize previously detected exoplanets, and potentially to discover exomoons. In order to optimize search strategies, we need to determine those planets which are the most likely to host moons. We investigate the tidal evolution of hypothetical moon orbits in systems consisting of a star, one planet and one test moon. We study a few specific cases with ten billion years integration time where the evolution of moon orbits follows one of these three scenarios: (1) “locking”, in which the moon has a stable orbit on a long time scale (& 109 years); (2) “escape scenario” where the moon leaves the planet’s gravitational domain; and (3) “disruption scenario”, in which the moon migrates inwards until it reaches the Roche lobe and becomes disrupted by strong tidal forces.
    [Show full text]
  • Habitable-Zone Super-Earth Candidate in a Six-Planet System Around the K2. 5V Star HD 40307
    Astronomy & Astrophysics manuscript no. hd40307˙final c ESO 2018 October 29, 2018 Habitable-zone super-Earth candidate in a six-planet system around the K2.5V star HD 40307 Mikko Tuomi⋆1,2, Guillem Anglada-Escud´e⋆⋆3, Enrico Gerlach4, Hugh R. A. Jones1, Ansgar Reiners3, Eugenio J. Rivera5, Steven S. Vogt5, and R. Paul Butler6 1 University of Hertfordshire, Centre for Astrophysics Research, Science and Technology Research Institute, College Lane, AL10 9AB, Hatfield, UK 2 University of Turku, Tuorla Observatory, Department of Physics and Astronomy, V¨ais¨al¨antie 20, FI-21500, Piikki¨o, Finland 3 Universit¨at G¨ottingen, Institut f¨ur Astrophysik, Friedrich-Hund-Platz 1, 37077 G¨ottingen, Germany 4 Lohrmann Observatory, Technical University Dresden, D-01062 Dresden, Germany 5 UCO/Lick Observatory, Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064, USA 6 Department of Terrestrial Magnetism, Carnegie Institute of Washington, Washington, DC 20015, USA Received XX.XX.2012 / Accepted XX.XX.XXXX ABSTRACT Context. The K2.5 dwarf HD 40307 has been reported to host three super-Earths. The system lacks massive planets and is therefore a potential candidate for having additional low-mass planetary companions. Aims. We re-derive Doppler measurements from public HARPS spectra of HD 40307 to confirm the significance of the reported signals using independent data analysis methods. We also investigate these measurements for additional low-amplitude signals. Methods. We used Bayesian analysis of our radial velocities to estimate the probability densities of different model parameters. We also estimated the relative probabilities of models with differing numbers of Keplerian signals and verified their significance using periodogram analyses.
    [Show full text]
  • Arxiv:1604.01722V1 [Astro-Ph.IM] 6 Apr 2016
    CD-HPF: New Habitability Score Via Data Analytic Modeling Kakoli Boraa, Snehanshu Sahab,∗, Surbhi Agrawalb, Margarita Safonovac, Swati Routhd, Anand Narasimhamurthye aDepartment of Information Science and Engineering, PESIT-BSC, Bangalore bDepartment of Computer Science and Engineering, PESIT-BSC, Bangalore cIndian Institute of Astrophysics, Bangalore dDepartment of Physics, Jain University, Bangalore eBITS, Hyderabad Abstract The search for life on the planets outside the Solar System can be broadly classified into the following: looking for Earth-like conditions or the planets similar to the Earth (Earth similarity), and looking for the possibility of life in a form known or unknown to us (habitability). The two frequently used indices, Earth Similarity Index (ESI) and Planetary Habitability Index (PHI), describe heuristic methods to score similarity/habitability in the efforts to categorize different exoplanets or exomoons. ESI, in particular, considers Earth as the reference frame for habitability and is a quick screening tool to categorize and measure physical similarity of any planetary body with the Earth. The PHI assesses the probability that life in some form may exist on any given world, and is based on the essential requirements of known life: a stable and protected substrate, energy, appropriate chemistry and a liquid medium. We propose here a different metric, a Cobb-Douglas Habitability Score (CDHS), based on Cobb-Douglas habitability production function (CD-HPF), which computes the habitability score by using measured and calculated planetary input parameters. As an initial set, we used radius, density, escape velocity and surface temperature of a planet. The values of the input parameters are normalized to the Earth Units (EU).
    [Show full text]
  • A Manual on Machine Learning and Astronomy: Authored, Edited and Compiled by Snehanshu Saha
    EBOOK-ASTROINFORMATICS SERIES: IEEECSCONNECT-AN INITIATIVE OF IEEE COMPUTER SOCIETY BANGALORE CHAPTER A MANUAL ON MACHINE LEARNING AND ASTRONOMY: AUTHORED, EDITED AND COMPILED BY SNEHANSHU SAHA Page 1 of 316 June 15, 2019 Chapter contributions from: Suryoday Basak, Rahul Yedida, Kakoli Bora Archana Mathur, Surbhi Agrawal, Margarita Safonova Nithin Nagaraj, Gowri Srinivasa, Jayant Murthy PES University University of Texas at Arlington North Carolina State University Indian Statistical Institute National Institute for Advanced Studies Indian Institute of Astrophysics June 15, 2019 2 Preface The E-book is dedicated to the new field of Astroinformatics: an interdisciplinary area of research where astronomers, mathematicians and computer scientists collaborate to solve problems in astronomy through the application of techniques developed in data science. Classical problems in astronomy now involve the accumulation of large volumes of complex data with different formats and characteristic and cannot be addressed using classical tech- niques. As a result, machine learning (ML) algorithms and data analytic techniques have exploded in importance, often without a mature understanding of the pitfalls in such studies. This E-book aims to capture the baseline, set the tempo for future research in India and abroad, and prepare a scholastic primer that would serve as a standard document for future research. The E-book should serve as a primer for young astronomers willing to apply ML in astronomy, a way that could rightfully be called "Machine Learning Done Right", borrowing the phrase from Sheldon Axler ("Linear Algebra Done Right")! The motivation of this handbook has two specific objectives: • develop efficient models for complex computer experiments and data analytic tech- niques which can be used in astronomical data analysis in the short term, and various related branches in physical, statistical, computational sciences much later (larger goal as far as memetic algorithm is concerned).
    [Show full text]
  • Modelling Biogeochemical Controls on Planetary Habitability
    Modelling Biogeochemical Controls on Planetary Habitability Andrew J. Rushby August 2015 A thesis submitted to the School of Environmental Sciences of the University of East Anglia in partial fulfilment of the requirements for the degree of Doctor of Philosophy © This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with the author and that use of any information derived there from must be in accordance with current UK Copyright Law. In addition, any quotation or extract must include full attribution. The Last Stand of Gaia, original artwork by Thom Reynolds (2015). ii Abstract The length of a planet's `habitable period' is an important controlling factor on the evolution of life and of intelligent observers. This can be defined as the amount of time the surface temperature on the planet remains within defined `habitable' limits. Complex states of habitability derived from complex interactions between multiple factors may arise over the course of the evolution of an individual terrestrial planet with implications for long-term habitability and biosignature detection. The duration of these habitable conditions are controlled by multiple factors, including the orbital distance of the planet, its mass, the evolution of the host star, and the operation of any (bio)geochemical cycles that may serve to regulate planetary climate. A stellar evolution model was developed to investigate the control of increasing main-sequence stellar luminosity on the boundaries of the radiative habitable zone, which was then coupled with a zero-D biogeochemical carbon cycle model to investigate the operation of the carbonate-silicate cycle under conditions of varying incident stellar flux and planet size.
    [Show full text]
  • Planetary Systems and the Hidden Symmetries of the Kepler Problem
    S S symmetry Article Planetary Systems and the Hidden Symmetries of the Kepler Problem József Cseh Institute for Nuclear Research, Bem tér 18/C, 4026 Debrecen, Hungary; [email protected] Received: 12 November 2020 ; Accepted: 14 December 2020; Published: 18 December 2020 Abstract: The question of whether the solar distances of the planetary system follow a regular sequence was raised by Kepler more than 400 years ago. He could not prove his expectation, inasmuch as the planetary orbits are not transformed into each other by the regular polyhedra. In 1989, Barut proposed another relation, which was inspired by the hidden symmetry of the Kepler problem. It was found to be approximately valid for our Solar System. Here, we investigate if exoplanet systems follow this rule. We find that the symmetry-governed sequence is valid in several systems. It is very unlikely that the observed regularity is by chance; therefore, our findings give support to Kepler’s guess, although with a different transformation rule. Keywords: Kepler problem; hidden symmetries; dynamical algebra; exoplanet systems 1. Introduction Kepler’s laws of planetary motion [1,2] played an essential role not only in the celestial mechanics, but also in the foundation of physics. Newton discovered the gravitational force based on these laws. However, there was still an expectation by Kepler which was not fulfilled: he was looking for the proportions of perfection in the sequence of planets [2,3]. He expected to find Divine Harmony in the distances of the planets. In particular, he thought that the orbits of the six planets (known at his time) are related to each other by inserting the five regular polyhedra between them.
    [Show full text]